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It is shown that for the three-band Emery p–d-model that reflects the real structure of the CuO2-

plane of high-temperature superconductors in the regime of strong electron correlations, it is pos-

sible to carry out a sequence of reductions to the effective models reproducing low-energy fea-

tures of elementary excitation spectrum and revealing the spin-polaron nature of the Fermi

quasiparticles. The first reduction leads to the spin-fermion model in which the subsystem of spin

moments, coupled by the exchange interaction and localized on copper ions, strongly interacts

with oxygen holes. The second reduction deals with the transformation from the spin-fermion

model to the u–d-exchange model. An important feature of this transformation is the large energy

of the u–d-exchange coupling, which leads to the formation of spin polarons. The use of this fact

allows us to carry out the third reduction, resulting in the ~t � ~J
� � I-model. Its distinctive feature

is the importance of spin-correlated hops as compared to the role of such processes in the com-

monly used t–J*-model derived from the Hubbard model. Based on the comparative analysis of

the spectrum of Fermi excitations calculated for the obtained effective models of the CuO2-plane

of high-temperature superconductors, the important role of the usually ignored long-range spin-

correlated hops is determined. Published by AIP Publishing. https://doi.org/10.1063/1.5020908

1. Introduction

It is known that the three-band p–d-model1–4 includes

interactions that enable describing the main features of the

electronic structure of the CuO2-plane in high-temperature

superconductors (HTSs). However, the theoretical complex-

ity that arises in this description due to the presence of three

ions in the unit cell with strong electron correlations (SEC),

resulted in an effort to reduce the three-band p–d-model to a

simple effective model.

To account for the hybridization between the d-states of

the copper ions and the p-states of the four nearby oxygen

ions, Ref. 5 introduced a symmetric oxygen orbital. The

hole, located on this orbital, forms a strongly coupled state

with the localized spin moment of the copper ion (Zhang-

Rice singlet). Keeping in mind the large energy of this inter-

action, the descriptions of carrier dynamics in the CuO2-

plane has been carried out by only considering the singlet

states. It was assumed that this approach would allow analy-

sis of the cuprate electronic properties in the framework of

the single-band t–J-model.6,7

The concept of the singlet state formation5 was also

developed in works.8–12 Analogous to the approach in Ref.

5, they employed a transition from the px- and py-orbitals of

the oxygen ions to Wannier functions (u- and w-orbitals) of

the unit cells which host a copper ion in their center. An

important property of these orbitals is that only u was

hybridized with the d-state of the copper ions forming the

Zhang-Rice singlet, whereas the second w orbital remained

inactive. As a result, this significantly simplified the problem

of finding the energy spectrum and the eigenstates of a single

unit cell while accounting for SEC.12,13

Introduction of single-cell states allowed to switch over

to the atomic representation of the three-band p–d-model

Hamiltonian. This approach, termed by the authors in Ref. 12

as generalized tight-binding (GTB) approach, resulted in a

complicated and non-transparent structure of the Hamiltonian,

since certain types of Coulombic (Vpd, Vpp, Up), as well as

hybridizational (tpd) interactions became significantly nonlo-

calized. Therefore, during the actual calculations, the method

was limited to a small number of single-cell states correspond-

ing only to the lowest-lying energy states, as well as the inter-

cell interactions between the nearest neighbors. The last point

becomes a significant weakness of the method in those cases

when the small size of the discarded interactions is compen-

sated by an increase in their number due to an increase in the

number of ions in the outer coordination spheres.14

Analysis of various interactions arising in the three-band

p–d-model effective Hamiltonian was carried out in the
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framework of the GTB method.15 Studies were carried out to

justify the legitimacy of using the t–J–V-model for determin-

ing the electronic properties of cuprates,16 as well as the gen-

eralization of this method to the multi-band p–d-model,

accounting for the state of the topmost oxygen.4,7,18

An alternative method for constructing the p–d-model

effective Hamiltonian was introduced in Refs. 14, 19, and 20

and was used in studies of HTS cuprates in both normal21–25

and superconducting phases.26,27 This method relies on the

relatively small value of the hybridization parameter

between the p-states of the oxygen ions and the d-states of

the copper ions tpd compared to the energy difference

between these states (Dpd ¼ ep� ed) and the Coulombic

repulsion parameter between the two holes on the copper ion

Ud. These conditions allowed the determination of the three-

band p–d-model effective Hamiltonian, using second-order

perturbation theory in the tpd/Dpd and tpd/(Ud � Dpd) parame-

ters, to assume the form of a SU(2)-invariant spin-fermion

model, where the copper ion states were described in the

homeopolar state subspace.

It is worth noting that the aforementioned works,14,19–27

did not use the u- and w-orbitals to study the properties of

the spin-fermion model. The switch to the symmetrized orbi-

tals for the spin-fermion model was carried out in Ref. 28. It

was shown that the u-d-exchange model that arises in this

case, contains spin-correlated hops between nodes, corre-

sponding to the far-lying cells. However, the calculation of

the cuprate spectral properties with this expanded u–d-

exchange model in the works,28,29 only accounted for the

spin-correlated hops between the nearest neighbors.

The current work starts with the three-band p–d-model

and proceeds to sequentially construct the three mentioned

effective models of the cuprate superconductor electronic

structure, while comparing their spectral properties. Section

2 formulates the Hamiltonian for the three-band p–d-model

using the second quantization. In Sec. 3, this Hamiltonian is

formulated in the atomic representation with the aid of

Hubbard operators in order to correctly describe the SEC

effect. Section 4, uses the operator formulation of the pertur-

bation theory and derives the Hamiltonian of the spin-

fermionic model up to second order in the tpd/Dpd and tpd/(Ud

� Dpd) parameters. Section 5 switches to the Wannier func-

tions and formulates the u–d-exchange model. Section 6

introduces the strict reduction of the low-energy ~t � ~J
� � I-

model. An important difference between this model and the

regular t–J*-model that is obtained from the single-band

Hubbard model is discussed. Section 7 is dedicated to the

calculation of the Fermi spectrum of spin-polaron excitations

in the framework of each of the introduced effective models.

Comparison of the obtained dispersion curves leads to a

conclusion involving the important role of the long-range

spin-correlated hops. The main results of the work are sum-

marized in Sec. 8.

2. Emery model Hamiltonian

It is well known that the main features of the electronic

structure of the CuO2-plane in high-temperature supercon-

ductors is well described by the Emery model1–3 that

describes the system of holes on the copper and oxygen ions.

The Hamiltonian for this model can be represented as

Ĥ ¼ ed

X
f

n̂d
f þ ep

X
l

n̂p
l þ Ud

X
f

n̂d
f"n̂

d
f#

þUp

X
l

n̂p
l"n̂

p
l# þ V̂ pd þ T̂ pd þ T̂ pp þ V̂ pp; (1)

where

V̂ pd ¼ Vpd

X
f d

n̂d
f n̂p

fþd;

T̂ pd ¼
X
fdr

tpd # dð Þdþf rpfþd;r þ h:c:
h i

;

T̂ pp ¼
X
lDr

tpp Dð Þpþlrplþ D; r;

V̂ pp ¼
X

ll0
Vpp l� l0ð Þn̂p

l n̂p
l0 : (2)

The first and second terms of the Hamiltonian (1)

describe the interaction energy between the hole on the cop-

per and the oxygen ions. The oxygen and copper ion posi-

tions are labeled with indices f and l, respectively. When

summing over l, one needs to account for the fact that a sin-

gle unit cell of the CuO2-plane has two oxygen ions.

Number operators for the particles on the copper and oxygen

ions are determined by the expressions

n̂d
f ¼

X
r

n̂d
f r ¼

X
r

dþf rdf r; n̂p
l ¼

X
r

n̂p
lr ¼

X
r

pþlrplr;

where dþfrðdfrÞ is the creation (annihilation) operator of the

hole on the copper ion in the f position with a spin of r
¼61/2, and pþlrðplrÞ is the creation (annihilation) operator

for the hole on the oxygen ions at the l node with a spin of r.

ed is the intrinsic hole energy on the copper ion, and ep for

the oxygen ion.

The third (fourth) term of the Hamiltonian Ĥ accounts

for the energy of the Hubbard repulsion between two holes

with opposing spin projections, located on a single copper

(oxygen) ion. The repulsion parameter is denoted by Ud(Up).

The V̂ pd operators in the expression (1), describe the

Coulombic interaction between the holes, located on adja-

cent oxygen and copper ions. The magnitude of this interac-

tion is determined by the Vpd parameter. The d vector,

connecting the copper ion with nearest neighbor oxygen

ions, assumes four values d ¼ (6a/2, 0), (0, 6 a/2).

The term describing the hybridization processes in the

p–d-model Hamiltonian, is denoted by T̂ pd. The tpd parame-

ter determines the intensity of the transition process of the

hole from the copper ion to any other nearest oxygen ion and

back. The #(d) function accounts for the influence of the

relation between the phases of the copper and oxygen orbi-

tals on the hybridization process. For the orbital profiles

shown in Fig. 1, the function #(d) assumes the following val-

ues: #(d) ¼ 1 when d ¼ (�a/2, 0), (0, �a/2), and #(d) ¼ �1

when d ¼ (a/2, 0), (0, a/2).

The T̂ pp operator in the Hamiltonian (1) describes the

hole hops along the oxygen orbitals. The hole hopping inte-

gral between the neighboring oxygen orbitals is denoted as

tpp(D) ¼ tppq(D). The sign of the integral is determined by

the q(D) function, where the D vector connects the nearest

oxygen ions. For the selected sequence of oxygen orbital

phases, q(D) ¼ 1 when D¼ (a/2, a/2), (–a/2, –a/2), and q(D)

¼ –1 when D¼ (a/2, –a/2), (–a/2, a/2).
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The last term in (1) is represented with the V̂ pp operator,

and determines the Coulombic interaction between the holes

located on the oxygen nodes l and l
0
. The strength of this

interaction is characterized by the Vpp(l – l
0
) function.

3. Emery model in strong correlation regime. Atomic
representation

If a single CuO2-plane unit cell contains only one hole,

then according to experimental data, the state of the system

can be described as a Mott-Hubbard dielectric. In the Emery

model, this ground state occurs in the regime of strong elec-

tron correlations when

Ud � Dpdð Þ; Dpd � tpd > 0: (3)

The large gap value with a charge transfer Dpd ¼ ep – ed and

the difference Ud – Dpd requires careful consideration. This

is accomplished in two steps. The first step involves intro-

ducing the atomic representation with the aid of the Hubbard

operators, that enables including the effects of strong elec-

tron correlations into the zero-order approximation

Hamiltonian. The second step involves construction the

effective Hamiltonian, Ĥ eff , in the framework of the opera-

tor form perturbation theory, for which the Hilbert space

does not contain high-energy “double” (with two holes) or

“empty” (without holes) states on the copper ion. The pro-

cesses involving excitations into these states are accounted

for by the perturbation theory and are manifested in the Ĥ eff

as additional interactions.

The Hubbard operators Zmn
f ; corresponding to the copper

ion subsystem are determined in the usual fashion: Zmn
f

¼ jf ; mihf ; nj;wherejf ; mi are the coper ion states on the f
node. There are four states such as these: jf ; 0i is the copper

ion state without a hole. jf ; ri ¼ dþf rjf ; 0i are single hole

states with a spin projection r. jf ; 2i ¼¼ dþf"d
þ
f#jf ; 0i — is

the two-hole state at the f node. The Hilbert subspace for the

entire copper subsystem is defined as the linear product of

each of the copper ions’ subspaces.

The switch to the atomic representation for the operators

belonging to the copper subsystem is accomplished by con-

necting the Fermi and the Hubbard operators

df r ¼ Z0r
f þ 2rZ�r2

f ; r ¼ 61=2; �r � �rð Þ: (4)

Since the main goal of this work is investigating the role

of long-range spin-correlated hops during formation of the

spin-polaron spectrum, for simplicity, we discard those inter-

action terms of the Hamiltonian (1) that do not have a direct

relation to the current problem, i.e., let’s assume that: tpp

¼ 0, Up ¼ 0, Vpp ¼ 0 and Vpd ¼ 0. Then the Hamiltonian in

the Emery model has the form

Ĥ ¼ Ĥ 0 þ Ĥ int; (5)

where

Ĥ 0 ¼ ed

X
fr

Zrr
f þ 2ed þUdð Þ

X
f

Z22
f þ ep

X
f

n̂p
fþx

2
þ n̂p

fþy
2

� �
;

(6)

Ĥ int ¼ T̂ pd ¼
X
fdr

tpd # dð Þ Zr0
f þ 2rZ2�r

f

� �
pfþd;rþ h:c:

h i
: (7)

4. Reduction to the spin-fermion model

As was previously mentioned, in the undoped case,

when a single unit cell contains only one hole, the ground

state of the system can be described as an antiferromagnetic

dielectric. In this case, the hole is located on the copper ion.

Keeping in mind that the “double” and the “empty” states on

the copper ions manifest only virtually, we use the projection

operator during construction of the effective Hamiltonian in

the perturbation theory operator form

P ¼
Y

f

Z""f þ Z##f

� �
: (8)

Then the effective Hamiltonian can be represented in the

form of an expansion30

Ĥ eff ¼ Ĥ 0 þ Ĥ
2ð Þ þ Ĥ

3ð Þ þ Ĥ
4ð Þ þ � � � ; (9)

where

Ĥ 0 ¼ ed

X
f r

Zrr
f þ ep

X
f

n̂p
fþx

2
þ n̂p

fþy
2

� �
; (10)

Ĥ
2ð Þ ¼ � P Ĥ int� P Ĥ intP

� �
Ĥ 0�E0

� ��1
Ĥ intP � P Ĥ intP
� �

:

(11)

Carrying out simple calculations yields that the contributions

of the “double” and the “empty” copper ion states to the

effective Hamiltonian in the second-order perturbation the-

ory can be defined by the expression

Ĥ
2ð Þ ¼ �4N

t2
pd

Dpd
þ e2

X
f dd1r

udd1pþfþd;rpfþd1;r

þJ
X

fdd1rr0
udd1pþfþd;r Sf srr0ð Þpfþd1;r0 ; (12)

where the first term determines the interaction energy contri-

bution of the covalent mixing processes. The second term

Fig. 1. Orbitals of the copper ðdx2�y2 Þ and the oxygen (px, py) holes of the

CuO2-plane, in the Emery model. The dashed line represents the unit cell

boundary with a parameter a. The dotted line connects the four oxygen orbi-

tals closest to the copper orbital located in the lower right-hand corner of the

unit cell.
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leads to a renormalization of the initial spectrum of the hole

states on the oxygen ions. The degree of this renormalization

depends on the magnitudes of

e2 ¼ 2t2pd

1

Dpd
� 1

Ud � Dpd

� �
; udd1

¼ 1

4
# dð Þ# d1ð Þ: (13)

The third term is due to the exchange interaction between

the spins of the Fermi subsystem of oxygen holes with spins

of the copper ion subsystem. The parameter J of this interac-

tion is determined by the following expression:

J ¼ 8t2
pd

1

Dpd
þ 1

Ud � Dpd

� �
: (14)

In expression (12) Sf is the vector operator of the spin

localized on the f node. s ¼ s/2 is an operator where the s
vector is composed of Pauli matrices: s ¼ (sx, sy, sz).

It is known from Ref. 31, that an exchange interaction

between the copper ion spin moments arises in the fourth-

order with respect to the tpd parameter,

H exch ¼
1

2

X
fm

Ifm Sf Smð Þ; (15)

with the magnitude of the exchange parameter32,33

I ¼
4t4

pd

D2
pd

1

Ud
þ 1

Dpd

� �
: (16)

The terms listed in formulas (10), (12) and (15) deter-

mine the Hamiltonian of the spin-fermion model

H sp�f ¼ ep

X
l

n̂p
l þ Ĥ

2ð Þ þ H exch; (17)

that describes two energy bands of the oxygen holes via

exchange interaction with the copper ion spin moments.

These spin moments interact between themselves

antiferromagnetically.

5. Reduction to the u-d-exchange model

The split character of the udd1
function relative to the d

and d1 variables significantly simplifies the energetic struc-

ture and physical properties of the cuprate superconductors.

Introducing the Fourier transform for the operators pfþx
2
;r

and pfþy
2
;r

pfþx
2
;r ¼

1ffiffiffiffi
N
p

X
k

eik fþx=2ð Þakr;

pfþy
2
;r ¼

1ffiffiffiffi
N
p

X
k

eik fþy=2ð Þbkr; (18)

yields

X
d

# dð Þpfþd;r ¼
1ffiffiffiffi
N
p

X
k

eikf �2ið Þ �kxakr þ �kybkrð Þ;

where �kx ¼ sin ðkx=2Þ; �ky ¼ sin ðky=2Þ.
Defining the Fermi operators wkr and ukr using the

transformation8

ukr ¼ �kxakr þ �kybkrð Þ=�k;

wkr ¼ �kxbkr � �kyakrð Þ=�k; �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

kx þ �2
ky

q
; (19)

yields the following effective Hamiltonian:

Ĥ sp�f ¼
X

kr

epw
þ
krwkr þ

X
kr

nku
þ
krukr

þ J

N

X
fkqrr0

eif q�kð Þ�k�qu
þ
kr Sf srr0ð Þuqr0

þ 1

2

X
fm

Ifm Sf Smð Þ; (20)

where

nk ¼ ep þ e2 1� c1kð Þ; c1k ¼ cos kx þ cos kyð Þ=2: (21)

Expression (20) omits constants that are irrelevant to our dis-

cussion. The main feature of the presented Hamiltonian is its

description of two fermion subsystems that are non-

interacting. Only one of these subsystems, corresponding to

the u-fermions, interacts with the localized spin subsystem.

The zero-dispersion ep state corresponds to the free w-

fermions. As will be discussed further, these degrees of free-

dom carry no contribution to the low-temperature thermody-

namics of the considered model.

This means that the effective model, describing the spec-

trum of both fermionic and bosonic elementary excitations

of cuprate HTSs, is indeed the u–d-exchange model

Ĥ u�d ¼
X

kr

nku
þ
krukr

þ J

N

X
fkqrr0

eif q�kð Þ�k�qu
þ
kr Sf srr0ð Þuqr0

þ 1

2

X
fm

Ifm Sf Smð Þ: (22)

6. Reduction to the effective ~t 2~J
�
2I-model

One of the most important properties of the u-d-

exchange model (22) is the large value of the interaction

parameter J between the copper ion spin moments and the

u-fermion hole subsystem described by the ukr operators.

Plugging in the Emery model parameter values correspond-

ing to cuprate HTSs32,33 (in eV units)

Ud ¼ 10; 5; Dpd ¼ 3; 6; tpd ¼ 1; 3; (23)

yields J ¼ 5.72 eV.

The large value of the J constant and its positive sign

ensures an energetic favorability of the unit cell singlet state

as opposed to the triplet. In line with this result, the work in

Ref. 5 proposed to only account for the singlet state jSi and

the two states without holes, j"i and j#i in the Hilbert space,

that account for the degree of freedom of the spin localized

on the copper ion. The t–J-model was introduced in Ref. 5 to

describe the low-energy hole dynamics in the CuO2-plane.

In this model, the transfer of the Zhang-Rice singlet from

one cell to another is treated as a hop of a quasiparticle with

an oppositely oriented spin.

The current section presents a strict derivation of the

effective Hamiltonian, acting on the specified Hilbert sub-

space, and shows that it is sufficiently different from the rou-

tinely used t–J*-model Hamiltonian, obtained from the

Hubbard model in the SEC regime.
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Using the transformations

uf r ¼
1ffiffiffiffi
N
p

X
k

eikf ukr; �m ¼
1

N

X
k

eikm�k; (24)

we write down the Hamiltonian for the u–d-exchange model

(22) in the Wannier representation20,28

Ĥ u�d ¼ epþ e2ð Þ
X

f r

uþf rufr �
e2

4

X
fdr

uþfruf þ 2d;r

þJ
X

fnmrr0
�n�muþfþn;r Sf srr0ð Þufþm;r0 þ

1

2

X
fm

Ifm Sf Smð Þ:

(25)

This form clearly shows that the u–d-exchange interactions

(m ¼ n) and spin-correlated hops of the u-fermions (m 6¼ n)

occur between arbitrarily separated nodes. The strength of

interactions is determined by the parameters �m and as evi-

denced from Table 1, decays quickly with distance.

Let’s separate the single cell component from the

Hamiltonian (25), containing the strongest exchange interac-

tion when m ¼ n ¼ 0;

Ĥ fð Þ ¼ epþ e2ð Þ
X

r

uþf ruf rþ J�2
0

X
rr0

uþf r Sf srr0ð Þuf r0 : (26)

The spectrum of the operator (26) eigenvalues in the sin-

gle cell sector is determined by the energy of the singlet state

ES ¼ ep þ e2 � ð3=4ÞJ�2
0 and the energy of the triplet states

ET ¼ ep þ e2 þ J�2
0=4. With selected model parameters:

ET � ES ¼ J�2
0 ¼ 5.25 eV. The significant energy separation

of the ES and ET states indicates that in the single-hole region

of the Hilbert space basis, one can ignore the triplet states on

a single unit cell. In this case, the cut-down basis of the cell

is composed of three, aforementioned states: jSi and

jriðr ¼"; #Þ.
Introducing the Hubbard operators for the cell with

index f Xmn
f ¼ jf ; mihn; f jðm; n ¼"; #; SÞ and using the com-

pleteness condition of the introduced basis set
P

m Xmm
f ¼ 1,

it is simple to obtain the representation for the u-operators

and spin operators in terms of the Hubbard operators:

uf r ¼
2�rffiffiffi

2
p X�rS

f ; Sþf ¼ X"#f ; S�f ¼ X#"f ; Sz
f ¼

X
r

rXrr
f :

(27)

Substituting expression (27) into the u–d-exchange

model Hamiltonian (29), yields the Hamiltonian for the
~t � ~J

� � I-model

Ĥ t�J�I ¼ ES

X
f

XSS
f þ

X
f dr

t1XSr
f XrS

fþ2d

þ
X
fmr

m 6¼ 0; 2d

tmXSr
f XrS

fþm þ
1

2

X
fm

IfmSf Sm þ Ĥ 3; (28)

where

Ĥ 3 ¼
J

4

X
fnmr

0�n�m XSr
fþnX�r�r

f XrS
fþm

h

�XS�r
fþnX�rr

f XrS
fþm þ

1

2
XS�r

fþnXSS
f XrS

fþm�;

ES ¼ ep þ e2 �
3

4
J�2

0 ;

t1 ¼ �
e2

8
þ J

32
� J

2
�0�1; tm ¼ �

1

2
J�0�m: (29)

In the second term of expression (28), the summation is per-

formed along the nearest neighbors, whereas in the third

term along the second and farther-lying coordination

spheres.

The prime in the sum of formula (29) indicates that the

indices m and n are nonzero and are not equal. The values of

J, e2 and I are defined in (13)–(16).

The “tilde” on top of t and J symbols in the model name

indicates that the model contains hops (t) and three-center

interactions (J) between the nodes of the farthest coordina-

tion spheres. Presence of the exchange interaction between

the copper ions spins is denoted with the I symbol.

The obtained ~t � ~J
� � I-model (28) is significantly dif-

ferent from the t–J*-model that is derived from the single-

band Hubbard model. The t–J*-model is simply the usual

t–J-model that accounts for the three-center terms that

describes spin-correlated jumps of the quasiparticles.7 The

exchange and the three-center interactions in the t–J*-model

have a similar order of magnitude and should be considered

on equal footings.34–36 However, in majority of studies, the

three-center interactions are ignored because their strength is

proportional to the degree of doping x.32 Similar arguments

are employed when studying the kinetic properties of fermion

quasiparticles. However, in those cases when the range of

characteristic energies is set by the value of the exchange

integral, taking the three-center interactions into the account

becomes important. This becomes evident in the description

of d-type superconductivity35 or collective spin oscillations.37

The obtained Hamiltonian for the ~t � ~J
� � I-model dras-

tically changes the current understanding. In Hamiltonian

(28), the three-center terms (29) are proportional to the J
parameter and are two orders of magnitude smaller relative

to the hybridization constant tpd. The exchange interactions,

due to the parameter I, are four orders of magnitude smaller

than tpd. The J � I relation means that in the ~t � ~J
� � I-

model, the role of the three-center interactions is signifi-

cantly more pronounced than in the t–J*-model and these

interactions need to be accounted for when studying cuprate

HTSs in both normal and superconducting phases.

It is also worth noting that the expression for the three-

center interactions (29), aside from spin-correlated hops,

also contains charge-correlated hops (third term) that is

absent in the conventional t–J*-model.

7. Comparative analysis of the spin-polaron spectra in the
effective models of cuprate HTSs: Role of the long-range
interactions

The current section presents calculations and compari-

son of the dispersion curves for the Fermi spin-polaron exci-

tations in the effective low-energy models of cuprate HTSs:

TABLE 1. �m values for the five nearest coordination spheres, m is the coor-

dination sphere number, corresponding to the radius-vector rm.

m 0 1 2 3 4 5

�m �0.9581 �0.1401 �0.0235 �0.0137 �0.0069 �0.0035
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spin-fermion model (17), u–d-exchange model (22) and the
~t � ~J

� � I-model (28).

The computation of the dispersion curves is carried out

using the method of equations of motion with two time-

domain delayed Green’s functions. The equation chain is

completed with the aid of a projection technique of

Zwanzig-Mori.38,39 Carrying out this particular approach

(that is equivalent to the method of irreducible Green’s func-

tions40,41) for the spin-polaron model (17) is discussed in

detail in Ref. 23. In the framework of this method, we intro-

duce a minimal basis set of operators Aj (j ¼ 1, …, n), suffi-

cient to describe the dynamics of the quasiparticles

accounting for the interactions present in the system. The

operator of the initial quasiparticle is used for the operator

A1. The right part of the A1 equation of motion, aside from

the starting operator, contains a complicated operator expres-

sion that is further used as the next basis operator. It is this

complex operator that allows to account for the special phys-

ics of the system interactions. As a rule, the basis obtained in

this fashion is sufficient. Following this, equations of motion

are projected for all basis operators onto this same basis.

The use of the projection method in the framework of

delayed Green’s function formalism leads to the necessity to

calculate the energy matrix D̂ðkÞ with elements DijðkÞ
¼ hf½Aik; Ĥ �;Aþjkgi and the matrix K̂ðkÞ with elements

KijðkÞ ¼ hfAik;A
þ
jkgi where the angled brackets denote a

thermodynamic average. Then the matrix form of the time-

delayed Green’s function Ĝðk;xÞ with elements Gijðk;xÞ
¼ hhAikjAþjkiix can be determined from the expression

Ĝ k;xð Þ ¼ xÎ � D̂ kð ÞK̂�1
kð Þ

� ��1

K̂ kð Þ; (30)

where Î is the unity matrix. The spectrum of the Fermi exci-

tations is determined by the poles of the Green’s function

Ĝðk;xÞ.
For the Hamiltonian of the spin-fermion model (17), the

starting operators are chosen to be: akr and bkr, that accord-

ing to (18) are the Fourier images of the pfþx
2
;r and pfþy

2
;r

operators, respectively. Writing the equation of motion for

the specified operators, yields the minimal basis for the

model (17) that contains three sets of operators

akr; bkr; Lkr ¼
1

N

X
qf a

eif q�kð Þ Sf srað Þ �qxaqa þ �qybqað Þ: (31)

The elements of the D̂ðkÞ and the K̂ðkÞ matrices, calcu-

lated using the basis (31) and the Hamiltonian of the spin-

fermion model (17) are contained in Ref. 24 and are there-

fore not listed here. The expressions for these matrix ele-

ments contain paired spin correlation functions

Cj ¼ hSf Sfþrj
i, where rj is the radius of the jth coordination

sphere. The concentration dependence of the spin correlators

Cj in the HTS cuprates has been discussed before in Refs.

21,23, and 24. It was assumed that the magnetic subsystem

is in the SU(2)-invariant state of the quantum spin liquid.

This in its turn means that hSxðy;zÞ
f i ¼ 0 and the expression

hSxðy;zÞ
f S

xðy;zÞ
fþrj
i ¼ 1

3
Cj is satisfied for the spin correlators.

Following the work of Ref. 24, we pick the following values

for the spin correlation with hole concentration x ¼ 0.07: C1

¼ �0.255, C2 ¼ 0.075, C3 ¼ 0.064. Charge and spin-charge

correlation functions arising during computation of the D̂ðkÞ
and K̂ðkÞ matrix elements are not considered here due to the

small degree of doping.

Figure 2 shows the three branches of the energy spectrum

for the Fermi excitations in the spin-fermion model (17). The

spectra are obtained through a numerical solution of the third-

order dispersion equation: jxÎ � D̂ðkÞK̂�1ðkÞj ¼ 0, that

determines the poles of the Green’s functions (30). The

parameter values of J ¼ 5.72 eV and e2 ¼ 0.45 eV were used

during the computation. These values were obtained from

(13) and (14) with substitution of the p–d-model parameters

(23). The exchange constant I was set to zero for simplicity.

The lower branch in Fig. 2 shows the spectrum of the

spin-polaron excitations. A significant decrease in the energy

of the spin-polaron states arises due to the contribution of

the third operator Lkr in the basis (31). An important feature

of the obtained spin-polaron spectrum is the presence of a

dispersion minimum observed in the ARPES experiments in

the (C � M) direction of the Brillouin zone. For practical

doping ranges of cuprates HTSs, the chemical potential

always lies in the lower spin-polaron band, therefore from

now on we will only discuss this band.

The computation of the Fermi spectrum for the

Hamiltonian of the u–d-exchange model (22) is also carried

out in the framework of the projection technique. In this

case, however, the first basis operator must be ukr.

Accounting for the operator that arises in the equation of

motion due to ukr, leads to a basis consisting of two

operators

ukr; Lkr ¼
1

N

X
qf a

eif q�kð Þ Sf srað Þ�quqa: (32)

It is evident that the second operator of this basis is the same

as the third operator of basis (31).

Calculating the elements of the D̂ðkÞ and K̂ðkÞ matrices

in the basis (32) and solving the second-order dispersion

equation jxÎ � D̂ðkÞK̂�1ðkÞj ¼ 0, yields the analytical

expression for the lower branch of the spin-polaron excita-

tions in the u–d-exchange model (22):

Esp kð Þ ¼ nk þ Dk=Kk

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk � Dk=Kkð Þ2 þ J2�2

k Kk

q
; (33)

Fig. 2. Spectrum of the Fermi excitation in the spin-fermion model (17).

Model parameters, eV: J ¼ 5.72, e2 ¼ 0.45, I ¼ 0. The spin correlators were

taken to be: C1 ¼ �0.255, C2 ¼ 0.075, C3 ¼ 0.064.
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where

Dk ¼ ep � J þ 2e2ð ÞKk þ J 3þ C1ð Þ=8

þe2 �9=16þ C2c2k=2þ C3c3k=4ð Þ;
Kk ¼ 3=4� C1c1k; c2k ¼ cos kx cos ky;

c3k ¼ cos 2kx þ cos 2kyð Þ=2: (34)

The results of the spin-polaron spectrum computation

for the u–d-exchange model using Eq. (33) are denoted in

Fig. 3 with a solid thick line. This line exactly reproduces

the lower curve of Fig. 2 that corresponds to the dispersion

law for spin polarons in the spin-fermion model (17). The

agreement of dispersion curves is not a coincidence and can

be explained by the fact the w-orbital is inactive in our

approximation (tpp ¼ 0, Up ¼ 0, Vpp ¼ 0, Vpd ¼ 0), and

therefore the bases (31) and (32) are equivalent. Including

any of the interactions tpp, Up, Vpp, or Vpd into the ground

state of the system leads to mixing of the w-state and the

mentioned operator bases are no longer equivalent. Basis

(31) remains preferred, since it allows for obtaining a lower

ground state energy.

An important question that arises in this theory pertains to

the role of the long-range interactions. The correct form of the

three-band Emery model using the diagonalizing u- or w-

orbitals in the Wannier representation is always accompanied

by an appearance of interactions from farthest coordination

spheres. An example can be the Hamiltonian for the u–d-

exchange model in the form of (25). Since the strength of the

mentioned interactions decreases with distance, practically

only nearest neighbor interactions are considered.29 The ade-

quacy of such simplifications however stems doubt,14 since

the decrease in the long-range interactions can be compen-

sated by an increase in the number of long-range neighbors.

To answer this question, we compare the spectrum of

spin-polaron excitations in the u–d-exchange model and its

reduced variant. The latter is defined according to expression

(25), leaving only the u–d-exchange interactions on a single

cell and between neighboring cells

Ĥ
rð Þ

u�d ¼ ep þ e2ð Þ
X

f r

uþf rufr �
e2

4

X
f dr

uþf rufþ2d;r

þJ�2
0

X
frr0

uþf r Sf srr0ð Þuf r0

þJ�0�1

X
fdrr0

uþfþ2d;r Sf srr0ð Þuf r0 þ h:c:
h i

þ 1

2

X
fm

Ifm Sf Smð Þ: (35)

The fourth term in (35) describes hole hopping between

adjacent cells, that accounts for the correlation with a spin

on one of these cells. Similar processes have been considered

in Ref. 29.

To compute the spectrum of the Fermi excitation in the

system, described by the Hamiltonian of the reduced u–d-

exchange model Ĥ
ðrÞ
u�d, let’s introduce three sets of basis

operators

A
rð Þ

1f r ¼ ufr; A
rð Þ

2f r ¼
X

a

Sf srað Þuf a;

A
rð Þ

3f r ¼
X
da

Sf srað Þufþ2d;a: (36)

This basis is constructed using the same method as for the

bases (31) and (32), but in the Wannier representation. The

first operator ufr is the starting and the other two arise in the

equation of motion for this operator.

The elements of the D̂
rðkÞ and K̂

rðkÞ matrices for the

reduced Hamiltonian H
0ðrÞ
u�d calculated in the basis (36) are

listed in the Appendix, whereas the spectrum of the spin-

polaron excitation in the model (35), obtained using the

above methodology is shown in Fig. 3 with a dot-dash line.

Ignoring the long-range spin-correlated hops leads to sig-

nificant repercussions. First of all, the width of the spin-polaron

band is almost four times narrower. Secondly, the minimum

energy of the quasiparticle that can be reached near the (p/2, p/

2) point of the Brillouin zone is significantly higher.

One can suspect that the large difference in the obtained

dispersion curves is not only related to omission of the long-

range spin-correlated hops in one of the Hamiltonians but

also due to the use of different basis operators (32) and (36).

However, the computation of spin-polaron excitation spec-

trum in the full u–d-exchange model using basis (36) shows

that the spectrum of the lower energy band is within a couple

percent of the thick solid line in Fig. 3. Therefore, both oper-

ator bases (32) and (36), reproduce the behavior of the spin-

polarons equally well and the difference between the spectra

of the full and reduced u–d-exchange models can be attrib-

uted only to the omission of the long-range spin-correlated

hops in the Hamiltonian (35).

We will consider the spectrum of obtained ~t � ~J
� � I-

model in the simplest approximation, only including a single

operator X0r
f into the basis. As opposed to the spin-fermion

and the u–d-exchange model, here the starting operator

accounts for the single-node correlations due to the strong

u-d exchange interaction. Therefore, the band of the starting

quasiparticles in the ~t � ~J
� � I-model corresponds to the

spin-polaron excitations by definition.

In the framework of the projection method, the spin-

polaron spectrum for the ~t � ~J
� � I-model is determined by

Fig. 3. Comparison of the Fermi excitation spectra for spin-polaron quasi-

particles, obtained in the frameworks of various models. Model parameters

and the spin correlators are the same as in Fig. 2. 1—spectrum in the spin-

fermion model (17) and the u–d-exchange model (22), 2—spin-polaron

spectrum in the reduced u–d-exchange model (35), 3—spectrum (37) of the
~t � ~J

� � I-model (28), 4—spectrum of the spin polarons in the u–d-

exchange model (25), computed by accounting for the basis from two opera-

tors A
ðrÞ
1fr and A

ðrÞ
2fr (36).
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the expression Et�J�IðkÞ ¼ hf½XrS
k ; Ĥ t�J�I�;XSr

k gi=
h XrS

k ;X
Sr
k

	 

i where XrS

k ¼ 1ffiffiffi
N
p
P

f e�ikf XrS
f . Carrying out an

average computation in the EtJ(k) expression and accounting

for the low doping regime, yields

Et�J�I kð Þ ¼ ep þ e2 � e2 C1þ1=4ð Þcik

þ J

2
� �Ck �k þ 2�0ð Þ þ

X
f

�2
f Cf

� �
; (37)

where �Ck ¼
P

f eikf �f Cf and �0 � �f¼0.

The spin-polaron spectrum calculated according to the

formula (37) is shown in Fig. 3 with a dashed line. This spec-

trum reproduces the main feature characteristic of Fermi

excitation spectra in cuprates—presence of a minimum near

the (p/2, p/2) point of the Brillouin zone in the C �M direc-

tion. However, the minimum energy of the quasiparticle,

compared to the dispersion of the spin-fermion model (solid

line in Fig. 3) has increased by approximately 0.3 eV. The

noted increase is due to an absence of the Yf r

¼
P

daðSf sraÞXaS
fþ2d operator in the selected basis for the

~t � ~J
� � I-model, that allows for accounting for the inter-

node u–d-exchange correlations.

In order to prove this statement, it is necessary to com-

pute the spectrum of the ~t � ~J
� � I-model in the basis of two

operators XrS
f , Yfr and become convinced that the low-

energy part of this spectrum coincides with the dispersion

relations of the spin-fermion excitations in the u–d-

exchange model (25). Due to the algebraic complexity of the

Hubbard operators, these calculations are quite difficult, thus

instead we will omit the third operator A
ðrÞ
3f r from the basis

(36), that accounts for the inter-node u–d-exchange correla-

tions. We then calculate the spectrum of spin-polarons in the

u–d-exchange model with the remaining two operators and

compare it to the spectrum of the ~t � ~J
� � I-model.

The dashed line in Fig. 3 shows in the spin-polaron spec-

trum of the u–d-exchange model calculated with only two

(A
ðrÞ
1f r and A

ðrÞ
2fr) operators and demonstrates its equivalence

with the spectrum from the ~t � ~J
� � I-model in the low-

energy region. The differences in the high-energy parts of

the spectra are due to the lack of the contributions from

single-cell triplet states to the ~t � ~J
� � I-model Hamiltonian,

that are accounted for during construction of the u–d-

exchange model spectrum.

To conclude the current section, we note that in the

investigated low doping regime, construction of the Fermi

excitation spectra did not require the use of the chemical

potential. Nevertheless, description of thermodynamics or

superconducting properties of spin-polaronic quasiparticles

should be conducted in the framework of the large canonical

ensemble. In this case, the Hamiltonians of the spin-fermion

and the u–d-exchange model should contain and additional

term �l
P

l n̂p
l ; and the Hamiltonian of the ~t � ~J

� � I-
model—the term �l

P
f XSS

f .

8. Conclusion

This work sequentially derives three low-energy models

of the cuprate high-temperature superconductor electronic

structure. The first step involves taking the realistic three-

band Emery model with parameters corresponding to the

regime of strong electron correlations and the spin-fermion

model14,19 is derived in the framework of the operator per-

turbation theory. One of the main features of this effective

model is that the copper ion states become homeopolar and

are characterized by a spin moment of S ¼ 1=2. A second

important model property is the presence of spin-correlated

hops of oxygen holes. As a result, the hole movement along

the oxygen ions is accompanied by correlated dynamics with

spin degrees of freedom in the copper ion spin moment sub-

system. These processes determine the characteristic features

of the Fermi state energy spectrum due to, for example, the

minimum near the (p/2, p/2) point of the Brillouin zone.

The second step in the Emery model reduction involves

introduction of the u and w functions8,10,15,17 constructed

using the px- and the py-orbitals of oxygen. This allows for a

transition from the spin-fermion model to the u–d-exchange

model, that is characterized by a presence of exchange inter-

actions and spin-correlated hops from long-range coordina-

tion spheres.

The final step in the Emery model reduction is based on

the introduction of the atomic representation for the descrip-

tion of local strongly interacting spin polarons. This

approach leads to the ~t � ~J
� � I-model. The tilde in ~t under-

scores the fact that the hops between the nodes located on

the far-lying coordination spheres are manifested directly in

the model. The ~J
�

symbol denotes the presence of three-

center terms, that describe correlated hops of oxygen holes

while accounting for the hops from the farthest coordination

spheres. The model also contains both spin and charge corre-

lations. The presence of an exchange interaction between

copper ion spins is denoted with the I symbol.

By comparing the spectra of the spin-polaron quasipar-

ticles from the first two models with a corresponding spec-

trum of the reduced u–d-exchange model (where only

interactions between adjacent cells are considered), the

importance of the long-range spin-correlated hops that are

usually ignored is further asserted. In particular, it is shown

that accounting for the long-range interactions leads to a sig-

nificant widening of the spin-polaron band as well as an

additional lowering of the spin-polaron quasiparticle energy

(see Fig. 3).

It is shown that the obtained ~t � ~J
� � I-model differs

significantly from the conventional t–J*-model that follows

from the Hubbard model in the regime of strong electron

correlations.42 The main difference lies in that the three-

center interactions in the ~t � ~J
� � I-model, that describe the

spin-correlated quasiparticle hops, significantly exceed the

exchange interactions. This marks a new view on the role of

three-center interactions in the HTS theory of cuprates. As

mentioned before, accounting for three-center interactions

causes an appearance of a minimum in the dispersion rela-

tion of the spin-polaron excitations near the (p/2, p/2) point

of the Brillouin zone in the C – M direction. This minimum

is characteristic of all spectral curves shown in Fig. 3.
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APPENDIX

For a system described by the reduced Hamiltonian of

the u–d-exchange model (35), the elements of the D̂
rðkÞ and

K̂
rðkÞ matrices calculated in the basis of three operators (36)

have the following form ðDr
ij ¼ Dr

ij;K
r
ij ¼ Kr

ijÞ:

Kr
11 ¼ 1; Kr

12 ¼ Kr
13 ¼ 0; Kr

22 ¼ 3=4;

Kr
23 ¼ 4C1c1k; Kr

33 ¼ 3þ 8C2c2k þ 4C3c3k;

Dr
11 ¼ epþ e2 1� c1kð Þ;

Dr
12 ¼ J�2

03=8þ J�1�0 3=2þ 2C1ð Þcik;

Dr
13 ¼ 2J�2

0C1c1k þ J�1�0 3=2þ 8C1c
2
1k þ 4C2c2k þ 2C3c3k

� �
;

Dr
22 ¼ epþ e2ð Þ3=4� e2C1c1k � J�2

03=8� 4J�1�0C1c1k;

Dr
23 ¼ epþ e2ð Þ4c1c1k � e2 3=4þ 2C2c2k þC3c3kð Þ
�2J�2

0C1c1k � 2J�1�0 3=4�C1þ 2C2c2k þC3c3kð Þ;
Dr

33 ¼ epþ e2ð Þ 3þ 8C2c2k þ 4C3c3kð Þ
�e2 9C1c1k þ 6C4c4k þC6c6kð Þ
þ2J�2

0C1þ 16J�1�0C1 1� c1kð Þ;
(S1)

where the functions cjk (j ¼ 1,2,3,4,6) are the basis functions

of the square lattice

c1k ¼ cos kx þ cos kyð Þ=2; c2k ¼ cos kx cos ky;

c3k ¼ cos 2kx þ cos 2kyð Þ=2;

c4k ¼ cos 2kx cos ky þ cos 2ky cos kxð Þ=2;

c6k ¼ cos 3kx þ cos 3kyð Þ=2:

When obtaining expressions (S1), the ð~Sm ¼ SmsÞ rela-

tions were taken into account

h~Sm
~Sni ¼ Cm�n;

h~Sf
~Sm

~Sni ¼ �df ;mCf�n � dm;nCf�m þ df ;nCf�m;

that are valid in the SU(2)-invariant spin-liquid phase.
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