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Nearly bound states in the radiation continuum in a circular array of dielectric rods
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We consider E-polarized bound states in the radiation continuum (BICs) in circular periodical arrays of N

infinitely long dielectric rods. We find that each true BIC which occurs in an infinite linear array has its counterpart
in the circular array as a near-BIC with extremely large quality factor. We argue analytically as well as numerically
that the quality factor of the symmetry-protected near-BICs diverges as eλN , where λ is a material parameter
dependent on the radius and the refraction index of the rods. By tuning of the radius of rods, we also find numerically
non-symmetry-protected near-BICs. These near-BICs are localized with exponential accuracy outside the circular
array, but fill the whole inner space of the array carrying orbital angular momentum.
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I. INTRODUCTION

Recently confined electromagnetic modes above the light
line, bound states in the continuum (BICs) were shown to exist
in periodic arrays of long dielectric rods [1–18]. Among the
numerous types of BICs, it is worthwhile to emphasize the
BICs which can propagate either cross to rods [10,17] or along
the axis of periodicity of the system [7]. In practice, there are
no infinite arrays of rods. In the array of a finite number of
rods, the BICs become quasi-BICs with finite Q factor which
diverges as N2 for the symmetry-protected BICs or even as N3

for the non-symmetry-protected BICs with tuned radius of rods
[19,20]. These results are in agreement with the theorem on the
absence of BICs in the bounded domain which is a complement
of an unbounded domain [21,22]. The BICs can appear only in
an unbounded domain. The physical occurrence of the BICs in
the infinite array of rods is a result of periodicity of the array
that quantizes the radiation continua in the form of diffraction
continua [10,23]. Then, if the frequency is below the cutoff
of the second diffraction continuum, the BIC is embedded into
the first diffraction continuum. Note that the second diffraction
continuum is also important, providing a bound space for the
BIC [10].

Moreover, the scattering of acoustic waves and water
surface waves by an array of cylinders was extensively studied
in a series of papers [24,25]. The remarkable case of a circular
array of cylinders was considered in Refs. [26–29]. Numerical
results of strong confinement of light in a circular array
of dielectric pillars [30] and symmetry-protected quasi-BICs
with exponentially high quality factor in the circular array of
dielectric nanorods [31] were reported recently. We reexamine
these results for E-polarized symmetry-protected BICs in the
circular array of N infinitely long cylindrical dielectric rods
and demonstrate the patterns of quasi-BICs with extremely
large quality factors. Following [28], we define such BICs as
near-BICs.

We present mathematical arguments in favor of exponen-
tially large quality factors of the symmetry-protected near-
BICs in the circular array of dielectric rods. In addition, we

find numerically the non-symmetry-protected near-BICs by
tuning the rod radius. In contrast to the symmetry-protected
near-BICs, they fill the internal space of the circular array.
The circular array of rods supports non-symmetry-protected
near-BICs with orbital angular momentum (OAM). Finally, we
demonstrate the counterparts of the BICs in the linear array em-
bedded into two and three diffraction continua which fill only
a part of the inner space of the circular array. The diffraction
continua for the linear chain are given by plane waves,

Ez(x,y) = eiqy,py+i(qp+qx )x, (1)

where

qy,p =
√

k2
0 − (qx + qp)2, qp = 2πp

h
, (2)

and p = 0,±1,±2, . . . enumerates the diffraction continua
for the periodical chain of rods with the period h.

II. SCATTERING THEORY FOR CIRCULAR
ARRAY OF CYLINDERS

Following Ref. [32] (see quite similar procedure described
in Ref. [24] for the Neumann boundary conditions at the
surfaces of rigid cylinders), we present the general E-polarized
solution at the vicinity of the j th rod for the electric field
directed along the rods as follows:

Ez(rj ,φj ) = Einc +
∑
m

[
am(j )Jm(k0rj )

+ bm(j )H (1)
m (k0rj )

]
eimφj , (3)

where the first term presents the incident wave from a pointlike
source placed at the center of circular array x = 0,y = 0, as
sketched in Figs. 2 and 3,

Einc = H (1)
n (k0r)einφ ; (4)

the second term is a contribution of the other rods and the field
emanating from the j th rod. φj and rj are the polar coordinates
of the radius vector rj in the local coordinate systems of the
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FIG. 1. N infinitely long circular dielectric rods with radius a are
stacked parallel to each other on the surface of a cylinder with the
radius R, which is measured in terms of the distance between the
centers of the nearest rods.

j th rod, as shown in Figs. 1 and 2. We introduce substitutions,

am(j ) = ãm(j )e−imαj , bm(j ) = b̃m(j )e−imαj , (5)

where αj = 2π(j−1)
N

(see Fig. 2), and we use the Graf formula
[32],

H (1)
m (k0rj (P ))eimφj

=
∑
m′

ei(m−m′)θjl H
(1)
m′−m(k0rjl)Jm′(k0rl(P ))eiφl (P ), (6)

where definitions of angles and distances are shown in Fig. 2.
That allows us to write the following relations between the
amplitudes ãm and b̃m:

ãm(j ) =
N∑

l �=j

∑
m′

b̃m′(l) exp[imαj − im′αl − i(m − m′)θlj ]

×H
(1)
m−m′ (k0rlj ). (7)

FIG. 2. Plan view of circular periodical array of rods.

Periodicity of the circular array of rods allows us to write

ãmn(j ) = ãmn(1)eikn(j−1),

b̃mn(j ) = b̃mn(1)eikn(j−1), kn = 2πn/N,

n = 0,1,2, . . . ,N − 1, (8)

where kn is the Bloch number. In particular, for j = 1, we have,
from Eqs. (7) and (8),

ãmn(1) =
N∑

l=2

∑
m′

b̃m′n(1) exp[ikn(l − 1)

− i(m − m′)θl1 − im′αl]H
(1)
m−m′(k0rlj ). (9)

Finally, we close Eq. (9), which relates incident amplitude
ãmn(1) with emanating amplitude b̃mn(1), by the following
equation:

b̃mn(1) = Sm

[̃
amn(1) + ψn

inc,m

]
, (10)

where Sm is the diagonal component of the S matrix of a
circular dielectric rod,

Sm =
√

εJ
′
m(qa)Jm(k0a) − J

′
m(k0a)Jm(qa)

H
(1)′
m (k0a)Jm(qa) − √

εJ
′
m(qa)H (1)

m (k0a)
, (11)

q = √
εk0, and ε is the permittivity of the rod of radius a.

Substituting Eq. (10) into Eq. (9), we can formulate the basic
equation ∑

m′
Ln

mm′ b̃m′,n(1) = ψn
inc,m, (12)

where the matrix elements are given by

Ln
mm′ = −Sm

N∑
l=2

exp[ikn(l − 1) + i(m′ − m)θl1 − im′αl]

×H
(1)
m−m′ (k0rl1) + δmm′ , (13)

and, according to Eq. (4),

ψn
inc,m = SmH

(1)
n−m(k0R). (14)

III. FAR-FIELD ZONE SOLUTION

Outside the rods for rj > a, the solution with the Bloch
wave number kn takes the following form [32]:

Ez,n =
∑
m

N∑
j=1

b̃mn(1) exp[ikn(j − 1) + im(φj − αj )]

×H (1)
m (k0rj )eimφj . (15)

Now we can write the electric field in the far-field zone rj �
R at the point P shown in Fig. 3 by the use of the asymptotic
form of the Hankel function,

H (1)
m (x) ≈

√
2

πx
exp[−iπ (2m + 1)/4 + ix]. (16)
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FIG. 3. The point P in the far-field zone.

We have −→
r = −→

R j + −→
r j , where all three radius vectors are

shown in Fig. 3. For r � R, we can approximate√
1

k0rj

exp(ik0rj ) ≈
√

1

k0r
exp[ik0r − ik0R cos(αj − φ)].

(17)
Therefore, in the far-field zone, the electric field can be
approximated as follows:

Ez,n ≈
√

2

k0r
eik0r−iπ/4

∑
m

(−i)mb̃mn

N∑
j=1

exp[ikn(j − 1)

+ im(φ − αj ) − ik0R cos(αj − φ)]. (18)

Now we apply to this equation a mathematical observation
of the exponential convergence of the sums [33],

IN = 1

N

N∑
k=1

u(e2πik/N ). (19)

The sum is converged as follows:

|IN − I | � max(u)

sN − 1
, (20)

for some s > 1, and

I = 1

2π

∫ 2π

0
dθu(eiθ ), (21)

where u(θ ) = u(θ + 2π ) is a periodical analytical function.
Therefore, we can write Eq. (18) as follows:

Ez,n = Neinφ
∑
m

(−i)mb̃mn

√
2

k0r
eik0r−iπ/4 1

2π

×
∫ 2π

0
dτ exp[ − iτ (m − n) − ik0R cos τ ]

+O(e−λN ). (22)

Using the identity for the Bessel functions,

Jn(z) = i−n

π

∫ π

0
eiz cos τ cos(nτ )dτ, (23)

we have, for the electric field (22) in the far zone,

Ez = Einc + Neinφ

√
2

k0r
eik0r−iπ/4(−i)n

×
∑
m

b̃mnJn−m(k0R) + O(e−λN ). (24)

IV. THE SOLUTION INSIDE THE CIRCULAR
ARRAY OF RODS

Now we consider the solution inside the circular array. We
have, for the electric field,

Ez,n =
∑
m

b̃mn

N∑
j=1

ei(n−m)αj H (1)
m (k0rj )eimφj . (25)

Let us use the Graf formula in order to transfer the solution
at a local position defined by −→

r j = (rj ,φj ) to the solution in
the global system of coordinates defined by the radius vector−→
r = (r,φ). We have

H (1)
m (k0rj )eimφj =

∑
m′

ei(m−m′)αj H
(1)
m′−m(k0R)Jm′(k0r)eim′φ.

(26)

Substitution of this equation into Eq. (25) gives

Ez,n =
∑
m

b̃mn

∑
m′

N∑
j=1

ei(kn−km′ )(j−1)H
(1)
m′−m(k0R)Jm′ (k0r)eim′φ.

(27)

Due to the equality

N∑
j=1

ei2π(j−1)(m−m′)/N = Nδ(m − m′ − qN ), (28)

where q is an integer, we can simplify Eq. (27) as follows:

Ez,n = N
∑
m,q

b̃mnH
(1)
n+qN−m(k0R)Jn+qN (k0r)ei(n+qN)φ. (29)

V. NEAR-BICs

For the infinite periodical arrays, if a source is switched off,
there are exceptional cases with selected real eigenfrequen-
cies embedded into the radiation continuum, as was briefly
reviewed in Sec. I. These exceptional cases define BICs which
are localized in the vicinity of the arrays [1–18]. Let us consider
what happens to these BICs if one were to roll up a finite array
into a circle. For the solution to vanish in the far-field zone,
we have to imply that all b̃mn = 0 [22]. That, in turn, requires
that there is also no electric field in the near zone, according to
Eq. (25), i.e., the solution equals zero everywhere. However, if
only exponential smallness is required in the far-field zone, for
N � 1, we can imply a softer condition for the amplitudes,∑

m

b̃mnJn−m(k0R) = 0, (30)

as seen from Eq. (24). Therefore, the solution turns to zero
in the far-field zone with exponential accuracy, while in the
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near-field zone, the solution given by Eq. (29) is finite and is
referred to as a near-BIC.

Now we show that this formulation of the near-BICs in the
circular arrays is consistent with source-free Eq. (12),

L̂�c = 0, (31)

which has no solution for real frequencies. However, by ana-
lytical continuation of the frequency k0 into the complex plane
Re(k0) + iIm(k0), we can find a solution of Eq. (31) which
has an extremely small imaginary part, −Im(k0) ∼ e−λN .
Numerics show that the corresponding eigenmode �c satisfies
Eq. (30).

A. The symmetry-protected near-BICs

We start with a consideration of the solution which is odd
relative to y ′ → −y ′ in the local system of coordinates, as
sketched in Fig. 3. For kn = 0 (standing waves), we can take
all amplitudes ãm(j ) and b̃m(j ) independent of the site index
j . Hence, we can rewrite the solution (3) in the vicinity of the
rods as follows:

Ez,even =
∞∑

m=0

[̃
a2m+1J2m+1(k0rj ) + b̃2m+1(j )H (1)

2m+1(k0rj )
]

× sin[(2m + 1)(φj − αj )], (32)

Ez,odd =
∞∑

m=1

[̃
a2m(j )J2m(k0rj ) + b̃2m(j )H (1)

2m(k0rj )
]

× sin[2m(φj − αj )]. (33)

For the odd solution, we imply the following equalities:

b̃2m+1 = b̃−2m−1,

b̃2m = −b̃−2m. (34)

Then Eq. (30) is fulfilled. For the directional array of an infinite
number of rods, the most trivial symmetry-protected BIC is the
solution which is odd relative to each rod in the array direction.
The solution of the symmetry-protected BIC is presented in
Refs. [10,11]. Then the coupling of the BIC with the first
diffraction continuum obviously equals zero.

Below we hold in numerics two parameters of dielectric
rods fixed: the permittivity ε = 15 (silicon rods) and the period
h = 2πR/N (the angular distance between the centers of the
rods). In what follows, all other lengths are measured in terms
of this period. The frequency k0 is measured in terms of c/h,
where c is the light velocity. In Fig. 4, we show how the pole
of the matrix L̂ behaves with the growth of the number of rods
for different types of the symmetry-protected near-BICs. One
can see that the real part of this complex eigenvalue limits the
frequency of the symmetry-protected true BIC in the infinite
array of rods. Figure 5(a) shows the pattern of electric field Ez

of the symmetry-protected BIC in the linear array of dielectric
rods. Figures 5(b) and 5(c) show its circular counterparts in the
circular array of 15 and 25 rods, respectively. Figure 6 shows
other examples of the symmetry-protected near-BICs.

The patterns of the near-BICs, as well as their exponentially
large Q factors, point out an analogy with the whispering-
gallery modes (WGMs), as shown in Fig. 5(d), which also show

5 10 15 20 25
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(a)

5 10 15
1.76

1.78

1.8

1.82

1.84
(b)

10 20 30
3.075

3.08

3.085

3.09

3.095
(c)

FIG. 4. The pole of the inverse of matrix (13) exponentially small
in the imaginary part vs the number of rods for the symmetry-protected
near-BIC shown in Figs. 5 and 6 with the parameters ε = 15,

a = 0.44. (a) Imaginary part and (b),(c) real part of the pole.

an exponentially large Q factor [34]. However, in the present
case, the Q factor is proportional to Q ∼ exp(λN), while for
the WGM, Q ∼ exp(κm), where m is the order of the Bessel
function. Finally, in Fig. 7, we present numerical results for
the parameter λ as dependent on the material parameters.

FIG. 5. Profiles of the electric field directed along the rods.
(a) Fragment of the profile of the true symmetry-protected BIC in
a linear array with the frequency k0 = 1.8412 and (b),(c) its counter-
parts in a circular array of 15 rods with the frequency k0 = 1.8315 and
the Q factor Q = 2×1011, and 25 rods with the frequency k0 = 1.837
and the Q factor Q = 2×1020, respectively, for ε = 15,a = 0.44.
(d) Whispering-gallery mode with angular momentum m = 12 and
frequency k0 = 0.45304,Q = 1.1×107 in a circular tube shown by
solid lines.
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FIG. 6. Patterns of the symmetry-protected BICs with kn = 0
in (a),(b) a linear infinite array of rods and (c),(d) their counter-
parts in a circular array of 20 rods. The parameters of the BICs
are the following: (a) a = 0.44,k0 = 3.0758, (b) a = 0.44,k0 =
3.5553, (c) a = 0.44,k0 = 3.0797,Q = 4.8×107, (d) k0 = 3.5461,

Q = 1.2×107.

B. Non-symmetry-protected near-BICs embedded
into the first diffraction continuum

However, the above analogy of near-BICs in the circular
array of rods with the WGMs is terminated to consider the
non-symmetry-protected near-BICs which need tuning of the
rod radius. One of the examples of true BICs, borrowed from
Refs. [10,17], is shown in Fig. 8(a). Its counterpart in the
circular array is even for kn = 0 relative to y ′ → −y ′ in the
local system of coordinates. In that case, Eq. (30) can be
fulfilled by tuning, for example, the rod radius a. Figures 8(b)–
8(d) demonstrate what happens with this BIC if one were to
roll up the rods in a circle and then optimize the rod radius
a. Because of the symmetry of the infinite array of rods with
respect to up and down by tuning of the rod radius, we can
achieve zero coupling of the BIC with both half radiation
spaces above and below the array. In the circular array of rods,
we can achieve extremely small coupling of the near-BIC to
trap light against emanation outside the circle. However, we
cannot simultaneously suppress emanation inside the circle.
As a result, one can see that the near-BIC fills the whole inner
space of the circular array, as demonstrated in Figs. 8(b)–8(d).

The next aspect of the non-symmetry-protected near-BICs
is related to dependence of the Q factor on N . For each N , the
near-BIC needs optimization of the rod radius to give rise to

0.3 0.35 0.4 0.45 0.5
0.6

0.7

0.8
(b)

0.35 0.4 0.45 0.5

0.16

0.18

0.2

0.22 (a)

FIG. 7. Dependence of the parameter λ which defines the Q factor
eλN vs the radius of rods for the symmetry-protected near-BICs at (a)
ε = 3 and (b) ε = 15.

FIG. 8. (a) Fragment of the electric-field profile of the non-
symmetry-protected BIC in a linear array with the radius a = 0.44441
and the frequency k0 = 2.8299. Its counterparts with kn = 0 in
the circular array are (b) 20 rods with a = 0.43087,k0 = 2.9234,

Q = 1.5×108, (c) 10 rods with a = 0.43087,k0 = 2.9258,Q = 150,
and (d) 27 rods with a = 0.43087,k0 = 2.9251,Q = 5000.

an extremely large Q factor, similar to the symmetry-protected
near-BICs [see Fig. 4(a)]. However, in practice, it is easier
to optimize the rod radius for some selected number of rods.
Currently, we have selected N = 20. Then, a change of the
number of rods with the same radius a gives the dependence
of the Q factor, shown in Fig. 9, which has nonmonotonic
behavior. One can see that for all N except N = 20, the circular
array of rods can support only resonances with the Q factors
in the range from hundreds to tens of thousands.

Let us leave the material parameters unchanged, but take
the number of rods, say, N �= 20. Then the solution becomes
a resonant state which strongly emanates the electromagnetic
(EM) field into the first diffraction radiation continuum, as

10 20 30 40
10-8

10-6

10-4

10-2

FIG. 9. The imaginary part of the frequency in logarithmic scale
vs the number of rods for the case of the non-symmetry-protected
BIC shown in Fig. 8(b) with the rod radius a = 0.4387 optimized for
the case N = 20.
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FIG. 10. Patterns of the non-symmetry-protected Bloch BIC in a
circular array of rods N = 20. (a) n = 1,a = 0.46636,k0 = 1.7722,

Q = 1.3×107, (b) n = 2,a = 0.4389,k0 = 1.7663,Q = 2.5×106,
and (c) N = 30,a = 0.47745,k0 = 3.39887,n = 2,Q = 5.3×108.

shown in Figs. 8(c) and 8(d). The quality factors are taken
from Fig. 9.

Until now, we considered near-BICs with the zero Bloch
vector kn = 0, i.e., with no angular dependence, as seen from
Fig. 8(b). Figure 10 shows the near-BIC with OAM n = 1 and
n = 2 with high Q factor. However, if one wants to consider the
near-BIC with lower Q factor, one can see distinctively as such
a near-BIC decays into the radiation continuum. Figure 11(a)
shows the pattern of true non-symmetry-protected BIC in the
linear array. If one does not tune the radius of the rods after
rolling up into a circular array, the BIC transforms into the
near-BIC with moderate Q factor around 103, as seen from
Fig. 9. As a result, one can distinctively see in Fig. 11(b) as such
a near-BIC emanates into the radiation continuum following
its OAM which equals 4.

C. BICs embedded into a few diffraction continua

In the infinite linear array of rods, there are BICs embedded
into a few diffraction continua given by Eqs. (1) and (2).
They are symmetry protected relative to the first continuum
and are tuned by the radius of rods to be embedded into the

FIG. 11. (a) Pattern of the BIC in the linear array with the
parameters a = 0.44,k0 = 3.5553 and (b) its circular counterpart,
the near-BIC with the parameters a = 0.44,k0 = 3.4469,n = 4,Q =
2.6×103.

FIG. 12. (a) Pattern of the non-symmetry-protected BIC embed-
ded into two diffraction continua in a linear infinite array of rods
and (b) their counterparts in the circular array of 40 rods. The
parameters of BICs are the following: (a) a = 0.24326,k0 = 7.2946,
(b) a = 0.2626,k0 = 6.8092,Q = 8.5×108.

higher continua. [10]. Owing to high frequencies, these BICs
occur at the rod radius that is smaller compared to the BICs
embedded into the first diffraction continuum only. In this
section, we present their circular counterparts. We begin with
the BIC embedded into the first and second diffraction continua
given by p = 0 and p = 1 of the linear array of rods for
π < k0 < 3π . It has the Bloch vector along the circular array
equal to β = ±π/h [10], as shown in Fig. 12(a). Respectively,
its circular counterpart has the same Bloch vector, kN/2 = ±π .

Figure 13(a) presents the BIC with the Bloch vector β =
0 embedded into three diffraction continua with p = 0,p =
±1 for 2π < k0 < 4π [10], and Fig. 13(b) shows its circular
counterpart. However, in order to achieve high Q factors of
these BICs, the number of rods is to be rather high, i.e., 40
and 50.

Above we have presented the symmetry-protected BICs
which localize around the rods (see Figs. 5 and 6) and non-
symmetry-protected BICs which fill the whole inner space of
the circular array (see Figs. 8, 10, and 11). One can see that
BICs embedded into two or more diffraction continua (see
Figs. 12 and 13) have a radial range of localization that is less
than the radius of circle R. That radial behavior of the BICs
is the result of radial behavior of the Bessel functions of a
high order. For ν 
 1, we have an asymptote through the Airy
function [35],

Jν(ν + zν1/3) ∼ 21/3ν−1/3Ai(−21/3z) + O(ν−1).

FIG. 13. (a) Pattern of the non-symmetry-protected BIC embed-
ded into three diffraction continua in a linear infinite array of rods
and (b) their counterparts in the circular array of 50 rods. The
parameters of BICs are the following: (a) a = 0.2386,k0 = 8.9518,
(b) a = 0.2335,k0 = 9.1298,Q = 1.1×1014.
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FIG. 14. Pattern of the near-BIC embedded into three diffraction
continua in the circular array of 30 rods with the following parameters:
a = 0.48365,k0 = 8.3214,Q = 1.852×1011.

The Airy function tends to zero when its argument exceeds
zero. From Eq. (29), we have ν = n + qN and z = k0r .
Therefore, the radial width of BIC localization can be evaluated
as

� = R − r ∼ R − n + qN

k0
. (35)

If the BIC is embedded into only the first diffraction continuum,
we have k0 < 2π . Then, from Eq. (35), we obtain that the
near-BIC occupies the whole inner region inside the circle.
For the near-BIC embedded into the first and second diffraction
continua, we have π < k0 < 3π that gives

� ∼ R − N

2k0
= N

(
1

2π
− 1

2k0

)
.

In particular, for the near-BIC shown in Fig. 13, we have
n = N/2,q = 0 and k0 = 6.8 to obtain � ∼ R(1 − π/k0) =
0.54R that is close the numerical result shown in Fig. 13.
At last, for the BIC embedded into three continua, we have
n = 0,k0 = 8.32 and, respectively, from Eq. (35) we obtain

� ∼ R

(
1

2π
− 1

k0

)
≈ R

4
,

which again is in good agreement with Fig. 14. Surprisingly, we
revealed the near-BIC with Q = 1.85×1011 shown in Fig. 14
in the circular array of 30 rods whose linear counterpart is not
the BIC, but the narrow resonance.

VI. SUMMARY

We considered light trapping by a circular array of infinitely
long dielectric rods. Each BIC, both symmetry protected
and non-symmetry protected, existing in the linear arrow of
rods [10,11,17] has its circular counterpart, i.e., near-BICs.

Although the trapped light modes cannot be rigorously consid-
ered as the BIC in the circular array of rods because of argu-
ments presented in Refs. [21,22], we have presented analytical
arguments in favor that the Q factor of the symmetry-protected
near-BICs with zero Bloch number grows exponentially with
the number of rods. This numerically important result is
presented in Fig. 4(a) and independently by Lu and Liu [31]. In
particular, for 25 rods, the Q factor of the symmetry-protected
trapped modes reaches values of the order of 1015, similar to
the whispering-gallery modes, as demonstrated in Fig. 5. In
practice, such Q factors make the near-BICs in the circular
array indistinguishable from the true BIC in the infinite array
of rods that allowed us to define them as the near-BICs. The
symmetry-protected near-BICs with zero Bloch number are
close in nature to the whispering-gallery modes (WGMs) [see
Fig. 5(d)], whose high Q factor is explained by total internal
reflection and not by destructive interference.

However, the analogy with the WGM is ended if one is to
proceed to the symmetry-protected near-BICs with nonzero
Bloch number or the non-symmetry-protected near-BICs. The
cardinal difference between these near-BICs and the WGM
is that the former fills the whole inner space of the circular
array. As dependent on the Bloch vector kn = 2πn/N,n =
0,1,2, . . ., the inner structure of the near-BIC defines the
orbital angular momentum (OAM) with respect to the circular
array and irrespectively of the solution inside the individual
rod. After an abrupt change of the radius of the circle, these
near-BICs with OAM emanate in the surrounding space in the
form shown in Fig. 11. Also, the Q factor of the non-symmetry-
protected near-BICs that is reached can be extremely large;
however, we cannot conclude that there is exponential behavior
of the Q factor with the number of rods N because of the
necessity to tune the radius of the rods for each N . As it
was shown in Ref. [10], there are BICs in the infinite linear
array of rods embedded into a few diffraction continua. In the
present paper, we have presented counterparts of these BICs
in the circular array of rods. They compose a rather interesting
feature, which is the partial filling of the inner space of the
circular array. Note that one can consider the H -polarized
near-BICs in the circular array of dielectric rods with similar
results.
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