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One- and two-dimensional Raman-induced diffraction gratings in atomic media
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We propose and analyze an efficient scheme for the one- and two-dimensional atomic gratings based on periodic
spatial modulation of the Raman gain and dispersion, which we name the Raman-induced diffraction gratings
(RIDGs). There are fundamentally different from those based on electromagnetically induced transparency. As
the probe field propagates along the direction normal to the standing pump wave, it can be effectively diffracted
into high-order directions. The grating is a hybrid grating, i.e. it represents a mixture of amplitude and phase
gratings. We identify the conditions when all high-order diffractions are amplified. In addition, we also show
that diffraction of a probe field could be dynamically controlled using an additional laser field. With its help,
it is possible to suppress or amplify diffraction beams. The RIDGs can be considered as all-optical multibeam
splitters with amplification.
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I. INTRODUCTION

Electromagnetically induced gratings (EIGs) based on elec-
tromagnetically induced transparency (EIT) [1] in a standing
coupling field have been studied widely both theoretically
and experimentally [2–6]. EIGs stem from periodic spatial
modulation of the absorption and/or refractive index of the
atoms. Therefore these structures are also referred to as
electromagnetically induced absorption gratings (EIAGs) [5].
Transmission and reflection spectra of EIGs are significantly
different from those of a typical EIT configuration. Under
certain conditions, EIGs can have band gaps and transmission
bands similar to photonic crystals which can be dynami-
cally tuned [7–9]. Such periodic structures can be useful
for all-optical control of light propagation [10–12], biphoton
spectrum shaping [4], localization of atoms [13], electromag-
netically induced Talbot effect [14,15], and one- and two-
dimensional (1D and 2D) surface solitons in an atomic medium
[16]. Applying an additional driving field in a four-level N-type
scheme offers further advantages for dynamic control of EIG
spectral properties [11,17].

If a standing wave is perpendicular to the propagation di-
rection of the probe beam, a transverse EIAG can be generated
[2,18,19]. Such a grating is a diffraction grating. It can diffract
a probe beam into higher-order directions, resulting in splitting
into several beams. An electromagnetically induced phase
grating based on the giant Kerr nonlinearity under EIT [20]
in a standing-wave signal field has been proposed in [21,22] to
improve the first-order diffraction efficiency. Also considered
in this scheme are tunable volume transmission holographic
gratings [23]. Image-induced blazed gratings based on EIAG
were proposed in [24], which can provide new possibilities
for all-optical beam splitting and fanning. The authors [25]
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extended 1D EIAG to the case of two dimensions. However,
EIAG produces many diffraction orders with uneven intensity
and low efficiency so that it is difficult to control the diffracted
beams, which may limit the applications of EIAG. Therefore,
seeking new approaches to improve the efficiency of higher
diffraction orders is of undoubted interest. In a recent paper
[26], the author proposed 1D and 2D electromagnetically
induced polarization diffraction grating based on EIT for
realization polarization-dependent multiple-beam splitting in
the Raman-Nath limit. An electromagnetically induced phase
diffraction grating controlled by spontaneous generated co-
herence (SGC) in atomic systems is studied in [27,28]. The
possibility of significant improvement of the intensity of
higher-order diffractions via relative phase between applied
laser fields due to the existence of SGC is shown. The authors
[29] propose a gain-phase diffraction grating based on spatial
modulation of the cross-Kerr nonlinearity in a Raman active
medium. This grating is induced by a pump field and a
standing control field in ultracold atoms. A two-dimensional
diffraction grating is demonstrated in such a scheme [30].
Owing to spatially periodic modulation of the probe gain, the
diffracted beam in the zero-order direction is amplified, and the
higher-order diffraction efficiency is higher than that of EIAG
but without amplification.

Recently we proposed an alternative approach to the gen-
eration of EIG based on Raman interaction of the probe field
with a standing-wave pump field in three- and four-level media
[31–33]. Such gratings are called Raman-induced gratings
(RIGs). Unlike EIAG schemes, where absorption is spatially
modulated, RIGs are based on spatial modulation of the Raman
gain in a standing-wave pump field. RIG can work as a
diffraction grating when the probe field propagates along the
direction normal to the standing wave. In this paper, we present
1D and 2D diffraction gratings formed in an atomic medium
due to Raman interaction of a standing-wave pump with a
weak probe field propagating perpendicular to the standing
wave, which is called a Raman-induced diffraction grating
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FIG. 1. (a) Four-level N-type atom interacting with three laser
beams: standing pump field (with frequency ω1), probe ( frequency
ω2), and coupling ( frequency ω3). δi (i = 1, 2, 3) are one-photon
detunings from the respective transitions. The atoms are initially
populated in the ground state |0〉. (b) Sketch of the probe- and
pump-beam spatial configuration with respect to the atomic sample
and diffraction orders.

(RIDG). The principal advantage of the proposed scheme
is that the probe wave can diffract into many higher-order
directions with amplification under certain conditions. The
higher-order diffraction intensity depends on the amplitude
of the standing-wave pump and the two-photon detuning. The
intensity of the diffracted beams can be higher than the intensity
of the input beam. Such a grating can be considered as an
all-optical multibeam splitter with amplification. Using an
additional driving field in a four-level N-type atomic system,
one can control the intensity of higher-order diffraction by
suppressing or amplifying it.

II. THEORETICAL MODEL AND BASIC EQUATIONS

A. One-dimensional Raman-induced diffraction grating

First we consider the case of a 1D grating. The atomic
system under consideration can be described by a four-level

N-type configuration [Fig. 1(a)]. A homogeneously broadened
medium is assumed. Level |0〉 is the ground state and |2〉 is
a metastable state. Transitions |0〉 − |1〉, |2〉 − |1〉, and |2〉 −
|3〉 are electric dipole allowed, while transitions |0〉 − |2〉 and
|1〉 − |3〉 are electric dipole forbidden. A standing-wave pump

Ep(x) = E1 sin(πx/�) exp (−iω1t + ik1zz)

interacts with the transition |0〉 − |1〉 with a large detuning δ1.
The standing pump wave is the result of two traveling waves
(with the amplitude E1) overlapping at an angle � to each other
[Fig. 1(b)], thus forming interference bands in the direction
of the x axis with a spatial period � = λ1/[2 sin(�/2)],
depending on the � angle. The probe (Raman) field E2 =
1/2E2 exp[−i(ω2t − k2z)] propagates along the z direction
normally to the standing wave and interacts with the transition
|2〉 − |1〉. The control field E3 = 1/2E3 exp[−i(ω3t − k3z)]
propagates in the same direction and interacts with the tran-
sition |2〉 − |3〉. Here we consider the far-off-resonant Raman
transitions, namely, δ1 � γ10, G1, and δ2 � γ21, and assume
the probe field to be weak.

Induced polarization at the probe frequency ω2 will be
P (ω2) = χ2(ω2)E2, where χ2(ω2) is the macroscopic Raman
susceptibility, E2 is the amplitude of the probe field. An
expression for χ2(ω2) can be derived from the density matrix
equations describing interaction of three fields with four-level
atoms (Fig. 1) to the first order of the probe field, and all orders
of other fields [29,33,34]. In the steady-state approximation,
we have

χ2(ω2) = −iαrF (ω2), (1)

where

F (ω2) = γ12

�1

|Gp|2(�30�31 + |Gp|2 − |G3|2)

(|Gp|2 − |G3|2)2 + (�20|Gp|2 + �31|G3|2)�∗
2 + (�31|Gp|2 + �20|G3|2)�30 + �30�20�31�

∗
2

. (2)

Here αr = |d12|2N/2h̄γ12, Gp(x) = G1 sin(πx/�), G1 =
E1d10/h̄, and 2G3 = E3d32/h̄ are the Rabi frequencies of
the pump and control field; �1 = γ10 − iδ1, �2 = γ12 −
iδ2, �3 = γ32 − iδ3, �30 = γ30 − iδ30, �31 = γ31 − iδ31, and
δ1,2,3 = ω1,2,3 − ω10,12,32 are one-photon detunings; δ20 =
δ1 − δ2 is the Raman detuning; δ30 = δ1 − δ2 + δ3, δ31 = δ3 −
δ2, ωmn, γmn, and dmn are the frequency, half width, and
matrix dipole moment of the respective transitions; and h̄ is
the reduced Plank constant.

It is clear from Eq. (2) that the Raman susceptibility is
modulated by a standing pump wave with the period � along
the x direction. This leads to spatial modulation of the Raman
gain and the refractive index. The Raman susceptibility χ2(ω2)
for the probe field can be actively and effectively controlled by
adjusting the optical parameters of the system, such as the
intensities and detunings of the applied fields. This is due to
the ac-Stark shift of the resonance frequency of the Raman
transition under the action of the pump and the control field
(see Appendix). When a probe wave propagates perpendicular

to the standing pump wave, it diffracts on the inhomogeneities
of the Raman gain and refractive index, generating a series
of radiation maxima with various wave vector directions
(diffraction orders). We call such a structure a RIDG. It should
be emphasized that this grating is a hybrid one: an amplitude
(gain) grating and a phase (refraction) one.

In the thin grating approximation, when diffraction in the
bulk of the atomic sample can be ignored, propagation of a
probe wave in a steady-state case is governed by the reduced
wave equation [2]

∂E2(x, z)

∂z
= iF (ω2, x)E2(x, z), (3)

where x and z are dimensionless variables given in � and
z0 = 1/k2αr units, respectively. Equation (3) assumes that the
Fresnel number NF = 4π�2/λ2z0 of a slit of width 2π1/2� at
the distance z0 satisfies the condition NF � 1 [2].

By solving Eq. (3), the transmission function T (x) =
E2(z = L)/E2(z = 0) for the interaction length L of the
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medium (grating thickness) can be obtained as

T (x) = exp[− Im F (ω2)L] exp[i Re F (ω2)L]

= |T (x)| exp[i�(x)], (4)

where |T (x)| = exp[− Im F (ω2)L] and �(x) = Re F (ω2)L
are the amplitude and phase of the transmission function T (x).
Note that the length L is chosen such that the Fresnel number
NF (z = L) = 4π�2/λ2L at the distance L is also NF � 1.

For a plane probe wave, intensity distribution in the far field
normalized to [E2(z = 0)M]2 (Fraunhofer diffraction) is given
by [2]

I2(θ ) = |E1
2 (θ )|2 sin2(Mπ� sin θ/λ2)

M2 sin2(π� sin θ/λ2)
, (5)

where M is the number of spatial periods of the grating
irradiated by the probe beam, and θ is the diffraction angle
with respect to the z direction. The diffraction order n is
found as sin θ = nλ2/�, n = 0,±1,±2, . . . ,±(M − 1), and
E1

2 (θ ) = E2(θ )/E2(z = 0) is

E1
2 (θ ) =

∫ 1

0
T (x) exp(−i2π�x sin θ/λ2)dx, (6)

which describes Fraunhofer diffraction over one spatial period
of the grating.

B. Two-dimensional Raman-induced diffraction grating

Now we extend the 1D RIDG to the case of two dimensions.
For a 2D grating, the pump field is a combination of two
orthogonal standing-wave fields of the same frequency, that
is,

Ep(x, y) = E1[sin(πx/�x ) + sin(πy/�y )], (7)

where �x and �y are the standing-wave field spatial periods in
the x and y directions, respectively. The probe field propagates
along the z direction and passes through the intersection
region of the two orthogonal standing-wave fields in the
x-y plane, while the control field may propagate along an
arbitrary direction. In this case, the transmission function
T (x, y) is a function of two variables, x and y. In the thin
grating approximation it has the form of Eq. (5). By Fourier
transformation of T (x, y), we can obtain the intensity of the
Fraunhofer diffraction

I2(θx, θy ) = |E1
2 (θx, θy |2 sin2(Mπ�x sin θx/λ2)

M2 sin2(π�x sin θx/λ2)

sin2(Nπ�y sin θy/λ2)

N2 sin2(π�y sin θy/λ2)
, (8)

where

E1
2 (θx, θy ) =

∫ 1

0

∫ 1

0
T (x, y) exp(−i2πx�x sin θx/λ2−i2πy�y sin θy/λ2) dx dy (9)

represents the Fraunhofer diffraction of a single space period,
and θx and θy are the diffraction angles with respect to the x

and y axes. The conditions sin θm
x = mλ2/�x and sin θn

y =
nλ2/�y correspond to the position of the main diffraction
maxima I2(θm

x , θn
y ). M and N are the number of spatial periods

along the x and y axes of the grating illuminated by the probe
beam.

It should be noted that in the general case the two-
dimensional diffraction grating is not a simple superposi-
tion of two 1D gratings, in contrast to conventional ones.
This is because the nonlinear susceptibility, and hence the
transmission function T (x, y), which determines the spatial
structure of the grating, is a nonlinear function of the pump
field and coordinates [see Appendix, Eq. (A4)] and cannot be
represented as a product of functions that depend only on one
coordinate.

III. RESULTS AND DISCUSSION

In this section, the equations outlined in Sec. II are used to
investigate the diffraction power of RIDG under various pa-
rameters. Our numerical analysis employs data corresponding
to the sodium atom D1 line, and levels |0〉 and |2〉 correspond
to the long-lived superfine sublevels of the ground state 2S1/2.
The following atomic parameters are used: γ10/2π = 10 MHz
and γ20 = γ10/1000. It is assumed that γ21 = γ30 = γ32 = γ10.
The Rabi frequencies and one-photon detunings δ1,2,3 are given
in γ10 units and the Raman detuning δ20 in the units γ20. L

is given in the units of linear absorption length z0. Here we
use δ1 = −100, the number of periods D/� = M = 5 and
L = 40.

A. 1D RIDG

We first consider a 1D grating in the case of zero control
field G3 = 0. Typical curves of the amplitude |T (x)| as a
function of x are shown in Figs. 2(a), 2(c) and 2(e) for various
G1 and δ20. In these figures, the nodes are located at both
ends of the periods while antinodes are located in the middle.
It is clear that the probe field is amplified and the probe
gain depends on the transverse coordinate x and reiterates
along x with a period � controlled by the standing pump
wave. For small G1 the amplification maximum occurs in the
center of the period. With increasing G1 it splits spatially.
Position of the transmission peaks is governed by the resonance
condition δ20 + |G1|2 sin2(πx/�)/δ2 = 0. The transmission
behavior is associated with the ac-Stark shift of the Raman
resonance induced by the pump field [see formula (A1)]. As
shown by Figs. 2(a), 2(c) and 2(e), |T (x)| depends on G1 and
δ20. The phase of the transmission function also exhibits an
inhomogeneous distribution over the space period, depending
on G1 and δ20 [Figs. 2(b), 2(d) and 2(f)].

Figures 3(a), 3(c) and 3(e) illustrate the normalized Fraun-
hofer diffraction intensity according to the transmission func-
tion of Fig. 2. In the case of a Raman resonance δ20 =
0, diffraction into higher orders is very weak [Fig. 3(a)].
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FIG. 2. Amplitude |T (x )| [(a), (c), (e)] and the phase �(x ) [(b),
(d), (f)] of transmission function as a function of x over three space
periods for various G1 and δ20. (a), (b) δ20 = 0; (c), (d) δ20 = 9; and
(e), (f) G1 = 1.

When δ20 �= 0, under certain conditions the probe field is not
only amplified in the zero-order direction but also distributed
significantly into the high-order directions. Their intensity may
be much more than the intensity of the probe field incident on
the grating. That is, high-order diffraction can also increase.
The enhanced high-order diffractions appear at sufficiently
high Raman gain of the probe field. The larger an amplification,
the higher an intensity of high diffraction orders. For the given
Raman detuning δ20, there is an optimal value of G1 ensuring
maximum diffraction peaks. The high-order diffraction modes
may have sufficiently uniform intensity distribution [Fig. 3(c)].
Thus, in contrast to the gratings based on EIT the RIDG is
highly efficient in diffracting light into high-order directions.
By varying a pump field intensity and frequency, one can
control the intensity of higher diffraction orders (Fig. 4). So,
under certain conditions RIDG can be treated as a multibeam
splitter with a controlled beam intensity.

Note that the RIDG is a hybrid grating, being a combination
of the amplitude (gain) and phase (refractive index) gratings.
To illustrate the role of the amplitude and phase modulation,
we show the Fraunhofer diffraction intensity for the amplitude
grating [Figs. 3(b), 3(d) and 3(f)], when the phase grating is not
taken into account (� = 0). It is seen that unlike conventional
amplitude gratings, the amplitude RIDG distributes a light
significantly into the high-order directions. This behavior is
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FIG. 3. Fraunhofer diffraction intensity as a function of sin θ for
the transmission function T (x ) in (a), (c), (e), corresponding to Fig. 2,
and as a function of sin θ for the amplitude grating |T (x )| in (b), (d),
(f), corresponding to Figs. 2(a), 2(c) and 2(e).

due to a combination of amplification and an inhomogeneous
distribution of the probe field at a grating period. Comparison
of Figs. 3(c) and 3(e) against Figs. 3(d) and 3(e) shows
that the diffraction intensity I2(θ ) is the resulting distribution
including the diffraction effects from both amplitude and phase
modulation. Although the phase grating is not ideal, it can
substantially change quantitatively the diffraction pattern of
the amplitude grating.

The use of an additional control field E3 interacting with the
transition |2〉 − |3〉 [Fig. 1(a)] opens up new possibilities for
controlling the diffraction orders. In Fig. 5(a), the diffraction
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FIG. 4. Diffraction patterns I2(sin θ ) as a function of (a) G1 when
δ20 = 9 and (b) δ20 when G1 = 1. L = 40. δ1 = −100.
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FIG. 5. (a) First-order diffraction intensity I2(θ1) as a function of
δ3 (for various G3, curves 1–3) and G3 (for various δ3, curves 4–7). (b)
Intensity of diffraction orders I2 as a function of G3 and sin θ , δ3 = 0.
(c) I2 as a function of G3 and sin θ , δ3 = −10. (d) I2 as a function of
δ3 and sin θ , G3 = 0.1. Other parameters are G1 = 1, δ20 = 9.

efficiencies in the first-order direction are given as a function
of the detuning δ3 (for various G3, curves 1–3) and G3 (for
various detunings δ3, curves 4–7). It can be seen that I2 strongly
depends on both G3 (under fixed δ3) and δ3 (under fixed G3).
Such a behavior is due to the combined influence of the ac-Stark
shift of level |1〉 under the pump field G1 and the ac-Stark shift
of level |2〉 due to the control field G3. From Fig. 5(a) it can
be seen that there are optimal parameters of the control field
for which the first-order diffraction intensity is maximal. For
certain values of the control field (G3 or δ3), the first diffrac-
tion order practically disappears. The high-order diffractions
behave in a similar manner [Figs. 5(b), 5(c) and 5(d)]. When
the control field is resonant to the |2〉 − |3〉 (δ3 = 0) transition,
it suppresses diffraction into higher orders [Fig. 5(b)]. A
nonresonant control field may enhance the intensity of higher
diffraction orders as well as suppress them [Figs. 5(c) and 5(d)].
Maximum intensities are achievable at certain magnitudes of
G3, dependent on the initial Raman detuning: the larger the
initial detuning, the greater the magnitude of G3. Therefore,
the intensity of diffraction orders can be controlled by varying
the Rabi frequency of the control field or the control field
frequency. Note that the intensity of the control field may be
considerably lower than the pump field intensity.

B. 2D RIDG

Now consider a 2D RIDG. Such a grating can be real-
ized when the pump field represents a superposition of two
standing waves with amplitude E1 perpendicular to each other
[Eq. (7)]. The Rabi frequency of the pump field is Gp(x, y) =
G1[sin(πx/�x ) + sin(πy/�y )]. Further, we will assume
that the �x = �y = 4λ1. To obtain an effective high-order
Fraunhofer diffraction in the present scheme, we demonstrate
the diffraction intensity I2(θm

x , θn
y ) dependence on the ampli-

tude of the standing-wave field G1 [Fig. 6(a)] and Raman
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y )–dash dot. Also, the Fraunhofer diffraction intensity
I2(θx, θy ) as a function of sin(θx ) and sin(θy ) at (c) G1 = 0.55,
δ20 = 11.4 and (d) G1 = 0.65, δ20 = 16.4. A quarter of the full
diffraction pattern is shown here.

detuning δ20 [Fig. 6(b)]. The interplay of several processes
contributes to the outlined dependencies. Figure 6(a) shows
that I2(θm

x , θn
y ) has maximum values subject to appropriate

δ20. The larger the detuning δ20, the greater the pump field G1

required to provide maximal gain of the probe field, and hence
the greater resulting I2(θm

x , θn
y ) at the maximum. The intensity

I2(θm
x , θn

y ) as a function of δ20 behaves in a similar manner
[Fig. 6(b)]. In Figs. 6(c) and 6(d), we plot the Fraunhofer
diffraction intensity as a function of sin(θx ) and sin(θy )
under different conditions. It can be seen that under certain
conditions, all diffraction orders are amplified. It should be
noted that the conditions for efficient generation of Fraunhofer
patterns of high orders for 1D and 2D gratings are significantly
different (see Figs. 3, 4, and 6). We also note that even with a
small amplification, RIDG is more effective than the gratings
based on EIT [25]. Using an additional laser field interacting
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FIG. 7. Intensity of diffraction orders I2 as a function of sin θx and
sin θy . G1 = 0.65, δ20 = 16.4, G3 = 0.11. (a) δ3 = 0, (b) δ3 = −50.
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FIG. 8. (a) Variation of the imaginary part of the susceptibility χ2

with Raman detuning δ20 for different values G1 in the absence of a
control field (G3 = 0). (b) Imaginary part of the susceptibility χ2 as
a function of δ3 in the presence of the control (G3) and pump (G1)
fields, δ20 = 9. The common parameters are G1 = 1, δ1 = −100.

with the |2〉 − |3〉 transition, higher orders of diffraction can
be controlled. For example, one can suppress higher orders of
diffraction [Fig. 7(a)] or amplify them [Fig. 7(b)] under certain
values of the intensity of the control field and its detuning δ3.
So, under certain conditions 2D RIDG can be treated as a 2D
multibeam splitter with controlled beam intensity.

IV. CONCLUSION

We have theoretically investigated the diffraction character-
istics of 1D and 2D atomic gratings based on periodic spatial
modulation of a Raman gain and dispersion in three- and four-
level atomic systems by using a standing-wave pump field that
is perpendicular to the probe wave. For a 2D grating, the pump
field is a combination of two orthogonal standing-wave fields
with the same frequency. It is shown that such gratings amplify
not only the zero-order diffraction intensity but also under
certain conditions all high-order diffraction. So, RIDG is an
amplifying multibeam splitter. In comparison with EIT-based
gratings, the RIDGs have a much higher conversion efficiency
of light in the high-order directions. Diffraction of a probe
field could be dynamically controlled by additional weak laser
field choosing its detuning and strength. Using this field one
can suppress or enhance the intensity of diffraction orders.
These properties may give rise to such possible applications
as optical switching, routing, beam deflectors, and multibeam
splitters for all-optical information processing.

APPENDIX

In the Appendix, we give the formula for the Raman
susceptibility χ2(ω2) in the cases when a control field is off
(G3 = 0) and is on (G3 �= 0, |G1|2/|δ1| < γ20). When G3 = 0
and |δ1| � γ10, |δ2| � γ12, the formula for the susceptibility
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FIG. 9. Fraunhofer diffraction patterns for the (a) 1D and (b) 2D
gratings. G1 = 1, δ20 = 9, G3 = 0, L = 40, δ1 = −100.

χ2(ω2) [see Eqs. (1) and (2)] can be written as

χ2(ω2, x) = αr

γ12|G1|2 sin2(πx/�)

δ1[(δ20 + iγ20)δ2 + |G1|2 sin2(πx/�)]
.

(A1)
When |G1|2/|δ1| > γ20 the pump field creates an ac-Stark
shift of the state |1〉, which leads to a change in the probe
detuning [35]. The magnitude of the ac-Stark shift δ1S =
|G1|2 sin2(πx/�)/δ1 depends on the transverse coordinate x.
It is maximal at the antinode of the standing wave and decreases
to zero at the nodes. Figure 8(a) shows the behavior of Im(χ2)
(a Raman gain) as a function of the Raman detuning δ20 for
different values of G1 when G3 = 0. It can be seen that the
Raman resonance shifts with increasing G1. The amplitude of
the perturbed resonance increases significantly in comparison
with the unperturbed one.

When |G1|2/δ2 � γ20, expression (A1) can be written as

χ2(ω2) = χR (ω2)E2
1 sin2(πx/�), (A2)

where χR is the standard nonlinear Raman susceptibility [36].
When G3 �= 0 and the pump field is weak (|G1|2/|δ1| <

γ20), the susceptibility can be expressed as [37]

χ2(ω2, x) = −iαr

γ12

�1

|G1|2 sin2(πx/�)(�30�31 − |G3|2)

(�31�
∗
2 + |G3|2)(�20�30 + |G3|2)

.

(A3)

Analysis (A3) shows that the off-resonant control field can
induce an ac-Stark shift δ3S = |G3|2/δ3 of the state |2〉, and the
corresponding change in the probe detuning. In Fig. 8(b), we
demonstrate Im(χ2) as a function of a control field detuning for
different Rabi frequencies G3. In the general case, the spectral
behavior of the susceptibility χ2(ω2) is determined by the joint
effect of the ac-Stark shifts due to the pump field and the control
field. As a result, the largest gain modulation takes place when
δ20 + δ1S − δ3S ≈ 0. Thus, the Raman amplification can be
controlled by both the pump and control fields.

In the case of a 2D grating, the susceptibility (A1) has the
form

χ2(ω2, x, y) = αr

γ12

δ1

|G1|2[sin2(πx/�x ) + sin2(πy/�y )]

(δ20 + iγ20)δ2 + |G1|2[sin2(πx/�x ) + sin2(πy/�y )]
. (A4)
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One can see that in the general case the 2D grating of
the susceptibility is nonlinear in the pump field and cannot
be regarded as a superposition of one-dimensional gratings
in contrast to conventional gratings. Therefore, the optimal
conditions for effective diffraction in the 2D grating will
differ from the 1D gratings (see Fig. 9). It can be seen that
for the selected parameters, the 1D grating has a gain in all

orders, whereas in the 2D grating only the main maximum is
amplified.

For a weak pump field, when the ac-Stark shift can be ne-
glected, the 2D grating of the susceptibility is a superposition of
one-dimensional gratings as follows from Eq. (A2). However,
in this case, the amplification is small and therefore it is not of
interest.
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