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Fibers based on propagating bound states in the continuum

Evgeny Bulgakov1,2 and Almas Sadreev1,*

1Kirensky Institute of Physics, Federal Research Center Krasnoyarsk Scientific Center SB RAS, 660036 Krasnoyarsk, Russia
2Siberian State Aerospace University, Krasnoyarsk 660014, Russia

(Received 30 April 2018; revised manuscript received 5 July 2018; published 1 August 2018)

We show that a circular periodic array of silicon dielectric cylinders supports nearly bound states in the
continuum (BICs) propagating along the cylinders. These propagating nearly BICs with extremely large-Q
factors are surrounded by resonant modes weakly leaking into the radiation continuum. We present leaky zones in
the form of dispersion curves for complex eigenfrequencies dependent on propagation constant kz, with the wave
vector directed along the cylinders in the vicinity of different types of BICs. Symmetry-protected nearly BICs have
the resonant width proportional to squared propagation constant � ∼ k2

z ; the widths of non-symmetry-protected
nearly BICs behave as � ∼ (kz − kc )2, where kc and non-symmetry-protected nearly BICs have the resonant
width proportional to k4

z . The latter propagating nearly BICs can serve for the transmission of a electromagnetic
signal paving a way to a different type of optical fiber. We also demonstrate weakly leaking resonant modes which
carry orbital angular momentum.
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I. INTRODUCTION

Standard optical fibers guide light using total internal
reflection. This restricts their optical properties because only
solid or liquid materials can be used for the fiber core. There
are no suitable cladding materials which have a sufficiently
low refractive index to confine light by total internal reflection
in a vacuum or a gas core.

Substantial efforts have been invested over the past years
in fabricating photonic-crystal materials that have a periodic
modulation of the refractive index on the scale of the optical
wavelength. The interest in such materials lies in their ability
to strongly reflect light of certain frequencies. Photonic band-
gap structures offer the opportunity to design new optical
properties into existing materials by wavelength-scale periodic
microstructuring of the material morphology [1]. One can
imagine that such a structure of the order of ten layers
can be rolled up to form cladding that is capable to almost
perfectly trap light inside realizing fiber. Another design of
two-dimensionally periodic structures in the form of long, fine
silica fibers that have a regular array of tiny air holes running
down their length constitutes an artificial two-dimensional
photonic crystal (PhC) with lattice constants of the order of
micrometers [2].

However, the demand of perfectness of such fibers enor-
mously enlarges their cross section. In the present paper, we
propose a different design of fibers based on the capability of
a periodic array of dielectric cylinders to trap light at certain
frequencies. The property is based on a fundamental family
of localized solutions of Maxwell’s equations, the so-called
bound states in the continuum (BICs). Recently, BICs with zero
Bloch vector were reported in infinitely long periodic arrays of
dielectric cylinders [3–19] (see also the array of metallic wires
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on a substrate [20]). BICs propagating along the array were
also shown to exist [8,9,21–28]. Our primary interest is in the
BICs which can propagate along the cylinders [9,28] giving
rise to a new family of guided modes with frequencies above
the light line.

Physically, the occurrence of BICs in the infinite array
of cylinders is the result of the periodicity of the array that
quantizes the radiation continua in the form of diffraction
continua [8,17]. Obviously, the infinite array of dielectric
cylinders is an unrealistic limit. In practice, we deal with a finite
number N of cylinders which have material losses given by the
imaginary part of the refractive index, structural fluctuations of
cylinders, the effect of substrate, etc., transforming the true BIC
into a resonant mode with small resonant width [13,16,17,29–
31]. Although the full range study of these factors is still
far from completion, it was shown that the Q factor of the
symmetry-protected quasi-BICs grows quadratically with N

[31].
Each cylinder can support guided modes propagating along

the cylinder [32] provided that the frequency of the modes
lies below the light line. Above the light line, the modes
have leakage into the radiation continuum. Assume now that
the array of cylinders is rolled into a circle, as shown in
Fig. 1, periodically over the azimuth angle with the cen-
ter lines of the cylinders positioned as φj = 2πj/N, j =
0, 1, 2, . . . , N − 1, where N is the number of cylinders. Then,
the Q factor grows exponentially with N for the case of the
nearly symmetry-protected BICs [33,34] that is the result of
almost perfect destructive interference of the modes’ leakage
into the radiation continuum. In practice, such Q factors make
the nearly BICs in the circular array indistinguishable from true
BICs in the infinite array of cylinders [34]. In the present paper,
we demonstrate a few examples of the nearly BICs propagating
along the cylinders. The property of the nearly BICs to serve
as modes with extremely high-Q factors and guide above the
light line paves a way to the designs of fibers composed of
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FIG. 1. N infinitely long circular dielectric cylinders with radius
a stacked parallel to each other in a circle of radius R.

N dielectric cylinders circularly packed parallel to each other.
These nearly BICs fill the core of the fiber and can carry orbital
angular momentum (OAM) m. Each type of the above-listed
nearly BICs is hosted by a leaky zone with high Q surrounding
the nearly BIC.

II. NEARLY BICS PROPAGATING ALONG THE FIBER

Here, for brevity, we omit the details of the calculations.
The calculations are based on the theory of scattering by a
finite cluster of cylinders [34,35]. We start with the simplest
symmetry-protected standing-wave nearly BIC whose cou-
pling with the radiation continuum is exponentially weakened
because of symmetry incompatibility [33,34]. This nearly
BIC originates from a true standing-wave BIC in the infinite
periodic array of dielectric cylinders at the � point, first
reported by Shipman and Venakides [3] and shown in Fig. 2.
The electric field of the BIC solution directed along the

FIG. 2. The z component of the electric field of the symmetry-
protected standing-wave BIC in the linear periodic array of silicon
dielectric cylinders with a = 0.44 and ε = 15 with the BIC frequency
k0c = 1.8315 and its counterpart, i.e., the nearly standing BIC in the
circular array of the radius R = 7.25a of 15 cylinders with discrete
eigenfrequency k0c = 1.837 with m = 0 from Ref. [34]. The radius of
the cylinders a is given in terms of the azimuth period of circular array
h = 2πR/N , where R is the radius of the circular array. Respectively,
the wave numbers are given in terms of inverse h.

FIG. 3. Leaky zone (dispersion of the complex eigenfrequency) of
resonant modes propagating along the fiber consisting of 20 silicon
cylinders with ε = 15 and radius a = 0.44 = 0.1382R. The insets
show the z components of the electric and magnetic fields at k0 =
3.6086 − 0.007866i, kz = 1.5, m = 0.

cylinders is even relative to the direction perpendicular to the
plane of the array (y axis in Fig. 2) and odd relative to x → −x,
where x and y are the local coordinate system tied to the center
of the cylinder. The z component of the magnetic field of the
symmetry-protected BIC equals zero to define the nearly BIC
as E polarized.

For the case of an infinite periodic linear array of dielectric
cylinders, there are the BICs propagating along the array
with finite value of Bloch wave number kn = 2πn/L, n =
0,±1,±2, . . . , where L is the period of the array [8,9,21,23–
28]. Such propagating BICs are the result of the avoided
crossing of modes with different n [36,37]. However, the BIC
propagating along the cylinders with the propagation constant
kz occurs when the symmetry-protected BIC coalesces with the
non-symmetry-protected BIC protected by topological charge
[9,28]. When N cylinders are rolled up into a circle periodically
by the angular period 2π/N , the linear Bloch number kn is
substituted by azimuth Bloch number km = 2πm/N, m =
0, 1, 2, . . . , N − 1. Respectively, the BICs with finite Bloch
vector kn are substituted by the nearly BICs with azimuth Bloch
number km.

The radius of the cylinders a is given in terms of the azimuth
period of circular array h = 2πR/N , where R is the radius of
circle. Respectively, the wave numbers are given in terms of
inverse h. The dispersion curves are computed by solving the
dispersion equation f (k0, kz) = 0 through analytical contin-
uation of k0 into the complex plane, where k0 = ωh/c is the
vacuum wave number and kz is the propagating constant, the
wave number along the cylinders. Figure 3 shows the real and
imaginary parts of complex eigenfrequencies for the case of
20 silicon cylinders. The resonant width and frequency depend
on kz quadratically for small kz, as seen from Fig. 3. Such a
behavior is typical for the guided modes in the vicinity of the
� point in infinite arrays [26,27,29,38]. The Q factor of the
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FIG. 4. Leaky zone of resonant mode of the circular array of
cylinders with a = 0.43084 = 0.1354R, which converts into the
non-symmetry-protected E-polarized nearly BIC at kz = 0 and a =
0.43084 = 0.1354R. The insets show the z components of electric
and magnetic fields at k0 = 2.9508 − 0.00128i, m = 0, kz = 1.5.

eigenmode is given by the equation Q = −Re(k0)/2Im(k0).
The insets in Fig. 3 show profiles of electromagnetic fields (z
components of electric and magnetic field) at kz = 1.5. This
mode converts into a standing-wave E-polarized nearly BIC
with Hz = 0 at kz = 0 (see Fig. 5 in Ref. [34]). Therefore, when
the wave number kz moves away from zero, not only does the
Q factor reduce, but also both polarizations are mixed, as seen
from the insets in Fig. 3. One can see that the magnetic field fills
the whole inner space of the fiber as different from the electric
field, which is mostly localized inside the cylinders. That is
related to the electric field being odd relative to x → −x and
mostly localized around the cylinders, while the magnetic field
is even to fill the whole inner space of the fiber [34].

Recently, the asymptotic scaling law for the coupling of
the resonant mode with the lowest resonant width with the
radiation continuum in the infinite array of dielectric spheres
was derived in the vicinity of the � point [39]. It was shown that
the coupling behaves linearly with the propagation constant
for the symmetry-protected BIC at the � point. Respectively,
the resonant width behaves quadratically with the propagation
constant kz, as demonstrated in Fig. 3.

However, for the non-symmetry-protected nearly BIC, the
coupling constant can be presented in the general case as
w ∼ a0 + a2k

2
z [39] with a0 extremely small to have the

quaternion behavior of the resonant width −Im(k0) = |w|2 ∼
|a0 + a2k

2
z |2, as shown in Fig. 4. The resonant mode originates

from the non-symmetry-protected standing-wave E-polarized
nearly BIC at kz = 0. This nearly BIC is symmetry protected
in respect to the magnetic field and, due to tuning, the cylinder
radius acquires exponentially small coupling with the radiation
continuum in respect to the electric field to achieve Q =
2.6 × 108. When the propagation constant kz moves away
from zero, the resonant mode mixes both polarizations. For
the infinite array of cylinders, the electromagnetic field of

FIG. 5. Two examples of leaky zones of the resonant mode at
a = 0.418 = 0.1313R with two nearly BICs with m = 0 at kz = 0
and kz = 0.83 (dashed line) and at a = 0.43 = 0.1351R with two
nearly BICs at kz = 0 and kz = 0.605 (dash-dotted line) which finally
collapses into the mode with single nearly BIC at kz = 0, whose
resonant width has an asymptote k4

z at a = 0.453 = 0.1382R (solid
line). The insets show the z components of the electric and magnetic
fields at k0 = 3.2124 − 3.95 × 10−8i, kz = 0.83 for a = 0.418.

this non-symmetry-protected BIC was localized around the
cylinders. In the circular array, the leaky mode has the even
electric field filling the whole core of the fiber, while the
odd magnetic field remains localized around the cylinders, as
shown in the insets in Fig. 4. Such a quaternion behavior of
the resonant width was shown in Ref. [28] relative to kz and
in Refs. [29,40] relative to the Bloch wave number along the
infinite periodic array.

We considered the leaky zones (dispersion curves for com-
plex eigenfrequencies) of the resonant modes in Figs. 3 and 4
originated from standing-wave nearly BICs, which are suitable
for signal transmission along the fiber because of slow velocity
of the signal. However, it is more interesting that the constant
a2 in the coupling strength w ∼ a0 + a2k

2
z can be negative

to give rise to the nearly BIC at finite propagation constant.
Figure 5 shows the leaky zones which hold the BIC point
with kzc �= 0. One can see the evolution of the resonant width
vs the propagation constant with increase of the cylinder’s
radius a. For the first two choices a = 0.418 and a = 0.43,
there are two points where the resonant width nearly turns to
zero (dashed and dash-dotted lines in Fig. 5). The first point
kzc = 0 corresponds to the symmetry-protected E-polarized
standing-wave nearly BIC with Q = 1.6 × 107 for a = 0.418
and Q = 5 × 107 for a = 0.43. The second point corresponds
to the propagating nearly BIC with mixed polarizations. The
propagation constant kzc turns to zero with the increase of the
cylinder’s radius with the two BICs coalescing at a = 0.453 at
kzc = 0. The leaky resonant modes hosting this standing-wave
nearly BIC at the point of coalescence acquire quaternary
dependence of the resonant width −Im(k0) ∼ k4

z , as shown
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FIG. 6. Leaky zone of the resonant mode which converts into the
symmetry-protected nearly BIC for a = 0.4 = 0.1257R. The insets
show the z components of the electric and magnetic fields at the
complex eigenvalue k0 = 3.1916 − 5 × 10−9i and the wave number
kz = 1.29, m = 0.

in Fig. 5 by the solid line. That phenomenon was studied in
detail for the case of the infinite array of cylinders and spheres
in Refs. [24,27] as a result of preservation of topological charge
in two-dimensional space of two polarizations of the BIC. It
is remarkable that for kz in the wide range, the resonant width
is smaller than 2.5 × 10−4, as shown in Fig. 5 by the dashed
and dash-dotted lines. A weak dependence of the Q factor on
the wave number allows one to use this nearly BIC for signal
transmission with high efficiency.

FIG. 7. Resonant mode which converts into the nearly BIC
with OAM m = 1 for a = 0.369 = 0.116R. The insets show the
z component of the electric field of the propagating nearly BIC at
k0 = 2.644 − 5 × 10−9i, kz = 2.027.

FIG. 8. Leaky zone of the resonant mode which converts into
the nearly BIC with OAM m = 3 for a = 0.4327 = 0.136R. The
insets show the z component of electric and magnetic fields of the
propagating nearly BIC at k0 = 3.6544 − 2 × 10−7i, kz = 2.2.

Figure 6 shows the resonant mode which holds only the
propagating nearly BIC at finite values of the wave number,
but not a standing-wave nearly BIC.

This nearly BIC has mixed polarizations with the even
electric field Ez filling the whole core of the fiber and the odd
magnetic field localized in the vicinity of cylinders. The mode
has a Q factor of the order of 3 × 102 at kz = 0. The Q factor
decreases when the wave number goes away from zero, but
then again goes to an extremely large value of 3.2 × 108 when
kz reaches kz = 1.29, as shown in Fig. 6. The dispersion curve
shows a nonmonotonic behavior that is related to an avoided
crossing of two neighboring resonances.

The former cases with m = 0 do not need tuning of the
cylinder radius. Once m �= 0, the propagating-wave nearly
BICs with the OAM m �= 0 need tuning of the radius, as shown
in Ref. [34]. These propagating-wave nearly BICs with OAM
are shown in Figs. 7 (m = 1) and 8 (m = 3).

III. DISCUSSION AND CONCLUSIONS

First, it is interesting to compare propagating nearly BICs in
the circular array of cylinders with guided modes propagating
along an isolated dielectric cylinder [32]. That comparison is
given in Fig. 9. One can see that the frequencies that are depen-
dent on the propagation constant kz behave very similarly to
one another, while the resonant widths are strikingly different.
If the frequency of the guided mode in the isolated cylinder
is below the line of light, the mode can propagate along the
cylinder without leakage. As soon as the frequency is above
the line, the mode becomes leaky, as shown in Fig. 9(b) by
a solid line, while the widths of the nearly BICs including
the resonant modes surrounded the BIC have extremely small
leakage above the light line in a rather wide domain of the
propagation constant.

Apparently, the choice of the fiber of N dielectric cylinders
of circular cross section is not the best from a technology view-
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FIG. 9. (a) Dispersion and (b) resonant width of the guided mode
in an isolated dielectric cylinder with a = 0.418 and m = 0 (solid
lines) compared to the case shown in Fig. 5 (red dash-dotted lines).
The thin dashed line shows the light line.

point. In general, there can be any circular dielectric structure
which possesses a symmetry relative to the azimuth discrete
rotations φ → φ + 2πn/N , where n = 1, 2, 3, . . . , N and N

is an integer. In practice, the fiber can be chosen in the form of a
single dielectric cylinder with periodical grating on its surface.
The present type of fiber composed of N dielectric cylinders
has a unique property to exponentially enlarge the Q factor
with N [33,34] for specific solutions, i.e., that is nearly BICs.
These solutions are localized within the fiber even though

the frequency of the solution is embedded into the radiation
continuum. The fiber can support various nearly BICs, mostly
standing waves. These BICs are surrounded by weakly leaking
resonant modes with the Q factor proportional to the inverse of
k2
z . The symmetry-protected nearly BICs do not need tuning

of the cylinder radius, which makes them interesting from a
technological point of view. There are also non-symmetry-
protected nearly BICs which occur via tuning the cylinder
radius. The resonant modes surrounding these nearly BICs
have extremely weak quaternion dependence of the resonant
width on the propagation constant, which is especially inter-
esting for signal transmission. The non-symmetry-protected
propagating nearly BICs surrounded by resonant modes with
Q factor inversely proportional to (kz − kzc )2 are the most
interesting for signal processing in the fiber. They do not need
tuning of the cylinder radius, in contrast to nearly BICs which
carry the orbital angular momentum (OAM).

It is clear that the transmission of electromagnetic signals
over the fiber requires some finite range of frequencies.
Because of discreteness of the BIC frequency, propagation of
signals will be accompanied by leakage. However, the majority
of resonant widths do not exceed one percent of the frequency.
The propagation length is given by the decay rate of nearly
BICs into the radiation continuum. Its value can be accessed
as [23]

L

λ
=

∣
∣
∣
∣

dRe(k0)

dkz

∣
∣
∣
∣

k0

2π Im(k0)
. (1)

For example, we obtain L/λ ≈ 104 for a = 0.418 (see Fig. 5)
and L/λ ≈ 5 × 106 for a = 0.4 (see Fig. 6), where λ is
the wavelength. Therefore, the propagating nearly BICs can
serve for the propagation of electromagnetic signals with high
quality. That prompts one to use the circular array of cylinders
as a different type of optical fiber.
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