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The description of quantum transport in a quadruple quantum-dot structure (QQD) is proposed taking into
account the Coulomb correlations and nonzero bias voltages. To achieve this goal the combination of non-
equilibrium Green’s functions and equation-of-motion technique is used. It is shown that the anisotropy of
kinetic processes in the QQD leads to negative differential conductance (NDC). The reason for the effect is
an interplay of the Fano resonances, which are induced by the interdot Coulomb correlations. Different ways
to increase the peak-to-valley ratio related to the observed NDC are discussed.
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1. Technological development in recent decades
allowed the experimental study of systems of few-elec-
tron quantum dots [1, 2]. In these structures the occu-
pation of each dot and the interaction between them
are governed by the electric fields of gate electrodes.
Since the lifetime of single-electron spin state, a spin
qubit, in semiconducting quantum dot is relatively
long, such objects are attractive for storage and pro-
cessing of quantum information [3, 4]. The research of
quantum-dot complexes in this direction is necessary
to create a scalable architecture of spin qubits [5, 6].

Intra- and interdot Coulomb interactions are the
key factors determining different many-particle effects
in the systems of quantum dots. They are being con-
sidered as a perfect testbed to study the properties of
the Hubbard model due to the possibility of effective
control of the internal parameters such as the interdot
tunneling, single-electron energies and intensities of
Coulomb interactions [7].

Nowadays, the structures consisting of three and
four quantum dots are experimentally available and
can be studied in different topologies. The dots can
form a linear molecule where the nearest-neighbor
tunneling of electrons takes place and the edge dots are
disconnected from each other. Alternatively, such dots
can be arranged in the shape of triangle or square,
respectively. In this case, there is the nearest-neighbor
coupling of all the dots [8–10]. The topology signifi-

cantly affects the system properties. In particular, con-
sidering the Hubbard model with very large values of
the intradot Coulomb repulsion U, it was shown that
the presence of closed paths for the motion of elec-
trons allows realization of Nagaoka ferromagnetic
order [11, 12]. In case of quadruple quantum-dot
structure (QQD) with three electrons, the appearance
of ground state with spin  is explained by the
presence of effective gauge field, which leads to an
increase in the energy of chiral state with spin .
This effect is one of the mechanisms that initiates a
spin blockade of electron current through the QQD
[13]. In this regime, the transitions between the states
that differ in the number of electrons by 1 are forbid-
den if the spin of these states differs by more than 1/2.
It should be noted that the spin blockade was also
demonstrated earlier for double- and triple-linearly
connected quantum dots [14, 15] and for a separate
multi-level dot [16]. One of its manifestations in the
observable values is a current rectification and a nega-
tive differential conductance (NDC). Among other
mechanisms of current suppression in quantum-dot
systems, one can mention the Aharonov–Bohm effect
[17], the dark states [18–20], and the isospin blockade
[21].

In this article, we propose an alternative descrip-
tion of the NDC effect observed in the transport prop-
erties of QQD. The investigated system is schemati-
cally shown in Fig. 1. The dots constituting the device
are located at the vertices of square. The left and right1 The article is published in the original.
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Fig. 1. (Color online) Quadruple quantum dot between the
one-band paramagnetic leads.
metal contacts considered in the one-band approxi-
mation are connected to the first and fourth dots
(1QD and 4QD), respectively. Thus, there are second
and third dots (2QD and 3QD) in the central part of
the QQD and two paths, top and bottom ones, for
electron transport. The electron current is found by
solving the systems of equations of motion for the
nonequilibrium Green’s functions. The NDC effect
arising in the case of the anisotropic QQD is inter-
preted in terms of bound states in continuum (BICs)
and the interaction of Fano resonances which are
formed by the Coulomb correlations between the elec-
trons of central dots, V.

2. The Hamiltonian of QQD between the metallic
leads is . The terms  and

 describe the left and right one-band leads, respec-
tively, and have the form , where

 annihilates an electron with a wave vector k, spin
projection , and energy  (  is the
chemical potential) in the αth lead ( ).

The QQD Hamiltonian reads

(1)

where  annihilates an electron with a spin projec-
tion σ and an energy  on the level of th
dot;  is the hopping parameter in the top (1QD–
2QD–4QD) or bottom (1QD–3QD–4QD) arms (see
Fig. 1);  is the hopping parameter between the arms;
and U and V are the intensities of intra- and interdot
Coulomb repulsion, respectively.
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The last term in the Hamiltonian  is responsible
for the interaction between the subsystems,

(2)

where  is the coupling parameter of
the QQD with the left (right) lead. Note that the time
dependence in  appears due to nonequilibrium
conditions meaning that the electrochemical poten-
tials,  and , are different from each other,

 [22]. In subsequent calculations of the
current and conductance, we consider symmetric
transport regime, .

3. The operator of steady-state electric current is
defined as , where 

 is the left-lead particle operator. Writing
the equation of motion one can get ( )

(3)

The nonequilibrium Green’s functions are introduced
in Eq. (3). The operators  entering into them
are ordered on the Keldysh contour,  [23].

If (2) is treated as an interaction operator than the
analysis of perturbation-theory series for the functions

 and  results in the following formula for the
current,

(4)

where the self-energy functions are introduced,
, which

characterize the influence of the left lead on the QQD;
and  is the one-electron Green’s function
of the left lead. The value of upper indices, ,
points out the branch of Keldysh contour, , . The
general form of the Dyson equation for the Green’s
function  is

(5)

where  is the bare Green’s functions of the
QQD. During the derivation of Eqs. (4) and (5), we
deal with the nonmagnetic approximation. Specifi-
cally, the spin-flip processes are neglected,

. After the transition to integration over the
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real time contour and the subsequent Fourier trans-
form, we obtain the expression

(6)

where  is the Fermi–Dirac distribu-

tion function and  is the
parameter that describes the broadening of QQD lev-
els due to the coupling with the leads. In general, the
density of states of lead depends on frequency and spin
projection, . However, in the
article the leads are supposed to be paramagnetic and
have wide band. Consequently, these dependences can
be ignored and . As a result, the Fourier
transforms of self-energy functions of αth lead are

 and .

To obtain the final expression describing the
steady-state current in the system let us find the
Green’s functions of the QQD entering into (6). For
this purpose, we use the equation-of-motion tech-
nique. The general form of equations for 

 and  differs from

each other because of the definition of ,

where . In addition, taking into account the
diagram expansion of mixed Green’s function,

,
the corresponding equations become
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should be decoupled. The solution of the final set of
equations for the retarded Green’s functions is

(7)

where , 
, , ,

, , ,

, ,
. The factors  and  contain the explicit

dependences on the occupation numbers, correlators
and intensities of the Coulomb interactions in the
QQD: , 

, ,
, , ,

, , ,
. Note that the spin indices in Eqs. (7)

are omitted for simplicity as in the nonmagnetic case
we have . In turn, the solution of the

system of equations for  gives

(8)

where , , . Proceed-
ing from the definition of lesser Green’s functions the
correlators and occupation numbers can be obtained
by self-consistent solution of the following integral
equations

(9)

Substituting the calculated Green’s functions into
Eq. (6), we find the final expression describing the
current in the QQD,
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Fig. 2. (Color online) Effect of bias voltage on the gate-
voltage dependences of (a) conductance and (b) occupa-
tion numbers for the isotropic quadruple quantum dot.
Parameters: , , , ,
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Note that a factor of  in the numerators of Eqs. (9)
and (10) arises because of the summation over the spin
indices. In further discussion, all the energy values are
measured in units of . Additionally, the regime of
strong coupling with contacts will be analyzed
( ). In subsequent calculations, one-electron
energies of the edge dots are assumed to be the same,

. The difference of energies of two cen-
tral dots is controlled by the parameter ,

.

4. We now turn to the description of nonequilib-
rium transport through the QQD. Figures 2a and 2b
show the conductance of QQD and its occupation
numbers as functions of gate field at different bias volt-
ages for the isotropic case, . It is seen that the
resonances of , which are located left and right
from the insulating band (that corresponds to the half-

2

Γ

Γ = 1t

σ σξ = ξ = ε1 4 D
Δ

( )σξ = ε ± Δ2 3 D

=1 2t t
( )εDG
filling), are split in comparison with the equilibrium
regime (compare, e.g., dotted and dashed curves in
Fig. 2a). It can be explained by the fact that for 
the transmission of electrons is enhanced if the QQD
energy level governed by the parameter  coincides
with the electrochemical potential of the left or right

lead, . Simultaneously, the Fano

antiresonances in the conductance emerging due to
the Coulomb interaction between the central dots [25,
26] are modified if . Both insulating bands
obtained in the linear response regime persist at

. However, the further increase in bias volt-
age gives rise to the decrease in the band widths (solid
curve in Fig. 2a). Moreover, in strongly nonequilib-
rium regime, effects that cannot be described by the
Landauer–Buttiker formula may appear. As a result,

 for some gate voltages in the situation when
. The steps of occupation numbers are also

split at  which is especially evident for the pop-
ulations of two internal dots (Fig. 2b). In this case,
each step corresponds to the conductance resonance.

Let us pass to the anisotropic situation, . The
Fig. 3a represents the modification of gate-voltage
dependence of conductance in this regime when the
bias voltage is turned on. It is seen that the anisotropy
of the kinetic processes in the QQD causes the appear-
ance of conductance antiresonances with negative val-
ues. In Fig. 3b, the dotted curve shows the I–V char-
acteristic in the gate field  corresponding to
the antiresonance of the highest amplitude in Fig. 3a.
The I–V curve has four sections where the behavior of
conductance differs substantially. At source–drain
field energies , the current practically does
not increase analogously to the Coulomb blockade
effect. At  the significant growth takes
place followed by a sharp decline at  with a nar-
row valley. At  the current considerably
increases as well as in the second section. The peak-
to-valley ratio in this case is ∼1.4. The similar scenario
is observed if the QQD occupation is above half-filling
(dashed curve in Fig. 3b). The peak-to-valley ratio can
be additionally increased if we take into account the
hopping between the central dots and make their sin-
gle-electron energies different by means of several gate
electrodes ( , ). The I–V characteristic cor-
responding to this case is represented by a solid curve
in Fig. 3b. It is clearly seen that the valley is wider and
the peak-to-valley ratio is ∼1.9. In the situation of T-
shaped QQD geometry ( ) the peak-to-valley
ratio is ∼2.6. For the  mode and using the
same relations between the hopping parameters 
as in Fig. 3, we can get the ratio of about 4 (the last two
cases are not represented in Fig. 3).

The observed NDC effect is related to the features
of density of states (DOS) of the QQD in the anisotro-
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Fig. 3. (Color online) Transport properties of the anisotro-
pic quadruple quantum dot. (a) Gate-voltage dependence
of the conductance. Inset: the Fano antiresonance and its
splitting at . (b) Current–voltage characteristics.
Parameters: , , the other parameters coincide
with the ones used in Fig. 2.

≠ 0eV
=1 1t = .2 0 1t

Fig. 4. (Color online) (a) Influence of Coulomb correla-
tions on the bound states in continuum in the density of
states of the isotropic quadruple quantum dot. (b) Effect of
anisotropy of kinetic processes in the quadruple quantum
dot on the bound states in continuum. Inset: one of the
maxima related to the bound state in continuum, which is
formed at . Parameters: , the other parame-
ters coincide with the ones used in Fig. 3.

≠ 0V ε = 0D
pic regime, . First,

we start with the isotropic situation. The appropriate
DOS is displayed in Fig. 4a. In the absence of Cou-
lomb interactions, the positions of maxima of

 are determined by the energies of eigen-
states of Hamiltonian  (dotted curve
in Fig. 4a). If  that there are four levels with
the energies: , . As it was shown in [28, 29],
the presence of the degeneracy can give rise to BICs.
In our case, the BIC is displayed by the infinitely nar-
row peak at  whose width is characterized by the
term  in . Switching on the intradot Coulomb
interactions results in the appearance of three new
maxima due to the splitting of single-electron exci-
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tation energies of the individual dot: , 
(dashed curve in Fig. 4a). As a consequence, the addi-
tional BIC occurs [30]. The interdot Coulomb inter-
action causes the extra splitting of one-electron exci-
tation energies. Thus, two new maxima and two BICs
arise in the DOS (solid curve in Fig. 4a). It is worth to
note that these maxima are the reason for the conduc-
tance resonances in the linear response regime (dotted
curve in Fig. 2a). In particular, the induction of asym-
metric Fano peaks at  is attributed to the appear-
ance of corresponding maxima in the dependence

 [25, 26]. In turn, the BICs do not manifest
themselves in the QQD transport characteristics.

In the anisotropic situation, the lifetime of two
BICs induced by the interdot Coulomb correlations
becomes finite. As a result, two narrow peaks of finite
height emerge (solid curve in Fig. 4b and the inset)

εD ε +D U

≠ 0V

( )ωTDOS
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and new Fano antiresonances appears in the conduc-
tance. One of them is shown in the inset of Fig. 3a at

 (see dotted curve). The nonzero value of 
is due to the temperature factor. It was already men-
tioned above that the conductance resonances are split
in the nonequilibrium regime. In turn, the antireso-
nance under consideration is transformed into a nar-
row resonance and antiresonance with  and

, respectively. They are placed at the distance of
approximately eV (in the inset of Fig. 3a the bottom of
resonance and the antiresonance at  are plotted
by solid curve). The increase in bias voltage shifts the
antiresonance to the right. Simultaneously, the Fano
asymmetric peak arising at  in the isotropic case
is shifted to the left. Thus, the amplification of NDC
is observed when preformed Fano features are close to
each other and interact. The described scenario is also
realized if the QQD occupation is less than one half.

Note that in [31], where a parallel-coupled double
quantum dot is studied, the NDC effect induced by
the Coulomb correlations occurs if the dots are con-
nected with the leads asymmetrically. In our case, the
NDC takes place in the symmetric coupling regime.
At the same time, the asymmetry of kinetic processes,
leading to the above-mentioned peculiarities in the
DOS and specific redistribution of dots’ occupations,
is a property of the device itself.

5. In this article, we investigated the influence of
nonequilibrium effects on quantum transport in a sys-
tem of four quantum dots taking into account the
Coulomb correlations. To find the expression that
describes the electron current the nonequilibrium
Green’s functions and equation-of-motion technique
are applied. In the last case, the equations for the
third-order Green’s functions were decoupled [32] as
it had been described earlier in [24–26]. The numeri-
cal analysis of the QQD DOS showed that the system
contains the BICs induced by the Coulomb interac-
tions. It is shown that the anisotropy of kinetic pro-
cesses in the QQD results in the finite lifetime of
BICs, which are created by the interdot Coulomb
interaction. The consequent Fano antiresonances in
the gate-voltage dependence of the conductance are
shifted in nonequilibrium regime. The interaction of
these features with the other Fano asymmetric peaks
(which are caused by the interdot Coulomb correla-
tions and appear even in the isotropic case) gives rise
to significant enhancement of the NDC effect. It is
demonstrated that the corresponding peak-to-valley
ratio of the I–V characteristic can be significantly
increased by the change of the system parameters.
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