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Singular points of spin autocorrelation functions on the imaginary time axis, which determine the arguments
of exponential high-frequency asymptotic behaviors, have been analyzed. It has been shown that randomly
distributed inhomogeneous magnetic fields expand the wings of spectra of autocorrelation functions and,
thereby, intensify the heating of a system subjected to variable magnetic fields, which are used to create effec-
tive Hamiltonians or at the saturation of inhomogeneously broadened EPR lines.
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Study of the high-frequency behavior of dynamic
correlation functions has currently become of particu-
lar interest [1–6] because of the possibility of creating
new states of matter by applying a time-dependent
external action [7–13]. Such studies are topical for the
creation of topological states [8, 9, 11, 13], time crys-
tals [12], and simulation of certain quantum systems
using other quantum systems [7]. To increase the time
of existence of created states, it is necessary to estimate
the dependence of the rate of heating of a system on
the parameters of the external action. Such an esti-
mate for the high-frequency asymptotic behavior of
the rate was performed in [1–6], where an exponential
dependence on the frequency of the external action
was obtained.

The exponential frequency dependence of high-
frequency asymptotic behaviors of spin correlation
functions is due to the existence of singular points of
these functions on the imaginary time axis; the theory
of these singular points was developed in [14–22]. The
coordinate  of the nearest singular point determines
the argument of the exponent . We analyze
the dependence of the coordinate of a singular point
on the dimension of space for systems with interaction
between nearest neighbors [17, 18] and with dipole–
dipole interaction [19, 20]. In one-dimensional spin
systems, singular points are absent [23] and correla-
tion functions have stronger frequency dependences

 for the XY model [24] and 
for the XXZ model [25]. Theoretical results obtained
for three-dimensional lattices are in good agreement

with experimental data for both homonuclear [19] and
heteronuclear [20] systems. Finally, in [21, 22], we
studied the concentration dependence of  in mag-
netically dilute spin lattices.

In the cited works, we considered spin systems in a
homogeneous magnetic field. However, the dynamics
of spin systems in an inhomogeneous magnetic field is
of no less interest. First, an increase in inhomogeneity
is accompanied by a transition from a thermalized
state to a many-body localized one [26] with a signifi-
cant change in many properties of spin systems [27–
31]. Second, in magnetically dilute systems of electron
spins with inhomogeneously broadened EPR lines,
the absorption of the energy of the variable magnetic
field and the establishment of spin temperature make
a difference with that in homogeneous systems [32].
The description of these processes widely involves the
concept of a spin packet, i.e., a set of spins having the
same Larmor frequency [32, 33]. From experimental
data on the saturation of the EPR line, it was found in
[33] that the wings of the spectrum of the spin packet
decrease exponentially. In this work, we study the
effect of the inhomogeneous magnetic field on the
coordinates of the nearest singular points of correla-
tion functions on the imaginary time axis, which
determine the high-frequency asymptotic behaviors of
correlation functions and, thereby, slow relaxation
processes and the wings of the spectrum of the spin
packet.
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We consider the system of spins with the secular
part of the dipole–dipole interaction and inhomoge-
neous Zeeman interaction

(1)

where  is the dipole–dipole
coupling constant,  is the vector connecting the ith
and jth spins,  is the angle between the vector 
and static external magnetic field,  is the th com-
ponent ( ) of the vector spin operator at the
ith site, and . Here and below, the
energy is given in frequency units. We assume that the
Larmor frequencies of spins  are random variables.
The following two distributions are most often used.

(i) The normal distribution

(2)

where  is the mean frequency and  is the vari-
ance.

(ii) The uniform distribution in the interval
 with the same variance.

The autocorrelation function of the spin at the jth
site of the lattice is specified in the high-temperature
approximation by the formula

(3)

where  is the Hamiltonian in the refer-
ence frame rotating at the Larmor frequency of the jth
spin [34]. For the autocorrelation function, we use the
system of equations from [16]:

(4)

(5)

where  and  is the

autocorrelation function averaged over the distribu-
tion of Larmor frequencies. For the normal distribu-
tion,

(6)
and for the uniform distribution,

(7)

The system of equations was obtained in the approxi-
mation of self-consistent f luctuating local field. Equa-
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tion (4) describes the average precession of the spin in
the field specified by a Gaussian random process
whose correlation function is determined by Eq. (5) in
terms of f lip-flop transitions of spins with different
Larmor frequencies.

Pairs of spins located at neighboring sites of the lat-
tice at the minimum distance play an important role in
magnetically dilute systems of nuclear spins. For
example, a signal from such pairs was seen in the 29Si
NMR spectrum in a silicon crystal [35, 36] and the
contribution from such pairs is responsible for the
concentration dependence of the wings of the NMP
spectrum [22]. The situation in magnetically dilute
systems of electron spins is different. The electron
magnetic moment is three orders of magnitude larger
than the nuclear magnetic moment. For this reason,
resonance frequencies of pairs of electron spins
located at the minimum distance can exceed not only
the width of EPR lines but also the average Larmor
frequency  [37], in particular, because these fre-
quencies are specified not only by dipole–dipole
interaction but also by exchange interactions. For this
reason, we calculate the spectrum of EPR lines disre-
garding such pairs of spins. We introduce the distance

 above which the spectrum of pairs is within the
spectrum of EPR lines and the parameter

, which is considered as an empirical
parameter. For such systems, in Eqs. (4) and (5), we
set , where  is the concentration of spins,
which is the ratio of the number of magnetic atoms
(spins) to the total number of sites of the lattice. Then,

 is the autocorrelation function aver-
aged not only over the distribution of Larmor frequen-
cies but also over the independent distribution of spins
over the sites of the lattice with the probability c.

Previous studies [15, 16] of nonlinear equations (4)
and (5) for autocorrelation functions without inhomo-
geneous broadening ( ) revealed singular points
on the imaginary time axis. Near the singular points
closest to the coordinate origin, the autocorrelation
function has the form

(8)

The coordinate of the nearest singular point 
 was found in [16]. At , substituting

Eq. (8) into Eqs. (4) and (5) and equating the coeffi-
cients of singular terms, we obtain

(9)
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Fig. 1. Coordinates of singular points  versus the

ratio . The solid lines are numerical calculations by
Eq. (19) for the (lower line) normal distribution and
(upper line) uniform distribution. The dotted line is
obtained by Eq. (15) at  and the dashed line is
obtained by Eq. (17) at .
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for the normal distribution given by Eq. (6) and

(10)

for the uniform distribution given by Eq. (7).

 We first estimate  at  for the normal
distribution (6). The linearized variant of the system of
Eqs. (4)–(6) on the imaginary time axis  has the
form

(11)

(12)

where  and the asymptotic value is
taken for the integral of the error function. Functi-
ons (11) and (12) do not have singular points at a finite
distance from the coordinate origin. Such singular
points appear because of the nonlinearity of Eqs. (4)–
(6). Nonlinearity is manifested at imaginary time val-
ues for which the nonlinear contribution from  in
the exponent in Eq. (6) for  becomes larger than
the linear contribution in Eq. (12). This condition
gives

(13)

which provides the following equation for estimate
of :

(14)

Formula (14) gives the desired estimate

(15)

Here,  is a constant, which will be determined below
from comparison with the numerical calculation.

For the uniform distribution (7), the equation for
estimate of  is similarly obtained in the form

(16)

After the substitution of  for  in
Eq. (16), which does not change the asymptotic
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divergence at , the desired estimate is obtained
from Eq. (16) as

(17)

The exact coordinate of the singular point  is
determined in terms of the radius of convergence of
power series in time for the autocorrelation function

(18)

by the formula

(19)

The recurrence relations for the coefficients are
obtained by substituting series (18) into Eqs. (4) and
(5) and equating the coefficients of equal powers of
time on both sides:
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where  for the normal distribu-
tion and  for the uniform distri-
bution. The results of the calculation are shown in
Fig. 1.

As is seen in Fig. 1, Eqs. (15) and (17) obtained
above to estimate  reproduce well the calculated
dependences at  and , respectively.
These formulas describe the dependences of the coor-
dinate of a singular point on the inhomogeneous
broadening and concentration.

After the Fourier transform of the function 
given by Eqs. (8)–(10), the high-frequency asymptotic
behavior of the spectrum of the spin autocorrelation
function is obtained in the form

(21)

where the coordinate of the singular point  can be
taken from Eqs. (15) and (17) or the calculations
shown in Fig. 1.

Formula (21) at  describes the wings of the
spectrum of the spin packet in magnetically dilute sys-
tems with inhomogeneously broadened EPR lines.
The wing decreases exponentially. The scale of the fre-
quency dependence is determined by inhomogeneous
broadening; i.e., the length of the wings of the spin
packet increases with inhomogeneous broadening.
The reason is that the shape of a wing is determined by
the modulation of the local field on the spin because
of the f lip-flop interaction between surrounding spins
creating this field through the zz interaction. The large
difference between the Larmor frequencies of f lipping
spins makes a large contribution to the frequency of
such modulation. This means that the absorption of
the energy of the microwave field with the frequency Ω
on the wing of the spin packet with the resonance
(Larmor) frequency  is accompanied by f lip-flop
transitions of surrounding spins. In this case, the
detuning energy  is transformed to the
energy of the so-called reservoir of local fields [32,
38], which is formed by the dipole–dipole interaction
and differences between the Zeeman energies of spins
with different Larmor frequencies. Thus, the theory
presented above explains why the long wings of the
spectra of spin packets responsible for quite fast exper-
imentally observed establishment of a common spin
temperature in the reservoir of local fields [32] hold at
large inhomogeneous broadening. Moreover, this the-
ory explains the experimentally observed exponential
shape of wings of the spectra of spin packets [33].

The theory can be applied to estimate the heating
of spin systems subjected to a periodically varying
magnetic field or periodic sequences of pulses of a
variable magnetic field. The necessary relations of
rates of processes to spin correlation functions were
derived in [39]. The results obtained above make it
possible to estimate the dependence of high-frequency
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asymptotic behaviors on the inhomogeneous mag-
netic field. The used approximation of self-consistent
fluctuating local field is strict for infinite-dimensional
lattices [18]. For three-dimensional lattices, the effect
of excluded volume and the inclusion of loops of links
[17–20] will increase the coordinate of a singular point
on the imaginary time axis. The result obtained in this
work should be considered as an approximate upper
estimate for the high-frequency behavior of the cor-
relation function (to obtain a more accurate bound,
one should consider more complex equations derived
in [15, 16]). Finally, for the complete description of
the absorption of the energy of the high-frequency
field and the transition from the thermalized state to
the many-body localized state, it is necessary to esti-
mate the rate of energy propagation in an inhomoge-
neous spin system (diffusion or cross relaxation) and
to derive the corresponding kinetic equations.
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