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The specific features of magnetization in antiferromagnetic semimetals with a low charge carrier density on
a triangular lattice in a high magnetic field are studied. It is demonstrated that the well-known plateau in the
magnetic field dependence of the magnetization manifesting itself in the subsystem of localized  spins
is actually not strictly horizontal but has a slight positive slope. It is found that an abrupt change in the fre-
quency of quantum oscillations of the magnetization in the itinerant subsystem should be observed at the
magnetic field values corresponding to the edges of this plateau owing to the strong s–d(f) exchange coupling.
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1. INTRODUCTION
A quantum antiferromagnet on a triangular lattice

(AFTL) is the simplest system most often used in the
studies of geometrical frustration [1]. It is well known
that the ground state of the classical AFTL is highly
degenerate [2]. At zero temperature, quantum fluctu-
ations lift the degeneracy in favor of a planar structure
[3]. Quantum fluctuations are responsible for a pla-
teau (horizontal segment) in the magnetic field depen-
dence of the magnetization  at M = Msat/3,
where Msat is the saturation magnetization [3, 4]. In
the range of applied magnetic fields , where
the magnetization has a plateau, the system corre-
sponds to the so-called uud phase. In this case, the
magnetization vectors of two of the three magnetic
sublattices are oriented along the applied magnetic
field H, whereas the magnetization of the third sublat-
tice is directed opposite to the field. At H < H1 and

, the system is in the Y and V phases,
respectively. The plateau in the magnetic field
dependence was observed in experiments with several
quasi-two-dimensional AFTL compounds such as
GdPd2Al3 [5], RbFe(MoO4)2 [6, 7], Ba3CoSb2O9 [8],
and Rb4Mn(MoO4)3 [9].

Currently, compounds in which the specific fea-
tures of the AFTL magnetic structure manifest them-
selves in the characteristics of the subsystem of itiner-
ant electrons attract great interest. A prominent exam-
ple of such compounds is provided by water-
intercalated NaxCoO2 · H2O sodium cobaltites whose
conducting layers form a triangular lattice. The inter-

play between the localized and itinerant degrees of
freedom in the phase of coexisting superconductivity
and long-range magnetic order in this system was
actively discussed in [10–14].

Other examples of conducting AFTLs are PdCrO2,
AgNiO2, and Ag2CrO2 (see [15] and references
therein). These systems are also characterized by the
strong coupling between conduction electrons and
localized spins. Note in this connection that the s–
d( f ) exchange interaction in these antiferromagnetic
semimetals with the cubic and square crystal lattices
can lead to the drastic change in the frequency of
quantum oscillations of magnetization for the subsys-
tem of itinerant charge carriers near the magnetic field
corresponding to the spin-flip transition [16, 17].

In this work, we study the possibility of observing
the anomalies of quantum oscillations in antiferro-
magnetic semimetals on the triangular lattice close to
the fields  and  determining the magnetization
plateau for the localized spins. To this end, we develop
the theory of quantum AFTLs with  based on
the spin diagram technique for the Matsubara Green’s
functions. Then, in the framework of the Lifshitz–
Kosevich theory, we analyze the specific features of
the quantum oscillations of magnetization for charge
carriers in AFTL semimetals with strong coupling
between the spin and charge degrees of freedom. Here,
an important condition is the low charge carrier den-
sity, which in the main approximation allows us to
neglect the effect of charge carriers on the subsystem
of localized spins.
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Fig. 1. Orientations of the local axes  ( ) and
equilibrium sublattice magnetizations  after the rotation
of the local coordinate systems by the angles  about the
y axis.
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2. HAMILTONIAN OF THE QUANTUM 
ANTIFERROMAGNET ON THE TRIANGULAR 

LATTICE. EQUATIONS FOR ANGLES
Let us discuss a set of triangular lattices with spins

 located at the lattice sites. Using these lattices,
we form a simple hexagonal lattice. We take into
account the exchange interaction only between the
nearest neighbor spins: an antiferromagnetic one
between the spins of any triangular lattice and a weak
ferromagnetic one between the spins of different lat-
tices. The Hamiltonian of this system can be written in
the form

(1)

Here,  is the vector operator for the spin localized at
the jth site, H is the strength of the applied magnetic
field directed along the z axis and measured in energy
units, g is the Landé g-factor,  is the exchange inter-
action energy of the spins located at the ith and jth sites
(  for the nearest neighbor sites within one
triangular lattice and  for the sites from
different lattices). We assume that I ≫ |I⊥|. For all
other pairs of spins, . The angular brackets in
the first sum denote the summation over the nearest
neighbor sites.

To describe the canting of magnetization vectors in
the applied magnetic field, we divide the system into
three magnetic sublattices and pass to the local coordi-
nate system in each of them. The new axes are rotated
by angles   with respect to the initial ones
(see Fig. 1). Such rotation corresponds to the unitary
transformation for all A operators: ,

where , and subscript 
spans over all angles in the lth sublattice. For the spin
operators, we find

(2)

After passing to the local coordinate systems and
separating out the mean-field contributions, it is con-
venient to represent Hamiltonian (1) in the form

(3)
where

(4)
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Here, , , , the
angular brackets  imply the thermal averaging, the
sublattice index l is defined modulo 3 (e.g., indices
l = 4 and 5 correspond to the first and second sublat-
tices, respectively), and N is the number of lattice sites.

The angles  are determined from the solution of
the set of three equations ( )

(6)

which are obtained from the condition of vanishing of
the coefficients of the terms that arise in the Hamilto-
nian  after the unitary transformation and include
only one  operator. This ensures that, in the mean-
field approximation (i.e., neglecting ), we have for
all averages  and all vectors  are directed
along the new  axes.
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Indeed, only two of three equations (6) are linearly
independent. Having in mind only nontrivial solu-
tions, we can write these two equations in the form

(7)

From the first equation, it follows that the total mag-
netic moment of the system in the mean-field approx-
imation is always directed strictly along the applied
magnetic field. The second equation determines the
total magnetic moment as a function of the applied
magnetic field.

The existence of only two equations (7) determin-
ing three angles  implies a high degree of degeneracy
in the mean-field approximation. In [3, 4], it was
shown that such degeneracy is lifted by quantum fluc-
tuations. Hence, at low temperatures, the third equa-
tion for the angles is that obtained by the minimization
of the thermal average of Hamiltonian (3) involving

. The value of  is mainly determined by such
pair averages, which do not contain the operator .
To calculate these averages and the values of , we
introduce the Matsubara Green’s functions

(8)

where  is the ordering operator over the imaginary
time τ, l and  are the numbers of magnetic sublat-
tices,  and  take the values , , and 
operators are specified in the Heisenberg representa-

tion as .
Green’s functions (8) are calculated using the dia-

gram technique for spin operators [18, 19] with the
operator  playing the role of the perturbation
Hamiltonian. In the zero-loop approximation, the set
of equations for the Green’s functions has the graphi-
cal form

(9)

Here, the thick line with the double arrow corresponds
to the Fourier transform  of the Green’s
function (8), where k is the crystal momentum and

 is the even Matsubara frequency ( ).
The thin line with the arrow denotes the unrenormal-
ized propagator , where

 is the Kronecker delta. In the approximation under
discussion, the terminal factor (closed semicircle in
Eq. (9)) equals . The wavy line corresponds to the
interaction between spins within the same triangular
lattice

(10)
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where

 and  are specified in units of the lattice constant,
and  and  are taken if  and l + 2
(mod 3), respectively. The sawtooth curve in (9) cor-
responds to the interaction between the nearest neigh-
bor spins from different triangular lattices: 

. In (9), the summation over β is implied.

The condition of consistency of system (9) gives us
three branches in the spectrum of spin-wave exci-
tations, two of them being gapless. The first gapless
branch (Goldstone mode) is a linear function of the
crystal momentum k near the center of the Brillouin
zone. The second gapless branch is quadratic in k and
ensures the absence of the long-range magnetic order
at any nonzero temperature in the purely two-dimen-
sional isotropic AFTL. The weak ferromagnetic cou-
pling between the triangular lattices stabilizes the
long-range magnetic order at nonzero temperatures T.

Expressing the Green’s functions given by Eq. (8)
from system (9) in the conventional way, we obtain the
equations for the average vales of  ( ) and the
expressions for the pair correlation functions .

The latter are used in calculations of . The mini-
mization of  (at low temperatures T) gives us the
third (in addition to Eqs. (7)) equation for the angles

 ( ). We do not present here the lengthy
explicit form of the system of six equations for 
and .

The numerical calculations demonstrate that the
nontrivial solutions (for which all angles  are not
multiples of π) always satisfy the conditions 
and  (see Fig. 1). In this case,  in the
Y phase (then, ) and  in the V phase. The
collinear solution (  phase) arises only at one
applied magnetic field H = Hsat/3.

3. MAGNETIZATION OF THE QUANTUM 
ANTIFERROMAGNET ON THE TRIANGULAR 

LATTICE TAKING INTO ACCOUNT 
QUANTUM FLUCTUATIONS

The stabilization of the  phase within a finite
magnetic field range can be achieved by taking into
account the quantum fluctuation corrections for the
canting angles between the magnetization of the sub-
lattices. The type of magnetic structure (or phase) is
now determined by the canting angles ( )
calculated involving such corrections. These angles
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Fig. 2. (Color online) Magnetic field dependence of the
magnetization for the quasi-two-dimensional Heisenberg
model on the triangular lattice in the (dashed line) mean-
field and (solid line) zero-loop approximations. The

parameters of the model are  and .
The inset shows the magnetic field range with the magne-
tization plateau on a magnified scale.

= ./ 0 1zI I −= 5/ 10T I
can be found by minimizing the thermodynamic

potential 

(11)

where, as before, and the sublattice indi-
ces l are defined modulo 3. The quantum fluctuations
in Eqs. (11) manifest themselves via the correlation
functions . At , Eqs. (11) are
reduced to Eqs. (6).

The sum of three equations (11) yields

. This means that the transverse
magnetization still vanishes at all values of the applied
magnetic field even taking into account quantum fluc-
tuations. This result is in contrast to the conclusions
reported in [3], where a nonzero transverse magneti-
zation was found in the V phase.

The expressions describing the magnetic field
dependence of the longitudinal magnetization M =

 follow from equations (11). For the three
phases Y, uud, and V, they can be written in the form

(12)
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where it is taken into account that .
The analysis of Eqs. (11) and (12) demonstrates

that an increase in the applied magnetic field from
zero value results in the transition of the Y phase to the
collinear uud phase at the magnetic field  lower than
Hsat/3 (see Fig. 2). Similarly, with a decrease in the
applied magnetic field from , the noncollinear V
phase is transformed to the  phase at H2 > Hsat/3.
In the magnetic field range from  to , Eqs. (11)
have only trivial solutions corresponding to the uud
phase. As demonstrated within the spin-wave theory
at  [3, 4, 20], the magnetic field dependence of
the magnetization in this phase is described by the
strictly horizontal segment with . In our
approach, the  curve has a slight slope between

 and  clearly seen in the inset of Fig. 2.

4. HAMILTONIAN OF AN AFTL SEMIMETAL

Now, passing to the main aim of our work, we note
that the drastic change in the  dependence at the
points  and  should manifest itself in the charac-
teristics of itinerant electrons under the condition that
their coupling with the localized spins is strong
enough. To study such manifestations, let us add
charge carriers (electrons and holes) to the magnetic
system discussed above. The motion of these charge
carriers should be bounded within the limits of trian-
gular lattices and they should interact with the local-
ized spins by the strong s–d(f) exchange coupling. We
also assume that electron and hole bands slightly over-
lap, thus forming a semimetal with a low charge carrier
density. The Hamiltonian of such AFTL semimetal in
the applied magnetic field has the form

(13)

The operator  is defined by Eq. (1).

The term  in (13) is the energy operator for
charge carriers

(14)

Here,  and  are the creation and annihilation
operators for an electron ( ) or hole ( ) with
the spin projection  at the jth site, respec-
tively;  and  are the binding energy and chemical
potential for the particles of kind λ, respectively;

, and ;  is the tunneling integral,
which is nonzero only for hoppings between the near-
est neighbor sites within the same triangular lattice
and is equal to ; and  is the operator for the z pro-
jection of the spin for a quasiparticle of kind λ at the
jth site.
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Fig. 3. (Color online) Lower branches of the spectrum of
electronic states ( ) calculated (thick dashed line)
from the dispersion equation (18) and (solid line) in the
effective mass approximation. The dot-dashed line corre-
sponds to the spectrum of hole states ( ) in the valence
band. The position of the chemical potential  is shown by
the thin dashed line. The inset shows on a magnified scale
the vicinity of the  point of the Brillouin zone at the level
of μ. The parameters of the model (in electronvolts) are

, , , and H = 2.4 × .
In the Brillouin zone, the Γ and K points have the coordi-
nates  and , respectively.

K

λ = e

λ = h
μ

Γ

= = −1e ht t = = 1e hJ J = .0 004I −310

,(0 0) π,( 0)
The third term in Eq. (13) corresponds to the s–d(f)
exchange interaction with the magnitude  between
the localized and itinerant subsystems

(15)

where  is the vector spin operator of the quasiparti-
cle of kind λ at the jth site.

Owing to the locality of the s–d(f) exchange inter-
action, the operator  is invariant under the afore-
mentioned unitary transformation corresponding to
the transition between the local coordinate systems.

As before, we divide the system into three sublat-
tices and pass to the local coordinate systems, per-
forming the unitary transformation of the operator

. In this case, the transformation for the -opera-
tors has the form

(16)

where the rotation angles  are determined only by
the dynamics of localized spins and are calculated tak-
ing into account quantum fluctuations. Then, we add
the mean-field contribution from the operator  to
the transformed Hamiltonian  and pass to the k
representation. As a result, we obtain the Hamiltonian
for the itinerant subsystem

(17)

Here, , , and 
. In the notation of the c-operator, we add the

lattice index l, which is as before defined modulo 3.

5. ENERGY SPECTRUM 
OF CHARGE CARRIERS

The dispersion equation determining six branches
of the fermion spectrum of charge carriers follows
from the condition of vanishing of the determinant for
the set of equations of motion for the c-operators

. This equation has the form
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where

(19)

.
The calculations show that two lower spectral

branches are degenerate at  and become split at
nonzero magnetic field. In the regime of a low charge
carrier density, these branches can be represented by
an approximate expression quadratic in k: 

. The effective mass  can be found from
the analysis of Eq. (18) at low  values. We do not
present the lengthy expression for . However, in
Fig. 3, we illustrate the high accuracy of the effective
mass approximation in the description of the fermion
spectrum near the  point of the Brillouin zone.

In Fig. 3, we can see that the spectra calculated
using Eq. (18) nearly coincide with those correspond-
ing to the effective mass approximation within a half of
the Brillouin zone. In the plots of electron and hole
spectral branches, the parameters  and chemical
potential  are chosen according to the conditions of
the electron−hole compensation and the low charge
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Fig. 4. (Color online) Quantum oscillations of the magne-
tization of AFTL semimetal. The parameters of the model
are the same as in Figs. 2 and 3.

(G
)

carrier density, ~1020 cm–3. The effective mass 
turns out to be equal to the free electron mass if the lat-
tice constant of the triangular lattice equals a = 3.5 ×

 cm at the model parameters specified in Fig. 3. At
the chosen magnitude of the exchange interaction
(  eV), the magnetic field  eV
corresponds to the left part of the left edge of the mag-
netization plateau for the localized subsystem (see
Fig. 2). At such value of the applied magnetic field, the
splitting of the lower spectral branches of the fermion
spectrum degenerate at  is so large that only one
lower branch turns out to be occupied.

6. QUANTUM OSCILLATIONS
OF MAGNETIZATION IN AFTL SEMIMETALS

In [16], it is demonstrated that the change in the
magnetic moment of the localized spins for antiferro-
magnetic semimetals with the square lattice induced
by an increase in the applied magnetic field can lead to
the displacement of the bottom of the conduction
band and the top of the valence band related to the
strong s–d(f) exchange coupling. Under the condition
of the electron−hole compensation giving rise to the
pinning of the chemical potential, this can provide an
additional mechanism (along with the conventional
one) of the motion of Landau levels with respect to 
and, hence, it can change the frequency of de
Haas−van Alphen oscillations within the magnetic
field range where the form of  changes drasti-
cally. In [16], this field corresponds to the spin-flip
transition. In the case of the AFTL metal under dis-
cussion, the drastic change in  is observed not
only at the spin-flip transition point but also at the
points  and  (see Fig. 2). Thus, an anomalous
behavior of the de Haas−van Alphen effect in an
AFTL semimetal can be expected at these values of the
applied magnetic field.

To check this conjecture, we calculate the magne-
tization oscillations for the itinerant subsystem using
the Lifshitz–Kosevich formula tor the two-dimen-
sional electron gas:

(20)

where  is the Fermi energy,  is the
cyclotron frequency, and m is the free electron mass.
The oscillation amplitude disregarding the scattering
processes can be written in the form A =

, where  is the Bohr magneton
and  cm is the distance between the trian-
gular planes. For simplicity, the parameters of electron
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and hole subbands are chosen to be the same (see the
caption of Fig. 3).

The magnetization M~ calculated by Eq. (20) is
shown in Fig. 4. As expected, a drastic change in the
frequency of magnetization oscillations for the itiner-
ant subsystem is indeed observed near  and .

7. CONCLUSIONS
In conclusion, we note an important role of quan-

tum fluctuations and the s–d(f) exchange coupling in
the observation of M~ anomalies shown in Fig. 4. The
quantum fluctuations are responsible for the plateau
in the magnetization of localized spins, whereas the s–
d(f) exchange coupling provides an additional mecha-
nism for the motion of Landau levels under the effect
of the applied magnetic field.

Note also that the diagram technique used in our
work is developed to describe the characteristics of
quantum magnets at nonzero temperatures. However,
the calculations of both  and M~ have been per-

formed for sufficiently low temperature .
Therefore, for the selection of accidentally degenerate
levels, it is sufficient to minimize the energy (the aver-
age of the Hamiltonian). It is apparent that, at higher
temperatures, we should minimize the free energy. In
this connection, it is noteworthy that the  phase
diagram for CsCuCl3 was recently constructed in [21].
The corresponding model for this substance differs
from model (1), first, in the existence of anisotropy Δ
in the interplane exchange interaction and, second, in
the ratio of the exchange parameters |I⊥| ≫ I (in our
case, |I⊥| ≪ I). At , the low-temperature region of
the H–T phase diagram obtained in [21] in the spin-
wave approximation is in good agreement with results

1H 2H

M
−= 5/ 10T I

−H T

Δ = 0
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of our diagram calculations. The explicit form of
 is not reported in [21]; therefore, it is impossi-

ble to check our conclusion concerning a slight slope
of the  curve in the magnetic field range where
the strictly horizontal plateau with  in the
magnetization of localized spins is expected (see
Fig. 2). The slight positive slope of  obtained in
this work is related to the zero-loop approximation
used in the diagram technique to explicitly take into
account the effects of quantum spin reduction.

Finally, we note that the low charge carrier density
allows us not only to justify the effective mass approx-
imation in the calculations of M~ but also to take into
account only quantum fluctuations in the choice of
degenerate configurations in the subsystem of local-
ized spins. At a significant doping level in the presence
of the s–d(f) exchange coupling, the effect of the itin-
erant subsystem can itself (even without quantum
fluctuations) ensure the lifting of degeneracy in the
localized subsystem.

We are grateful to Prof. V.V. Val’kov for helpful dis-
cussions and valuable remarks. This work was sup-
ported by the Russian Foundation for Basic Research,
project nos. 16-02-00073 and 18-02-00837.
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