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A system of equations describing the ground state in an external magnetic field has been obtained for a two-
position antiferromagnet with noncollinear axes of single-ion anisotropy of moments of different sublattices.
It has been shown that the antiferromagnetism vector changes sign at a spin-flop transition. This leads to a
first-order magnetic phase transition with hysteresis in the field dependence of the magnetization. Explicit
relations have been obtained between the parameters of a microscopic Hamiltonian and the experimentally
observed spontaneous moment and spin-flop transition field. It has been shown that the field dependence of
the total magnetic moment of the antiferromagnet with magnetic ions at two crystallographically nonequiv-
alent positions (two-position antiferromagnet) obtained within the two-sublattice model is nonlinear above
the transition field at any orientation of the crystal with respect to the magnetic field.
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Antiferromagnets with a weak ferromagnetic
moment have been studied for more than half a cen-
tury primarily because of their wide abundance and
variety of their magnetic properties [1, 2]. The variety
of the magnetic properties is largely explained by the
existence of different mechanisms of noncollinearity
of the magnetic moments of antiferromagnetic sublat-
tices. The studies of such magnetic materials in the last
decade were additionally stimulated by the existence
of multiferroic properties in many of them. The man-
ifestation of these properties is usually most pro-
nounced near magnetic phase transitions when the
magnitude or orientation of magnetic moments
changes significantly. For antiferromagnets, this pri-
marily refers to a spin-flop transition, i.e., the reversal
of the moments of sublattices at the application of an
external magnetic field along the easy axis of the uni-
axial anisotropy of the antiferromagnet. The field
strength at which the transition occurs and its form are
determined primarily by the antiferromagnetic
exchange interaction and magnetic anisotropy and,
consequently, carry important information on the
form of anisotropy and strengths of these interactions.
In the absence of a weak ferromagnetic moment, the
spin-flop transition occurs as a first-order phase tran-
sition, i.e., magnetic moments change their orienta-
tions stepwise. The type of transition in weak ferro-
magnets significantly depends on the mechanism of
noncollinearity of antiferromagnetic sublattices. In

particular, in the presence of the relativistic two-ion
Dzyaloshinskii–Moriya interaction, which is usually
treated as the main reason for noncollinearity,
moments are reoriented through two second-order
phase transitions; i.e., the orientation of magnetic
moments changes continuously [2]. The single-ion
mechanism of the noncollinearity of magnetic
moments appears in the absence of the translational
invariance of magnetic ions in a crystal, which results
in the noncollinearity of the axes of local single-ion
anisotropy at different sites of the magnetic lattice.
This is a fundamental difference of this mechanism
from the two-ion one. The latter is usually described in
terms of the vector product of the magnetic moments
of the sublattices

and leads to a weak moment isotropic in a plane
orthogonal to the vector . On the contrary, the sin-
gle-ion mechanism is strictly related to the orientation
of the magnetic anisotropy axes in the crystal and the
weak moment changes under rotation even to the
change in its sign [2]. If the single-ion mechanism
dominates, the reorientation of the moments of anti-
ferromagnetic sublattices  should occur at
the point of change in the sign of the weak moment,
which will result in the recovery of the collinearity of
the weak moment and external field. The aim of this
work is to determine the type and conditions of exis-
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tence of such reorientation, which accompanies the
spin-flop transition, as well as explicit relations of the
observed weak moment and the spin-flop transition
field to the parameters of the microscopic Hamilto-
nian describing magnetic anisotropy.

The magnetic state of the weak ferromagnet is usu-
ally described using either the phenomenological
Hamiltonian [1] or the expansion of the thermody-
namic potential in powers of the order parameters
(components of the antiferromagnetism vector

 and weak moment 
) [2] in the Landau thermodynamic theory

[3]. In the ground state ( ), the potential coin-
cides with the magnetic energy density and both
approaches are equivalent. The products of the com-
ponents  and  of each term of the expansion should
be invariant under transformations of the correspond-
ing symmetry group of the crystal. For the richest class
of rhombic crystals and the centrosymmetric
exchange structure with the even second-order axis
along the b axis of the crystal, the potential has the
form

The coefficients a1, a2, b1, b2, and  (for the
single-ion mechanism) are not independent parame-
ters of the model. They can be expressed in terms of
the coefficients of the single-ion anisotropy of the
spins of the sublattices of the microscopic Hamilto-
nian and the angles of their orientations in the crystal.
To determine an explicit dependence of the observed
weak moment and the spin-flop transition field on
these parameters, the ground state is described by the
Hamiltonian

(1)

where J > 0. Further, we consider the equimodular
model of classical moments with isotropic g-factors
and uniaxial local easy axis anisotropy  in
the external magnetic field applied in the plane
formed by these axes of anisotropy. This maximally
simplified model can be used to describe in the first
approximation the system of S ions in both positions.
In this case, the region of variation of the direction of
the moments of sublattices is limited by the plane
formed by the axes of anisotropy. Let the z axis be
directed along the external magnetic field. The mag-
netic moments of the antiferromagnetic sublattices are
oriented at the angles  and  with respect to the
external magnetic field and the axes of anisotropy are
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oriented at the angles ϕ1 and ϕ2. The magnetic energy
of two moments in the ground state has the form

(2)

where  is the average uniaxial
anisotropy,  is the average angle, Δ =

 and  are the deviations
from the average values, and  and h =

 are the reduced exchange and external fields,
respectively.

The equilibrium orientation of the magnetic
moments can be determined both by minimizing the
magnetic energy given by Eq. (2) and by satisfying a
necessary condition of collinearity of the moments to
the total effective field [4, 5]. The second approach
means the vanishing of the transverse components of
the total local fields at each moment [6–8]. This
approach provides the clearest representation of the
effect of each component of the magnetic interactions
given by Eq. (2) on the orientation of an individual
moment. Transverse fields on the moments of the
antiferromagnetic sublattices have the form

(3)

where . The sum and
difference of Eqs. (3) give two equations for new vari-
ables of the problem—the relative weak moment

 and its angle with respect to the
external field . Retaining the first-order
terms of the variable  in the expansion of trigo-
nometric functions in transverse fields (corresponding
to the  terms in the expansions of the functions in
Eq. (2) for the energy), we obtain different expressions
for two possible orientations of the antiferromagnetic
moments in the external magnetic field (Fig. 1). For
state А,
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Fig. 1. Orientations of the moments of antiferromagnetic
sublattices and the total magnetic moment in two different
states. At the angle between the easy axes of the sublattices

, states А and B dominate at  and ,
respectively.
δ < π/4 < sfh h > sfh h
for state B,

(5)

Here,  = he + KC(2δ)C(2(θ – ϕ)) + ΔS(2δ)S(2(θ –
ϕ)) is the exchange field modulated by the anisotropy
field and  =  + 
is the anisotropy field component transverse to the
weak moment.

First, it is noteworthy that the single-ion contribu-
tion

(6)

to the total relative magnetization is a periodic func-
tion of both the angle 2θ and the noncollinearity
parameter of the axes of anisotropy 2δ. Consequently,
this contribution periodically changes sign, which is
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characteristic of not only the tetragonal crystal [1] but
also other weak ferromagnets with the noncollinear
axes of anisotropy [2] and/or different magnitudes of
anisotropy at different positions. In Eq. (6), the upper
and lower signs correspond to states А and В, respec-
tively. The dependence of the total moment angle θ on
the external field h in the general case of arbitrary val-
ues K, Δ, δ, and the crystal orientation angle ϕ can be
obtained from the equality of the right-hand sides of
Eqs. (4) and (5) for states А and В, respectively.

In the single-position antiferromagnet ( ), the
average orientation angle of the anisotropy axes ϕ and
the orthogonal direction become odd second-order
axes, which corresponds to a rhombic crystal. In the
absence of the external magnetic field, each of the sys-
tems (4) and (5) has two solutions

whose stability depends on the sign of . At
, the average easy axis is the ϕ axis along which

the vector  is oriented. Correspondingly, the ground
state is state A with  and the positive sin-
gle-ion weak moment

(7)

At , the average easy axis becomes the 
axis and state В with  becomes the ground state.
The single-ion moment remains positive:

(8)

In both cases, single-ion anisotropy increases the
exchange field because the direction of the average
anisotropy field coincides with the antiferromag-
netism vector.

In a low magnetic field for , the moment 
in state А is rotated toward the direction of the mag-
netic field. In this case, both the angle θ and the spon-
taneous moment  given by Eq. (6). The sponta-
neous moment vanishes at the angle . The
same behavior occurs at a decrease in the field from
high values, where the ground state is state В. How-
ever, the spontaneous moment in different states van-
ishes at different magnetic fields 

(9)

Here, the upper and lower signs of the first term cor-
respond to the critical field in states А and В, respec-
tively. Thus, the field at which the spontaneous
moment in state А vanishes exceeds the corresponding
field for state В, which indicates that the field depen-
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Fig. 2. Field dependence of the total magnetic moment 
and the spontaneous single-ion contribution  at

 in states А and В before and after the spin-flop
transition, respectively.
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dence of  has hysteresis. When the anisotropy axes
are collinear ( ) and the external field is oriented
along the second-order axis ( ), Eq. (9) gives the
spin-flop transition field in the easy-axis two-sublat-
tice antiferromagnet in the form

(10)

The analysis of the stability of states А and В at
 shows that state А is stable in the field range

, whereas state В is stable at . The
energy of state А in the field  is already higher than
the energy of state В with  in the same field. In
turn, state А is the ground state at . Thus, the
transition between states А and В occurs near the spin-
flop transition field  (10) and is accompanied by
hysteresis in the field range  (Fig. 2).
This range is determined by the region of stability of
both states near a change in the relation between their
energies and, therefore, is an estimate.

The application of the field orthogonal to the com-
mon easy axis (ϕ in Fig. 1) is equivalent to the change

 and state В with 
remains the ground state at any field. In this case, the
field dependence of the magnetization is a straight line
with the spontaneous moment  given by Eq. (8)
(the dashed line in Fig. 2). If the orientation of the
common easy axis does not coincide with the direc-
tion of the external magnetic field ( ), the mag-
netic moment in state В above the spin-flop transition
field will be oriented between the axis of anisotropy ϕ
and the direction of the external field, asymptotically
approaching the latter at . In this case, the
phase transition remains a first-order transition with
hysteresis, which is its characteristic difference from
the spin-flop transition in an antiferromagnet without
weak moment [2].

For the two-position antiferromagnet ( ), the
field dependence of the ferromagnetic moment is fun-
damentally different from a similar dependence for the
single-position case. In the latter case, the crystal in
the state after the spin-flop transition can always be
oriented so that the numerator and denominator in the
first equation of the system (for , Eq. (5)) van-
ish at . Such an orientation corresponds to the
field-aligned common axis of anisotropy ( ). The
degeneracy of the system of equations to the single
second equation ensures the independence of the sin-
gle external parameter h from the fixed angle θ. In the
general case, such an orientation cannot be chosen for
a two-position antiferromagnet because different
functions in the numerator and denominator of the
first equation cannot vanish simultaneously. This can
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be easily verified if the equation is represented in the
form

(11)

where

Since additional phase shifts at  are different
( ), the system of equations describing the depen-
dence of the angle θ on h includes both equations at
any orientation of the crystal. This means that each
field provides an individual orientation of the total fer-
romagnetic moment different from the direction of the
field. Consequently, within the two-sublattice model
of the two-position antiferromagnet, a linear depen-
dence  is absent at any orientation of the crystal
with respect to the external magnetic field.

Within the two-sublattice model of the two-posi-
tion antiferromagnet Pb2Fe2Ge2O9 [9], the authors of
[10] attempted to describe the field dependences of the
magnetization using the expansion of the thermody-
namic potential. They explained the weak ferromag-
netism of the magnet by the single-ion mechanisms.
According to the calculations reported above, the
spin-flop transition in this case is a first-order phase
transition and should be accompanied by the hystere-
sis of magnetization in the field dependence. How-
ever, the experimental magnetization curve near the
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transition has the form of two second-order transi-
tions, which is characteristic of the dominance of the
two-ion Dzyaloshinskii–Moriya interaction [2]. Fur-
thermore, the weak ferromagnetic moment extrapo-
lated to  from the high-field part of the magneti-
zation curve (above the spin-flop transition) is almost
twice as high as the value obtained from the low-field
part. The difference between weak moment values is
characteristic of the situation where both mechanisms
contribute [2]. In this case, at the dominant role of the
Dzyaloshinskii–Moriya interaction, the moments for
the orthogonal orientations of the antiferromagnetism
vector will have the form

(12)

where  and  are the parameters of the expansion
of the potential corresponding to two- and single-ion
mechanisms, respectively, and А is the exchange field.
At , the total spontaneous moment given by
Eq. (12) remains positive without the reversal of the
antiferromagnetism vector; i.e., the spin-flop transi-
tion becomes continuous. It is convenient to apply a
more realistic four-sublattice model to the detailed
analysis of the field dependences obtained in [10].
When analyzing the magnetic properties of weak fer-
romagnets, information necessary for estimating the
contribution of the single-ion mechanism and anisot-
ropy of the g-factors to the total spontaneous moment
can be obtained by analyzing single-ion EPR spectra
of magnetic ions in both crystallographically non-
equivalent positions in a diamagnetic analog of a mag-
netic compound.
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