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NONEQUILIBRIUM GREEN’S FUNCTIONS IN THE ATOMIC

REPRESENTATION AND THE PROBLEM OF QUANTUM

TRANSPORT OF ELECTRONS THROUGH SYSTEMS WITH

INTERNAL DEGREES OF FREEDOM
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We develop the theory of quantum transport of electrons through systems with strong correlations between

fermionic and internal spin degrees of freedom. The atomic representation for the Hamiltonian of a

device and nonequilibrium Green’s functions constructed using the Hubbard operators allow overcoming

difficulties in the perturbation theory encountered in the traditional approach because of a larger number

of bare scattering amplitudes. Representing the matrix elements of effective interactions as a superposition

of terms each of which is split in matrix indices, we obtain a simple method for solving systems of very

many equations for nonequilibrium Green’s functions in the atomic representation. As a result, we obtain

an expression describing the electron currents in a device one of whose sites is in tunnel coupling with the

left contact and the other, with the right contact. We derive closed kinetic equations for the occupation

numbers under conditions where the electron flow leads to significant renormalization of them.
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1. Introduction

When solving the problem of the electric current flow through atomic-scale systems (we call such
systems devices in what follows), a situation is often encountered where the device has its own (intrinsic)
degrees of freedom that do not directly participate in the charge transport processes [1]. Nevertheless,
the presence of such additional subsystems interacting with the subsystem of charge degrees of freedom
can, for example, influence the volt–ampere characteristics of the device because the resulting spectrum of
fermionic excitations is modified. This is very important for applications because it opens wide possibilities
for controlling the electron transport by the action of external fields (e.g., a magnetic field) on the internal,
not only fermionic, degrees of freedom [2], [3].

As an example, we can consider a device with a subsystem of magnetic impurity ions. The processes
of electron injection into the device, just as the processes of electron ejection from the device, are then
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Fig. 1. Model of a device with two sites and two impurity spins: the left contact (tL) is coupled by

tunneling to the first site of the device, and the right contact (tR), to the second site. An electron

entering the device site (the first site in the figure) correlates with the impurity spin through an

(s−d(f))-exchange coupling.

accompanied by perturbations of the subsystem of impurity spins due to the (s−d(f))-exchange interaction
between the impurity spins and electrons in the device [4]. The correlation arising between the fermionic
and spin degrees of freedom leads to a dependence of the energy spectrum of the device on the external
magnetic field, which is significant for transport phenomena and thus determines a mechanism that allows
a purposeful control of the transport characteristics of the device.

Unfortunately, calculating the volt–ampere characteristics of devices with internal degrees of freedom
is significantly more difficult because the Hamiltonian taking the coupling between subsystems into account
is off-diagonal in the usual representation of fermion and boson operators of secondary quantization. As
a result, the perturbation series becomes much more complicated because of very many bare scattering
amplitudes. At the same time, it is often insufficient to restrict the theory only to lower orders because it
is also necessary to consider the effects of multiple scattering of electrons accompanying the processes of
electron injection and ejection. Hence, a situation arises where it is necessary to sum an infinite perturbation
series, but this series can be very cumbersome because of the numerous scattering potentials.

The processes of the device transition to excited states are also important. Such transitions are induced
by the interaction of transported electrons with the charge and spin degrees of freedom of the device. As
a result, the tunnel current flow can redistribute the populations of the energy states of the device. In
this case, the final distribution of the device energy level population can significantly differ from the initial
equilibrium distribution [5].

Here, we overcome the difficulties listed above by constructing nonequilibrium functions in the atomic
representation. Introducing the Hubbard operators, we can represent the Hamiltonian of the device in
diagonal form. Therefore, only the tunneling operator written in the atomic representation plays the role
of the perturbation used to construct the diagram series. Such an approach allows describing the effects of
multiple scattering of electrons and obtaining an expression for the current and a system of kinetic equations
for the occupation numbers.

2. Hamiltonian systems

We consider the tunneling transport of electrons through the device shown in Fig. 1. The tunnel
coupling to the left contact of the device is realized such that in the tunneling, an electron from the contact
enters the first site in the state with the energy ξdσ. The tunnel coupling to the right contact is similar with
the only difference that the second site of the device participates in the tunneling process. A specific feature
of the device considered here is that it contains a subsystem of two localized spins. This corresponds to the
simplest model situation that can reflect the dependence of the transport characteristics of the device on
the interaction in its magnetic subsystem. The magnetic ions can be introduced in the device, for example,
by adsorbing impurities in the domain between the contacts. Another possibility arises in the case where
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the device structure is formed on the basis of a pair of transient ions with unfilled d or f shells.
A Heisenberg exchange interaction occurs between two localized spins of the device. For definiteness,

we assume that this interaction is antiferromagnetic. According to the above, in the case where there are
no electrons in the device, the ground state of the device is associated with the spin singlet, and the triplet
term corresponding to three magnetic states is distinguished from the singlet term by the value of the
exchange energy I.

Because of the (s−d(f))-exchange interaction, the spin state of each electron entering a site from a
contact is strongly correlated with the state of one of the localized spins. As a result, the magnetic state of
the device can qualitatively change in the process of electron tunneling into the device from a contact. This
occurs because the parameter of the (s−d(f))-exchange coupling is, as a rule, significantly greater than
the integral of the Heisenberg interaction. Breaking the singlet state of two localized spins then becomes
energetically favorable because the localized spin strongly correlates with the spin of the incoming fermion.
In the language of magnetic terms of the spin dimer, we can say that there is an excitation of triplet states.
This means that the processes of electron transport through the device are accompanied by excitations of
magnetic degrees of freedom. In other words, the electron transport in this case is significantly influenced
by the process of inelastic electron scattering on internal (magnetic) degrees of freedom of the device.

We use the method of nonequilibrium Green’s functions to take the influence of inelastic electron scat-
tering processes on the characteristics of electron transport through the described device into account. The
developed technique is novel because nonequilibrium functions are introduced in the atomic representation.
We must use this representation and correspondingly pass to nonequilibrium Green’s functions constructed
on the Hubbard operators because there are internal degrees of freedom of the device. In this case, we suc-
ceed in formulating a perturbation theory such that only the tunneling processes determine the scattering
matrix on the Keldysh contour. If the usual representation of secondary quantization were used, we would
need to use very many bare vertices and a very cumbersome mathematical apparatus.

The Hamiltonian of the system, which describes the left and right contacts and the device located
between them and implements the quantum transport, can be written as

̂H = ̂H0 + ̂T + ̂V , (1)

where the operator
̂H0 = ̂HL + ̂HR + ̂HD

describes the noninteracting subsystems of the left and right metal contacts

̂HL =
∑

kσ

ξLkσc+
kσckσ, ̂HR =

∑

pσ

ξRpσd+
pσdpσ (2)

and the device, which in our case is represented by the Hamiltonian

̂HD =
2

∑

l=1

{

∑

σ

ξdσa+
lσalσ + Unl↑nl↓

}

+ td
∑

σ

(a+
1σa2σ + a+

2σa1σ) + U12n1n2 +

+
2

∑

l=1

{A(σlSl) − gμBHSz
l } + I(S1S2). (3)

The existence of the tunnel coupling between the left contact and the device and between the right
contact and the device is taken into account by the operator ̂T as

̂T =
∑

kσ

tLkc+
kσa1σ +

∑

pσ

tRpd
+
pσa2σ + H.c. = ̂TL + ̂TR + H.c. (4)
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The origin of the operator ̂V is related to the potential difference applied to the system, which induces a
current in the system. Because the potential is constant at each of the contacts and on the device, we relate
the potential reference point to the left contact to obtain

̂V =
2

∑

l=1

∑

σ

eV

2
a+

lσalσ +
∑

pσ

eV d+
pσdpσ. (5)

In the above expressions, we used the following notation: ckσ and dpσ are the electron annihilation
operators at the respective left and right contacts with their corresponding wave vectors k and p and the
spin projection σ; ξLkσ = εLk − geμBHσ − μ and ξRpσ = εRp − σgeμBH − μ are the one-electron energies
at the respective left and right contacts referenced to the level of the chemical potential μ with the energy
splitting according to the electron spin projection σ = ±1/2 in the magnetic field taken into account; ge is
the electron g-factor at the contacts; and μB is the Bohr magneton. We further assume that the contacts
are single-band paramagnetic metals. The parameters contained in the Hamiltonian of the device have
the following physical meanings: ξdσ = εd − geμBHσ − μ is the electron energy referenced to the chemical
potential and depending on spin at one of the device sites in the external magnetic field H ; εd is the bare
one-electron energy; nlσ = a+

lσalσ is the operator of the number of electrons at the device site with the index
l and the spin projection σ; a+

lσ and alσ are the electron creation and annihilation operators in the device at
the site l with the spin projection σ; the parameter U characterizes the Hubbard repulsion of two electrons
at the same site with opposite spin projections; and nl = nl↑ + nl↓ is the operator of the total number
of electrons at the device site with number l. The parameter U12 determines the intensity of Coulomb
interaction between electrons located at the first and second sites of the device. The magnetic field action
on the energy structure of the subsystem of localized spins with effective g-factors is described by the next
to the last term in Hamiltonian (3). The relation between the spin degree of freedom of the transported
electron and the localized spins of the device, which is implemented by the (s−d(f))-exchange coupling
mechanism, is characterized by the parameter A. Here, Sl is the vector operator of the device localized
spin, and σl is the vector operator of the transported electron spin. As is known, the scalar product σS
contains operator terms taking the spin flip processes into account when the projection of impurity spins
and electrons change simultaneously.

3. Tunnel current of electrons and nonequilibrium averages

We can obtain an expression for the current J flowing through the device based on the well-known
relation between its value and the charge variation per unit time at the left contact, J = e

˙̂
NL ( ̂NL =

∑

kσ c+
kσckσ). After simple transformations, we obtain

J =
−ie

�
〈[ ̂NL, ̂TL]〉, (6)

where the symbol of averaging in the right-hand side contains the commutator of the electron number
operator at the left contact with the operator of tunneling between the left contact and the device. As
usual, e denotes the absolute value of the electron charge. The averaging is performed with the density
matrix ρ(t) [6],[7] satisfying the equation

i�
∂ρ(t)
∂t

= [ ̂H, ρ(t)]. (7)

We use the expressions for ̂NL and ̂TL to obtain

J =
−ietL

�

∑

σ

[〈c+
1σa1σ〉 − 〈a+

1σc1σ〉]. (8)
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To calculate the averages in this expression, we commonly use nonequilibrium Green’s functions because
of the potential difference inducing an electron flow and thus leading to a nonequilibrium problem. The
nonequilibrium Green’s functions can be calculated in the perturbation theory framework.

To construct the perturbation theory where only the tunnel coupling between the contacts and the
device formally plays the role of perturbation and the operator ̂H0 acts as the zero Hamiltonian, we perform
two transformations.

The first transformation is related to the transition to the density matrix ρv(t) [8] such that

ρ(t) = ̂U+
v ρv(t)̂Uv, ̂Uv = eit�V /�. (9)

The equation of motion for ρv(t)

i�
∂ρv(t)

∂t
= [ ̂Hv(t), ρv(t)] (10)

contains the Hamiltonian ̂Hv(t) = ̂H0 + ̂Tv(t), where the tunneling operator

T̂v(t) =
∑

kσ

tLk(t)c+
kσa1σ +

∑

pσ

tRp(t)d+
pσa2σ + H.c. (11)

has an explicit time dependence determined by the functions

tLk(t) = tLke−iteV/2�, tRp(t) = tRpe
iteV/2�.

We must therefore use nonequilibrium Green’s functions.
The second transformation is the transition to the interaction representation

ρv(t) = ̂U+
0 ρI(t)̂U0, ̂U0 = eit �H0/�. (12)

In this representation, the expression for the current becomes

J =
−ie

�

∑

kσ

[tLk(t)〈c+
kσ(t)a1σ(t)〉I − t∗Lk(t)〈a+

1σ(t)ckσ(t)〉I], (13)

where the subscript I on the angle brackets means that the average is calculated with the density matrix
satisfying the equation

i�
∂ρI(t)

∂t
= [ ̂TI(t), ρI(t)]. (14)

Here, the tunneling operator is written in the interaction representation

̂TI(t) =
∑

kσ

tLk(t)c+
kσ(t)a1σ(t) +

∑

pσ

tRp(t)d+
pσ(t)a2σ(t) + H.c. (15)

In this representation, the time dependence of the secondary quantization operators is determined as usual.
The explicit time dependence for the contact operators

ckσ(t) = ̂U+
0 ckσ

̂U0 = ckσe−itξLkσ/�

is well known in this case. But obtaining the explicit time dependence for the device operators in the
interaction representation a1σ(t) = ̂U+

0 a1σ
̂U0 for the considered system is a more complicated problem.

This hinders the development of the perturbation theory where the fermion operators would be used. The
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strategy for overcoming this difficulty is related to introducing the atomic representation for the device
Hamiltonian (see below).

In the final stage of obtaining an expression for the current containing only averages calculated with
the density matrix ρ0 describing the device and the ensemble of the contacts that do not mutually interact,
we introduce the evolution operator S(t,−∞), which allows obtaining the relation between ρI(t) and ρ0:

ρI(t) = S(t,−∞)ρ0S
+(t,−∞), ρ0 = ρI(−∞). (16)

Because the operator S(t,−∞) satisfies the equation

i�
∂S(t,−∞)

∂t
= ̂TI(t)S(t,−∞), (17)

it can be expressed in terms of a T-ordered exponential,

S(t,−∞) = Tt exp
(

− i

�

∫ t

−∞
̂TI(t) dt

)

. (18)

The operator S(t,−∞) is a solution of the problem posed above because

〈c+
kσ(t)a1σ(t)〉I = 〈S+(t,−∞)c+

kσ(t)a1σ(t)S(t,−∞)〉0. (19)

Substituting the unit operator S−1(∞,−∞)S(∞,−∞) in the average in the right-hand side of this equation,
we obtain

〈c+
kσ(t)a1σ(t)〉I = 〈S−1(∞,−∞)S(∞, t)c+

kσ(t)a1σ(t)S(t,−∞)〉0. (20)

Using the Keldysh contour C [7], [9]–[11] allows writing the considered averages in a form convenient for
calculations,

〈c+
kσ(t)a1σ(t)〉I = 〈TCc+

kσ(t)a1σ(t)SC〉0, (21)

where TC is the operator of chronological ordering with respect to time on the Keldysh contour C and the
scattering matrix

SC = TC exp
(

− i

�

∫

C

̂TI(t) dt

)

(22)

is determined in terms of the tunneling operator, where the range of the time argument belongs to the same
contour.

4. Atomic representation for the operators of the device

A significant specific feature of the considered problem is related to the device structure described by
the Hamiltonian ̂HD. It follows from its definition that an electron entering the device interacts with both
the charge and spin degrees of freedom. The presence of a great many distinct bare scattering amplitudes
results in not only a significant complication of the perturbation series but also the problem of calculating
the explicit form of the fermion and spin operators in the interaction representation. This is related to
the nonequidistant structure of the fermion (or spin) excitation spectrum of the operator ̂HD. Using the
diagram technique directly in terms of the secondary quantization operators is therefore impossible because
the Wick theorem does not hold for the averages of the product of such operators.

To overcome this difficulty, we must construct the atomic representation and write the Hamiltonian of
the device and the tunneling operator in this representation. For this, we introduce functions |Ψn〉 satisfying
the Schrödinger equation for the device

̂HD|Ψn〉 = En|Ψn〉, n = 1, 2, . . . , ND. (23)
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The set of functions |Ψ1〉, |Ψ1〉, . . . , |ΨND〉 can be treated as a basis in the Hilbert space corresponding to
the device, where the operators act. We introduce the Hubbard operators [12], [13]

Xnm = |Ψn〉〈Ψm|, n, m = 1, 2, . . . , ND, (24)

acting in the Hilbert space of the device. In particular, the action of these operators on the basis states is
determined by Xnm|Ψp〉 = δmp|Ψn〉.

The first advantage of this representation is that the transition to it takes the Hamiltonian HD to the
diagonal form,

HD =
ND
∑

n=1

EnXnn. (25)

The second important specific feature of the atomic representation is that the explicit form of the Hubbard
operators in the interaction representation Xnm(t) = U0(t)XnmU+

0 (t) can easily be calculated. In this case,
we have the usual time dependence according to the exponential law [12]

Xnm(t) = ei(En−Em)tXnm ≡ eiαEtXnm.

Here, we use a notation that is convenient below: E is understood as an ND-dimensional vector (E1,

E2, . . . , END), and α is treated as an ND-dimensional vector whose ith component is the difference of two
Kronecker symbols αi(n, m) = δin − δim. We then have the scalar product αE = En −Em if α = αi(n, m),
i.e., if α corresponds to the transition between the states Ψm and Ψn.

The simplicity of the time dependence of the Hubbard operators in the interaction representation
obviously allows constructing a perturbation theory using the diagram technique for the Hubbard operators
because the Wick theorem holds for them.

Introducing the matrix elements of the electron annihilation operators with the spin projection σ at
the first and second sites

γ1σ(nm) = 〈Ψn|a1σ|Ψm〉, γ2σ(nm) = 〈Ψn|a2σ|Ψm〉, (26)

we can express the fermion operators in terms of the Hubbard operators in a compact form:

a1σ =
∑

α

γ1σ(α)Xα, a2σ =
∑

α

γ2σ(α)Xα, α ≡ α(nm). (27)

For brevity, we here write the summation over the index α bearing in mind summation over the pair of
indices n and m of the atomic states of the device.

When the atomic representation is used, the tunneling operator contained in the scattering matrix
takes a form convenient for constructing a perturbation theory explicitly containing the operators of the
transition between atomic states,

̂TI(t) =
∑

kσ,α

tLk(t)γ1σ(α)c+
kσ(t)Xα(t) +

∑

pσ,α

tRp(t)γ2σ(α)d+
pσ(t)Xα(t) + H.c. (28)

For the device under study, the total number of states |Ψm〉, m = 1, 2, . . . , ND, is 64. In the strong
correlation regime, the Hubbard repulsion parameter U and the intersite Coulomb interaction U12 are
significantly greater than the values of the other energy parameters of the system. This allows restricting
our consideration only to the states of the device containing at most one transported electron. There are
20 such states.
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To describe such states, we introduce the creation operators f+
1σ and f+

2σ and the annihilation operators
f1σ and f2σ of localized fermions with the spin projection σ at the first and second sites of the device. The
sector of the Hilbert space of the Hamiltonian of the device not containing transported electrons then
corresponds to the states of the dimer system. The singlet state of the device can be written as

|1〉 =
1√
2
(f+

1↑f
+
2↓ − f+

1↓f
+
2↑)|0〉, E1 = −3I

4
, (29)

where |0〉 is the vacuum state. The three triplet states of this sector are

|2〉 =
1√
2
(f+

1↑f
+
2↓ + f+

1↓f
+
2↑)|0〉, |3〉 = f+

1↑f
+
2↑|0〉, |4〉 = f+

1↓f
+
2↓|0〉 (30)

and have the energy E2 = I/4. In the set of 16 states of the one-electron sector, eight states correspond to
even and odd states with the total spin St = 3/2. We write four even states in a form that allows calculating
the representation parameters simply,

|5〉 =
a+
1↑ + a+

2↑√
2

|3〉, |6〉 =
Ŝ−

t√
3
|5〉, |7〉 =

Ŝ+
t√
3
|8〉, |8〉 =

a+
1↓ + a+

2↓√
2

|4〉, (31)

where

Ŝ−
t =

2
∑

j=1

(f+
j↓fj↑ + a+

j↓aj↑), Ŝ+
t =

2
∑

j=1

(f+
j↑fj↓ + a+

j↑aj↓).

The four odd states with St = 3/2 are

|9〉 =
a+
1↑ − a+

2↑√
2

|3〉, |10〉 =
Ŝ−

t√
3
|9〉, |11〉 =

Ŝ+
t√
3
|12〉, |12〉 =

a+
1↓ − a+

2↓√
2

|4〉. (32)

According to the summation rule for angular momenta in quantum mechanics, there are doublet terms
in the set of one-electron states of the device. We write two even (g) and two odd (u) states with the spin
projection of the total spin Sz

t = 1/2, which correspond to the even and odd doublet terms, in the form
∣

∣

∣

∣

1
2
,
1
2

〉g

±
=

∑

σ

C±
gσ(f+

1σf+
2σ̄a+

1↑ + f+
1σ̄f+

2σa+
2↑)|0〉 + C±

gg(a+
1↓ + a+

2↓)f
+
1↑f

+
2↑|0〉,

∣

∣

∣

∣

1
2
,
1
2

〉u

±
=

∑

σ

C±
uσ(f+

1σf+
2σ̄a+

1↑ − f+
1σ̄f+

2σa+
2↑)|0〉 + C±

uu(a+
1↓ − a+

2↓)f
+
1↑f

+
2↑|0〉.

(33)

The remaining eight states are then labeled as

|13〉 =
∣

∣

∣

∣

1
2
,
1
2

〉g

+

, |14〉 = Ŝ−
t |13〉, |15〉 =

∣

∣

∣

∣

1
2
,
1
2

〉g

−
, |16〉 = Ŝ−

t |15〉,

|17〉 =
∣

∣

∣

∣

1
2
,
1
2

〉u

+

, |18〉 = Ŝ−
t |17〉, |19〉 =

∣

∣

∣

∣

1
2
,
1
2

〉u

−
, |20〉 = Ŝ−

t |19〉.

To write expressions (33), we use the notation

C±
g↑ = ± 1√

2

b±g

Z±
g

, C±
g↓ =

1√
2

a±
g

Z±
g

, C±
gg = ± 1√

2

c±g

Z±
g

,

C±
u↑ = ± 1√

2
b±u
Z±

u
, C±

u↓ =
1√
2

a±
u

Z±
u

, C±
uu = ± 1√

2
c±u
Z±

u
,

Z±
g =

√

(a±
g )2 + (b±g )2 + (c±g )2, Z±

u =
√

(a±
u )2 + (b±u )2 + (c±u )2,
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where
a±

g = (νg ∓ A)(νg ∓ I ∓ 2td), b±g = (I + 2td)(νg ∓ I ∓ 2td), c±g = A(νg ∓ A),

a±
u = (νu ∓ A)(νu ∓ I ± 2td), b±u = (I − 2td)(νu ∓ I ± 2td), c±u = A(νu ∓ A),

νg =
√

(A − I − 2td)2 + A(I + 2td), νu =
√

(A − I + 2td)2 + A(I − 2td).

In the framework of the labeling of one-electron states introduced above, their energies then become

E5(9) = ξd +
A + I

4
± td, E13(15) = ξd − A + I

4
± νg

2
,

E17(19) = ξd − A + I

4
± νu

2
.

(34)

Taking the explicit form of the basis functions of the device into account, we can easily show that the
parameters of the representation of the operator a1↑ in terms of the Hubbard operators are

γ1↑(3, 5) = γ1↑(3, 9) =
1√
2
, γ1↑(2, 6) = γ1↑(2, 10) =

1√
3
,

γ1↑(4, 7) = γ1↑(4, 11) =
1√
6
, γ1↑(1, 13(15)) =

C
+(−)
g↑ − C

+(−)
g↓√

2
,

γ1↑(1, 17(19)) =
C

+(−)
u↑ − C

+(−)
u↓√

2
, γ1↑(2, 13(15)) = −C

+(−)
gg√

2
,

γ1↑(2, 17(19)) =
C

+(−)
uu√

2
, γ1↑(4, 14(16)) =

√
2γ1↑(2, 13(15)),

γ1↑(4, 18(20)) =
√

2γ1↑(2, 17(19)).

(35)

For the considered device, we have |γ2↑(α)| = |γ1↑(α)| and γ2↑(α) = −γ1↑(α) for half the transitions. Below,
we use these properties of the representation parameters to determine the current and to derive the kinetic
equations. The parameters γ1,2↓(α) are calculated similarly.

5. Nonequilibrium Green’s functions, spectral functions of the
device, and spectral functions of the tunnel coupling

If the Hubbard operators are used, then the expression for the current in the atomic representation
becomes

J =
(

−ie

�

)

∑

kσ,α

γ1σ(α)
[

tLk(t)〈c+
1σ(t)Xα(t)〉I − t∗Lk(t)〈X−α(t)c1σ(t)〉I

]

, (36)

which permits using the perturbation theory in diagram form. For this, we introduce nonequilibrium Green’s
functions constructed on the fermion and Hubbard operators and the functions containing the product of
the fermion and Hubbard operators,

Gab
Lkσ(τ, τ ′) = −i〈TCckσ(τa)c+

kσ(τ ′
b)〉0,

Dab
α,β(τ, τ ′) = −i〈TCXα(τa)X−β(τ ′

b)SC〉0,

Rab
kσ,α(τ, τ ′) = −i〈TCckσ(τa)X−α(τ ′

b)SC〉0,

Rab
α,kσ(τ, τ ′) = −i〈TCXα(τa)c+

kσ(τ ′
b)SC〉0,

(37)
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where each of the superscripts a and b can take one of the two values + or −. The first index a is associated
with the time τa for the first operator contained in the average which is ordered in the sense of Keldysh.
This means that for a = + or −, the operator ckσ(τa) or Xα(τa) in the interaction representation is taken
at the time τ on the respective lower or upper branch of the Keldysh contour. Similarly, for b = + or −, the
operator X−α(τ ′

b) or c+
kσ(τ ′

b) is taken at the time τ ′ on the respective lower or upper branch of the Keldysh
contour.

The Green’s functions given by (37) allow writing the expression for the current in a form convenient
for applying perturbation theory

J =
(

e

�

)

∑

kσ,α

tLkγ1σ(α)
{

eieV t/2R++
Lkσ,α(t, t + δ) − e−ieV t/2R++

α,Lkσ(t, t + δ)
}

, δ → +0. (38)

An analysis of the diagram series arising in the expansion of the scattering matrix SC in (37) shows
that the Green’s functions R++

Lkσ,α(t, t′) and R++
α,Lkσ(t, t′) can be written as integral convolutions of the

nonequilibrium Green’s functions for the left contact with the nonequilibrium Green’s functions for the
device written in the atomic representation:

R++
Lkσ,α(t, t′) =

∑

β

tLkγ1σ(β) ×

×
∫ +∞

−∞
dτ{G++

Lkσ(t − τ)D++
αβ (τ − t′) − G+−

Lkσ(t − τ)D−+
αβ (τ − t′)}e−ieV τ/2�,

R++
α,Lkσ(t, t′) =

∑

β

tLkγ1σ(β) ×

×
∫ +∞

−∞
dτ{D++

αβ (t − τ)G++
Lkσ(τ − t′) − D+−

αβ (t − τ)G−+
Lkσ(τ − t′)

}

e+ieV τ/2�.

(39)

Applying the Fourier transform for the nonequilibrium functions

Gab
Lkσ(τ − τ ′) =

∫

dω

2π
e−iω(τ−τ ′)Gab

Lkσ(ω),

Dab
αβ(τ − τ ′) =

∫

dω

2π
e−iω(τ−τ ′)Dab

αβ(ω),

(40)

we see that the current can be expressed in terms of the spectral functions of the system as

J =
(

e

h

)

∑

σ

∫ +∞

−∞
dω[M−+

1σ (ω)W+−
1σ (ω) − M+−

1σ (ω)W−+
1σ (ω)], (41)

for which we use the following definitions.
The left- and right-sided spectral functions W ab

1σ (ω) and W ab
2σ(ω) of the device are expressed in terms

of atomic functions as

W ab
1σ(ω) =

∑

αβ

γ1σ(α)γ1σ(β)Dab
αβ(ω), W ab

2σ (ω) =
∑

αβ

γ2σ(α)γ2σ(β)Dab
αβ(ω). (42)

The names of the introduced functions are related to the representation parameters for the electron anni-
hilation operator at a site participating in the tunnel coupling with the respective left or the right contact.
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Moreover, we also introduce the left- and right-sided spectral functions of the tunnel coupling between the
contacts and the device

Mab
1σ(ω) =

∑

k

t2LkGab
Lkσ

(

ω +
eV

2�

)

, Mab
2σ(ω) =

∑

p

t2RpG
ab
Rpσ

(

ω − eV

2�

)

, (43)

where Gab
Lkσ and Gab

Rpσ are the nonequilibrium Green’s functions of the left and right contacts. Then,

G++
Lkσ(ω) =

nLkσ

ω − ξLkσ − iδ
+

1 − nLkσ

ω − ξLkσ + iδ
,

G−−
Lkσ(ω) = − nLkσ

ω − ξLkσ + iδ
− 1 − nLkσ

ω − ξLkσ − iδ
,

G+−
Lkσ(ω) = 2πinLkσδ(ω − ξLkσ), G−+

Lkσ(ω) = 2πi(nLkσ − 1)δ(ω − ξLkσ),

where
nLkσ = {1 + e(εLkσ−μ)/T }−1.

The functions Gab
Rpσ are defined similarly with the only difference that instead of the index L of the left

contact, we must use the index R of the right contact.
Formula (41) reduces the problem of calculating the tunnel current to the problem of calculating the

spectral functions W+−
1σ (ω) and W−+

1σ (ω) of the device. We note that the sums over α and β contained
in these functions correspond to taking the contributions to the current from the processes related to the
transitions between the states Ψ1, Ψ2, . . . , ΨND of the device into account.

6. Effective interactions of the device in the atomic representation

Calculating the spectral functions W ab
1σ and W ab

2σ of the device is related to solving a system of equations
for the nonequilibrium Green’s functions Dab

αβ . Obtaining such a system is significantly simplified if we take
into account that the terms of the perturbation series for Dab

αβ(τ − τ ′) are nonzero only if the number of
the tunneling operator entries in the average is even. In this case, because H0 is additive with respect to
the subsystems of the contacts and the device, the averages of the fermion operators and of the Hubbard
operators can be calculated independently. This allows explicitly calculating the averages of the fermion
operators in each order of the perturbation theory. We then have a renormalized series that allows obtaining
a more precise representation for the nonequilibrium Green’s functions Dab

αβ in the form

Dab
αβ(τ − τ ′) = −i〈TCXα(τa)X−β(τ ′

b)˜SC〉0. (44)

Here, the renormalized scattering matrix

˜SC = TC exp
{

− i

∫

C

dτ1

∫

C

dτ2

∑

αβ

˜Vαβ(τ1 − τ2)X−α(τ1)Xβ(τ2)
}

(45)

is determined in terms of the effective interaction, which depends on the difference between the time
arguments on the Keldysh contour. Matrix elements of the effective interaction are expressed in terms of
characteristics of the contacts and strengths of the tunnel couplings of the device with the left and right
contacts:

˜Vαβ(τ1 − τ2) =
∑

kσ

γ1σ(α)γ1σ(β)t2LkeieV (τ1−τ2)/2GLkσ(τ1 − τ2) +

+
∑

pσ

γ2σ(α)γ2σ(β)t2Rpe−ieV (τ1−τ2)/2GRpσ(τ1 − τ2). (46)
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The obtained representation for Dab
αβ(τ −τ ′) together with the explicit expressions for ˜SC and ˜Vαβ(τ1−

τ2) allows determining the nonequilibrium functions of the device using only the diagram technique for the
Hubbard operators, where the time dependence of the operators is determined on the Keldysh contour.

7. System of equations for the nonequilibrium Green’s functions
of the device

To take the transition of electrons from the contact to the device and conversely into account in all
perturbation orders, we use the loopless approximation well known in the theory of strongly correlated
systems. Its specific character in the theory of nonequilibrium functions Dab

αβ(ω) is determined by the
following two factors. The first factor is the time dependence of the effective interaction, which is manifested
in the frequency dependence of the interaction matrix elements. The second factor is that the time evolution
of the operators occurs on the Keldysh contour C. This complicates the structure of the equations written
in the frequency representation.

We use the Keldysh contour to write the first system of equations for the nonequilibrium Green’s
functions D+−

αβ (ω) and D−−
αβ (ω) in the atomic representation:

D+−
αβ (ω) =

∑

ν

Dα(ω)[˜V ++
αν (ω)D+−

νβ (ω) − ˜V +−
αν (ω)D−−

νβ (ω)],

D−−
αβ (ω) = −δαβDα(ω) −

∑

ν

Dα(ω)[˜V −−
αν (ω)D−−

νβ (ω) − ˜V −+
αν (ω)D+−

νβ (ω)].
(47)

The second system of equations for D−+
αβ (ω) and D++

αβ (ω) is obtained similarly and can be written as

D−+
αβ (ω) =

∑

ν

Dα(ω)[˜V −+
αν (ω)D++

νβ (ω) − ˜V −−
αν (ω)D−+

νβ (ω)],

D++
αβ (ω) = δαβDα(ω) +

∑

ν

Dα(ω)[˜V ++
αν (ω)D++

νβ (ω) − ˜V +−
αν (ω)D−+

νβ (ω)].
(48)

To obtain these equations, we use the nonequilibrium bare device functions

D++
0α (ω) =

Nn

ω + αE + iδ
+

Nm

ω + αE − iδ
, D+−

0α (ω) = 2πiNmδ(ω + αE),

D−−
0α (ω) = − Nn

ω + αE − iδ
− Nm

ω + αE + iδ
, D−+

0α (ω) = −2πiNnδ(ω + αE).

(49)

Moreover, we introduce the propagator Dα(ω) = b(α)/[ω+αE], where the terminal factor is b(α) = Nn+Nm

for α = α(n, m). This factor is determined by the sum of the occupation numbers Nn = 〈Xnn〉 and
Nm = 〈Xmm〉 of the device states |Ψn〉 and |Ψm〉 between which the transition is initiated. The Fourier
transform of the interaction matrix element ˜V ab

αβ(ω) is

˜V ab
αβ(t − t′) =

∫

dω

2π
e−iω(t−t′)

˜V ab
αβ(ω), (50)

as previously for the Green’s functions.

8. Calculation of the spectral functions of the device

The solution of system of equations (47) and (48) is significantly simplified if we take into account that
the interaction matrix elements ˜V ab

αβ(ω) can be written as a sum of four terms each of which splits into the
indices α and β:

˜V ab
αβ(ω) =

2
∑

j=1

∑

σ

γjσ(α)γjσ(β)Mab
jσ (ω). (51)
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The interaction strength of each of the four terms in this case is determined by the representation parameters
and by the values of left- and right-sided spectral characteristics (43) of the tunnel couplings of the device.

The splitting factor allows introducing the linear combinations

Φab
jσβ(ω) =

∑

ν

γjσ(ν)Dab
νβ(ω) (52)

and obtaining closed systems of equations for them. For the four combinations Φ+−
1σβ(ω), Φ−−

1σβ(ω), Φ+−
2σβ(ω),

and Φ−−
2σβ(ω) introduced above, system (47) then allows easily obtaining a system of four equations, which

we write in the matrix form for brevity,

Λ̂σ(ω) · Π(1)
σβ (ω) = −Υ(1)

σβ (ω). (53)

Here, the four-dimensional vector Π(1)
σβ (ω) comprises the four combinations introduced above,

˜Π(1)
σβ (ω) =

[

Φ−−
1σβ(ω), Φ−−

2σβ(ω), Φ+−
1σβ(ω), Φ+−

2σβ(ω)
]

, (54)

and the dynamical matrix Λ̂σ(ω) is
⎡

⎢

⎢

⎢

⎢

⎣

1 + Lσ
11(ω)M−−

1σ (ω) Lσ
12(ω)M−−

2σ (ω) −Lσ
11(ω)M−+

1σ (ω) −Lσ
12(ω)M−+

2σ (ω)

Lσ
12(ω)M−−

1σ (ω) 1 + Lσ
11(ω)M−−

2σ (ω) −Lσ
12(ω)M−+

1σ (ω) −Lσ
11(ω)M−+

2σ (ω)

Lσ
11(ω)M+−

1σ (ω) Lσ
12(ω)M+−

2σ (ω) 1 − Lσ
11(ω)M++

1σ (ω) −Lσ
12(ω)M++

2σ (ω)

Lσ
12(ω)M+−

1σ (ω) Lσ
11(ω)M+−

2σ (ω) −Lσ
12(ω)M++

1σ (ω) 1 − Lσ
11(ω)M++

2σ (ω)

⎤

⎥

⎥

⎥

⎥

⎦

,

where we introduce the functions

Lσ
ij(ω) =

∑

α

γiσ(α)γjσ(α)Dα(ω).

The right-hand side of matrix equation (53) contains the vector Υ(1)
σβ (ω) such that

Υ̃(1)
σβ (ω) =

[

γ1σ(β), γ2σ(β), 0, 0
]

· Dβ(ω). (55)

It follows from the above equations that

Φ+−
1σβ(ω) =

γ2σ(β)Δ23
σ (ω) − γ1σ(β)Δ13

σ (ω)
Δσ(ω)

Dβ(ω), (56)

where Δσ(ω) = det(Λσ(ω)) and Δnm
σ (ω) is the third-order determinant obtained from Δσ(ω) by deleting

the nth row and mth column. We use the definition of the left-sided spectral function of the device to
obtain the solution of it:

W+−
1σβ(ω) =

∑

β

γ1σ(β)Φ+−
1σβ(ω) =

Lσ
12(ω)Δ23

σ (ω) − Lσ
11(ω)(β)Δ13

σ (ω)
Δσ(ω)

. (57)

The second system in (48) can be solved similarly. If we introduce the vectors

˜Π(2)
σβ (ω) =

[

Φ−+
1σβ(ω), Φ−+

2σβ(ω), Φ++
1σβ(ω), Φ++

2σβ(ω)
]

,

Υ̃(2)
σβ (ω) =

[

0, 0, γ1σ(β), γ2σ(β)
]

· Dβ(ω),
(58)

then we obtain the equation
Λ̂σ(ω) · Π(2)

σβ (ω) = Υ(2)
σβ (ω). (59)

This implies that the sought spectral intensity is equal to

W−+
1σβ(ω) =

Lσ
11(ω)Δ31

σ (ω) − Lσ
12(ω)(β)Δ41

σ (ω)
Δσ(ω)

. (60)
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9. Current and kinetic equations for the occupation numbers

We use the solution obtained above and perform simple calculations to obtain the expression for the
current

J = 4
e

h

∑

σ

∫ +∞

−∞
dω

[Lσ
12(ω − eV/2)]2

Δσ(ω − eV/2)
Γ1(ω)Γ2(ω)[n2(ω − eV ) − n1(ω)], (61)

where
Γ1(ω) = π

∑

k

t2Lkδ(ω − ξLkσ), Γ2(ω) = π
∑

p

t2Rpδ(ω − eV − ξRpσ).

We further consider only the case of wide-band metal contacts tL, tR 	 W , where W is the contact
bandwidth, which is frequently encountered in practice. For the dynamical matrix Λ̂σ(ω), we then obtain
the expression

Δσ(ω) =
[

1 − Γ1(ω)Γ2(ω)
(

[Lσ
11(ω)]2 − [Lσ

12(ω)]2
)]2 + Γ2(ω)[Lσ

11(ω)]2, (62)

where Γ(ω) = Γ1(ω) + Γ2(ω).
We note that expression (61) satisfies obvious requirements. First, this is related to the current

vanishing as soon as tR = 0 or tL = 0. A finer effect is that the current must be zero for the accepted
geometry of the device if there is no coupling between the sites of the device, i.e., for td = 0. The parameter
td does not appear explicitly in the expression for the current, but the dependence on it is manifested
through the functions Lσ

11 and Lσ
12. In the limit case td = 0, we obtain Lσ

11 
= 0 and Lσ
12 = 0. The current

therefore vanishes in this limit as it must. Moreover, if we pass to the situation with a single site at the
center where the electron can be located, then Lσ

11 = Lσ
12 ≡ Lσ. As a result, expressions (61) and (62) take

the form previously obtained in [14].
The functions in the expression for the current contain terminal factors, which are determined in terms

of the occupation numbers Nm, m = 1, 2, . . . , ND, of the states of the device. To obtain the kinetic equations
that must be satisfied by the occupation numbers, we use the nonequilibrium functions D+−

αα (t − t′) with
different α. It follows from (37) that

D+−
αα (t − t′) = i〈X−α(t′)Xα(t)〉 =

∫

dω

2π
e−iω(t−t′)D+−

αα (ω). (63)

For t = t′, we then obtain

Nm ≡ 〈Xmm〉 =
∫

dω

2πi
D+−

αα (ω), α = α(n, m). (64)

As follows from (47), the function D+−
αβ (ω) can be expressed in terms of the combinations Φ+−

jσβ(ω) and
Φ−−

jσβ(ω) introduced above. The solution for Φ+−
1σβ(ω) is given by formula (57). Using a similar technique,

we can easily obtain the missing functions.
After simple but cumbersome calculations, we obtain the sought system of kinetic equations for the

occupation numbers:

Nm =
∑

σ

∫

dω

π
γ2
1σ(α)

D2
α

Δσ
Kα(ω), α = α(n, m), (65)

where
Kα = Γ1n1 + Γ2n2 + Γ1Γ2(Γ1n2 + Γ2n1)[Lσ

11 − Θσ
12(α)Lσ

12]
2. (66)

The dependence on ω is here omitted for brevity, and Θσ
12(α) = sgn[γ1σ(α)γ2σ(α)].
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10. Conclusion

The development of the theory of quantum transport of electrons described above was motivated by
the problem of a large number of bare scattering amplitudes in atomic-scale systems with internal degrees
of freedom when they are described in the framework of usual secondary quantization operators.

We solved the problem by passing to the atomic representation for the Hamiltonian of the device and
introducing the Hubbard operators. This allowed taking all interactions in the device into account exactly
and representing its Hamiltonian in the diagonal form. In such an approach, the role of a perturbation is
played only by the tunneling operator. It is significant that writing this operator in the atomic representation
allows using the diagram technique for the Hubbard operators.

Another very important point is that the expression for the current can be written in terms of the
universal spectral characteristics of the device, which are determined in terms of the nonequilibrium Green’s
functions in the atomic representation. For these functions, we obtain a system of equations with the
scattering processes taken into account in all orders of the perturbation theory. Writing the matrix elements
of the interaction in the split form allows solving this system by simple methods.

We considered the case where the left and right contacts are in tunnel coupling with different sites of
the device, which is often encountered in practice. Such a geometry is required for analyzing the transport
characteristics of a device with edge states. We showed that we can pass to the limit for the current when
the coupling between ions in tunnel interaction with the contacts is broken inside the device.

For the problem geometry discussed above, the developed approach allowed deriving a closed system
of kinetic equations for the occupation numbers. Because the Green’s functions obtained with regard to
the process of multiple electron scattering were used in this case, the obtained system of equations can be
used in the case of strong renormalization of the occupation numbers due to the interaction between the
transported electrons with internal spin degrees of freedom.
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7. D. N. Zubarev, V. G. Morozov, and G. Röpke, Vol. 2, Relaxation and Hydrodynamic Processes, Vol. 1, Basic

Concepts, Kinetic Theory, Akademie, Berlin (1997).

8. D. Rogovin and D. J. Scalapino, “Fluctuation phenomena in tunnel junctions,” Ann. Phys. (N. Y.), 86, 1–90

(1974).

9. L. V. Keldysh, “Diagram technique for nonequilibrium processes,” JETP, 20, 1018–1026 (1965).

10. R. O. Zaitsev, Introduction to Modern Kinetic Theory: A Set of Lectures [in Russian], KomKniga, Moscow

(2006); English transl., Krasand, Moscow (2014).

11. P. I. Arseev, “On the nonequilibrium diagram technique: Derivation, some features, and applications,” Phys.

Usp., 58, 1159–1205 (2015).

250



12. R. O. Zaitsev, “Generalized diagram technique and spin waves in an anisotropic ferromagnet,” JETP, 41, 100–

103 (1975); “Diagram technique and gas approximation in the Hubbard model,” JETP, 43, 574–579 (1976).

13. N. M. Plakida, L. Anton, S. Adam, and Gh. Adam, “Exchange and spin-fluctuation mechanisms of supercon-

ductivity in cuprates,” JETP, 97, 331–342 (2003).

14. V. V. Val’kov, S. V. Aksenov, and E. A. Ulanov, “Effects of multiple reflection in the process of inelastic electron

transport through an anisotropic magnetic atom,” JETP Lett., 98, 403–409 (2013).

251


	Nonequilibrium Green's functions in the atomic representation and the problem of quantum transport of electrons through systems with internal degrees of freedom
	Abstract
	1. Introduction
	2. Hamiltonian systems
	3. Tunnel current of electrons and nonequilibrium averages
	4. Atomic representation for the operators of the device
	5. Nonequilibrium Green's functions, spectral functions of the device, and spectral functions of the tunnel coupling
	6. Effective interactions of the device in the atomic representation
	7. System of equations for the nonequilibrium Green's functions of the device
	8. Calculation of the spectral functions of the device
	9. Current and kinetic equations for the occupation numbers
	10. Conclusion
	References


