= РАЗЛИЧНЫЕ ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ =

УДК 54.057:546.9:546.05

ДЕКОРИРОВАНИЕ ПОРОШКОВ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ ДИСПЕРСНЫМИ ЧАСТИЦАМИ ПЛАТИНОВЫХ МЕТАЛЛОВ

© В. Г. Исакова¹, И. В. Осипова¹, А. И. Дудник¹, А. В. Черепахин^{1, 2}, Н. В. Жарикова², И. В. Немцев³, М. Н. Волочаев³

 ¹ Институт физики им. Л. В. Киренского СО РАН обособленное подразделение ФИЦ КНЦ СО РАН, Красноярск
 ² Сибирский федеральный университет, Красноярск
 ³ Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук», Красноярск E-mail: churilov@iph.krasn.ru

Поступила в Редакцию 29 мая 2018 г.

Декорирование углеродных наноматериалов (фуллерит, детонационные наноалмазы, таунит, фуллеренол, фуллеренсодержащая сажа) наночастицами металлов платиновой группы осуществлялось одностадийным in situ методом с использованием процесса низкотемпературного горения (~ $250-270^{\circ}$ C) порошковой смеси ацетилацетоната платинового металла [Pt-M(acac)_n, M — Pt(II), Pd(II), Rh(III), Ir(III), acac = CH₃COCHCOCH₃, n — степень окисления M] с углеродными наноматериалами в среде воздуха. Методами термического анализа показано, что в основе процесса лежит катализируемая углеродными наноматериалами термоокислительная деструкция металлоорганического комплекса с окислением (горением) органической части и выделением металла в конденсированную фазу. В открытой системе термический процесс протекает в режиме тления ($210-250^{\circ}$ C), размер образующихся наночастиц 7–30 нм. В условиях, ограничивающих доступ воздуха к реакционной смеси и свободный отток газофазных продуктов, образующихся при окислении асас-лигандов, размер наночастиц уменьшается до 3–10 нм. Размер частиц зависит от загрузки металла в исходной смеси порошков и морфологии носителя.

Ключевые слова: углеродные наноматериалы, наночастицы платиновых металлов, одностадийный situ метод.

DOI: 10.1134/S0044461818070162

Углеродные наноструктурированные материалы (УНМ) с поверхностно нанесенными наночастицами платиновых металлов в последние годы становятся предметом изучения из-за возможности их применения в катализе [1, 2], в энергетических устройствах [3, 4], электрохимическом зондировании [5, 6], синтезе материалов для топливных элементов [7–9]. В то же время

остается проблема получения однородных, хорошо диспергированных на углеродном носителе частиц платинового металла малого размера из-за их агломерации в процессе синтеза. Но поскольку рост и агломерация частиц являются процессами, зависимыми от времени их диффузии и миграции по поверхности носителя, синтез в течение короткого времени в одностадийных in situ методах позволяет получать наночастицы достаточно малого размера 2–7 нм [10].

В синтезе наночастиц платины, нанесенных на различные типы углеродного носителя, в последние годы успешно использованы одностадийные методы in situ газофазного термораспада металлоорганического комплекса Pt(acac)₂. В работе [11] наночастицы Pt (2-7 нм), нанесенные на углеродный материал (VulcanXC-72R), получены путем сжигания Pt(acac)₂ в пламени горючего растворителя (ксилол/ацетон). В работе [12] для осаждения наночастиц Pt (~7 нм) на углеродную сажу порошок Pt(acac)₂ разлагали в пост-разряде атмосферного радиочастотного плазменного горения. В [13] методом прямого газофазного терморасрада Pt(acac)₂ осуществлялось декорирование углеродных нанотрубок. Смесь Pt(acac)₂ с нанотрубками нагревалась в кварцевом трубчатом реакторе сначала при 180, а затем при 400°С. Декорирование многостенных углеродных нанотрубок наночастицами палладия авторами [14] осуществлялось термическим разложением ацетилацетоната палладия $[Pd(acac)_2]$ в кипящем растворе ксилола. Ранее [15-17] сообщалось, что прямое нагревание на воздухе порошковых смесей ацетилацетонатов платиновых металлов с УНМ (детонационными наноалмазами, фуллеритом, фуллеренсодержащей сажей) приводит к возгоранию при 170-180°С и низкотемпературному горению в виде тления с выделением металлических или оксидных частиц в конденсированную фазу. Однако детальных исследований механизма термического взаимодействия Pt-M(acac)_n/УНМ и морфологии продуктов не проводилось. В [18] процесс горения порошковых смесей Pt(acac)₂ и Pd(acac)₂ с детонационными наноалмазами (ДНА) был использован нами как одностадийный in situ метод нанесения наноразмерных частиц Pt и Pd (7-10 нм) на порошок ДНА.

В работе представлены данные по исследованию процесса одностадийного in situ синтеза металлических наночастиц платиновых металлов (Pt, Pd, Ir, Rh), осажденных на детонационные наноалмазы, фуллерит, фуллеренол, таунит, фуллеренсодержащую сажу с использованием низкотемпературного горения в воздушной среде ацетилацетонатов платиновых металлов в их порошковых смесях с углеродным наноматериалом. Определены условия уменьшения размера образующихся металлических частиц в зависимости от изменяющихся условий их осаждения на УНМ.

Экспериментальная часть

Смесь порошков углеродного наноматериала и ацетилацетоната платинового металла [Pt-M(acac)_n/УНМ] массой 0.2–0.3 г с содержанием металла 5 и 10 мас% относительно УНМ перетирали в ступке и нагревали в тигле двумя способами. В первом способе нагревание осуществлялось на открытом воздухе при температуре нагревателя 250°С до возгорания порошков (~180°С), наблюдаемого в виде тления. Во втором нагревание порошковых смесей проводилось в закрытом крышкой с зазором тигле при температуре ~220 и 250°С в течение ~20–30 мин. Смеси Rh(acac)₃ и Ir(acac)₃ с УНМ нагревали при 250°С и вводили в предварительно нагретый до 250°С тигель.

Наноалмазы детонационного синтеза (ТУ 84-1124-87, ФНПЦ «Алтай», г. Бийск) подвергали доочистке и разукрупнению агрегатированных частиц, используя отжиг с ацетилацетонатом натрия и последующее кипячение в растворе HCl [18]. Фуллерит экстрагировали толуолом из фуллернсодержащей сажи, полученной методом электродугового синтеза в углеродно-гелиевой плазме высокочастотной дуги. Фуллеренолы были получены по методике, описанной ранее [19]. Таунит (ТУ 2166-001-02069289-2007, Тамбовский завод «Комсомолец» им. Н. С. Артемова) модифицировали для получения -СООН-групп на поверхности обработкой концентрированной азотной кислотой при 70°С в течение 10 ч [20]. Ацетилацетонаты платиновых металлов были синтезированы в соответствии с методиками, описанными в работе [21].

Структура полученных твердофазных материалов была исследована методом рентгенофазового анализа (РФА) на порошковом дифрактометре ДРОН-4 с Си_{Ка}-излучением. Исследования образцов методом синхронного термоанализа (СТА), термогравиметрического анализа (ТГ) с дифференциально-сканирующей калориметрией (ДСК) были выполнены на приборе STA Yupiter фирмы Netzsch (STA 449 C). Нагревание осуществлялось в тиглях, закрывающихся крышками с зазором, со скоростью 10 град мин⁻¹ (до 750°С) в потоке 35 мл·мин⁻¹ смеси газов кислород/аргон = 1/5. Навески образцов Pt(acac)₂/ фуллерит, Pd(acac)₂/фуллерит, Rh(acac)₃/фуллерит для исследований были выбраны по 5 мг, образца Ir(acac)₃/фуллерит — 2 мг с 7 мас%-ным содержанием металла. Изображения поверхности образцов были получены при помощи сканирующей электронной микроскопии (СЭМ) на микроскопе Hitachi S-5500 и просвечивающей электронной микроскопи (ПЭМ) на микроскопе HT-7700.

Обсуждение результатов

Нагревание порошковых смесей Pt(acac)₂/ УНМ, Pd(acac)₂/УНМ, Rh(acac)₃/УНМ в открытых системах в среде воздуха приводит к возгоранию в виде тления. Смеси Ir(acac)₃/УНМ воспламеняются. Инициирование возгорания смесей происходит при температурах, соответствующих переходу в пар свободных комплексов, но ниже температур их термолиза в среде воздуха [Pt(acac)₂ — 237°С, Pd(acac)₂ — 208°С, Rh(acac)₃ — 247°С, Ir(acac)₃ — 252°С] [22]. Экзотермический характер поведения порошковой смеси Pt-M(acac)_n/УНМ является следствием физико-химических превращений паровой фазы ацетилацетонатов металлов на твердой поверхности частиц УНМ. Очаги с красным свечением в процессе тления порошков имеют локальный характер, т. е. наблюдаются области перегрева малого размера (горячие точки), в которых происходит экзотермическая реакция, поэтому температура смеси повышается незначительно (~250–270°C).

По окончании реакции горения порошковых смесей Pt-M(acac)_n/УНМ убыль массы, измеренная взвешиванием, за исключением образцов с Ir(acac)₃/УНМ, соответствовала массе асас-лигандов в исходных смесях с незначительным увеличением для образцов с Pd(acac)₂/УНМ. Это показывает, что комплексы Pt-M(acac)_n/УНМ разлагаются до металлических частиц и не про-исходит потери, т. е. окисления наноуглерода.

Для определения природы возгорания и образующихся в результате продуктов было исследовано термическое поведение порошковых смесей Pt-M(acac)_n с фуллеритом в качестве модельной системы. Для образцов Pt(acac)₂/фуллерит и Pd(acac)₂/фуллерит на ДСК кривых на-

блюдаются экзотермические эффекты с началом при 210°С и температурами максимума экзотерм 242 и 237°С соответственно, с незначительным выделением энергии ~0.9 и ~0.6 кДж г⁻¹ соответственно (рис. 1, а, б). Эти эффекты отвечают низкотемпературному горению образцов при их нагревании на воздухе. Потеря массы образцов, рассчитанная по кривым ТГ в температурном интервале данных экзотермических эффектов, близка к суммарной массе органических асас-лигандов, что свидетельствует об их окислении, газификации с последующим образованием композитов Pt/фуллерит и Pd/фуллерит. Rh(acac)₃ термически более стабильный, частично сублимируется в данных условиях анализа, экзотермический эффект сдвигается в область более высоких температур (~240–320°С) (рис. 1, в). Однако убыль массы в температурной области экзотермического эффекта также соответствует потере асас-лигандов и выделению металла. Для образца Ir(acac)₃/фуллерит убыль массы в температурном интервале 180-250°С связана с полной сублимацией $Ir(acac)_3$ (рис. 1, z).

Известно, что убыль массы свободных летучих солей $Pt-M(acac)_n$ при нагревании на воздухе соответствует переходу их в пар вплоть до экзотермичесакого эффекта окисления асас-лигандов [20, 21], в то время как убыль массы смесей Pt(acac)₂/фуллерит, Pd(acac)₂/фуллерит в эксперименте связана непосредственно с окислением лигандов, что может свидетельствовать о каталитическом влиянии подложки на термоокислительную деструкцию комплекса платинового металла в паровой фазе (рис. 1, *a*, *б*). Выше 290°С на кривой ДСК образца Pt(acac)₂/фуллерит наблюдается мощный экзотермический эффект, который можно объяснить сжиганием фуллерита, катализируемого уже образовавшимися частицами платины. Тогда как сам фуллерит при данных температурах стабилен, а экзотермический эффект сжигания фуллерита в образце, не содержащем $Pt-M(acac)_n$, наблюдается только от 390°С (рис. 1, *a*). В смесях фуллерита с Pd(acac)₂ понижения температуры окисления фуллерита не происходит (рис. 1, δ). Некоторое понижение температуры окисления фуллерита регистрируется для смеси Rh(acac)₃/фуллерит (рис. 1, в). Ir(acac)₃ имеет самую высокую термическую и химическую стабильность в паровой фазе среди ацетилацетонатов металлов платиновой груп-

Рис. 1. ДСК и ТГ кривые нагревания в кислородсодержащей среде. *a* — Pt(acac)₂/фуллерит (*1* — ДСК, *2* — ТГ) и фуллерит (*3* — ДСК, *4* — ТГ), *б* — Pd(acac)₂/фуллерит (*1* — ДСК, *2* — ТГ), *в* — Rh(acac)₃/фуллерит (*1* — ДСК, *2* — ТГ), *г* — Ir(acac)₃/фуллерит (*1* — ДСК, *2* — ТГ).

пы, но при 258°С одновременно сублимируется, сгорает, разлагается с особо интенсивным тепловыделением [22]. В связи с этим при проведении термического анализа использовали наименьшее содержание Ir(acac)₃ в составе смеси с фуллеритом, что не позволило получить данные о характере их термического взаимодействия (рис. 1, c). Таким образом, горение смесей Pt-M(acac)_n/УНМ при нагревании на воздухе является следствием экзотермического превращения паров Pt-M(acac) *n* на поверхности УНМ, при котором выделяемое тепло аккумулируется в системе и преобладает над отводимым теплом из-за невысокой теплопроводности углеродного материала, что в итоге приводит к возгоранию смеси в виде тления.

На рис. 2 представлены рентгенограммы продуктов реакций Pt(acac)₂/УНМ, Pd(acac)₂/УНМ, Rh(acac)₃/УНМ, полученных нагреванием порошковых смесей на воздухе в открытой системе. Присутствующие рефлексы соответствуют УНМ (ДНА — 20 43.8, 75.4°; фуллерит — 20 10.7, 17.6, 20.6, 21.5° и т. д.; таунит (графит) — 20 26.1°) и рефлексам осажденных металлов (Pt — 20 39.8, 46.2, 67.5, 81.4, 85.7°; Pd — 20 40.1, 46.7, 68.1, 82.3, 86.6°; Rh — 20 40.7, 47.4, 69.4, 83.7, 88.3°). Рефлексы металлов соответствуют гранецентрированной кубической решетке металлических частиц платины, родия, палладия. Наблюдалось незначительное (~2%) окисление палладия.

Уменьшение содержания металла в смеси приводит к уширению рефлексов металлических частиц, что показывает лучшую дисперсию частиц нанесенного платинового металла при более

Рис. 2. Рентгенограммы продуктов реакций горения в воздухе различных смесей. $a - Pt(acac)_2/VHM (1 - фуллеренсодержащая сажа, 2 - фуллерит), 6 - Pt-M(acac)_n/таунит [1 - Pt(acac)_2, 2 - Pd(acac)_2, 3 - Rh(acac)_3], 6 - Pt-M(acac)_n/ДНА [1, 2 - Pt(acac)_2; 3, 4 - Pd(acac)_2; 5, 6 - Rh(acac)_3].$

10 мас% Rh

80

90

низком его содержании на носителе. Оцененный по формуле Шерера средний размер кристаллитов в частицах металлов композитов Pt-M/ УНМ составляет 7–15 нм при содержании металла 5 мас% и 20–30 нм при содержании металла 10 мас%. В образцах Pt-M/таунит, содержащих 10 мас% металла, размер кристаллитов в частицах композитов, составляет 30–35 нм.

10

20

30

40

50

20, град

60

70

Тщательное смешивание кристаллитов $Pt-M(acac)_n$ с УНМ используется для создания при нагревании образцов до температуры парообразования комплекса, быстрого и непосредственного контакта пара с углеродной поверхностью. Рис. 3 демонстрирует изменение морфологии палладия, нанесенного на порошок ДНА, с изменением размера зерна частиц. На

крупных зернах (~100 мкм) порошков коммерческого образца (ДНА_{ком}) в процессе термораспада Pd(acac)₂ осажденный палладий имеет вид крупных частиц и пленок (рис. 3, *a*). Восстановление платиновых металлов является автокаталитической реакцией. Так, осажденная частица металла катализирует дальнейшую реакцию восстановления металла и образование новых частиц, что ведет к их агломерации. На разукрупненных зернах ДНА (~100 нм) увеличивается число посадочных мест для сорбции и восстановления Pd(acac)₂, в результате осаждаются частицы ~10 нм (рис. 3, δ), т. е. высокая дисперсность носителя позволяет уменьшать размер нанесенных частиц.

При нагревании порошковых смесей Pt-M(acac)_n/УНМ в тиглях, закрывающихся

Рис. 3. СЭМ микрофотография поверхности композитов Pd/ДНА_{ком} (a), Pd/ДНА (б).

крышками с зазором, ограничивается свободный доступ воздуха к смеси и отток паров СО2 и Н₂О, образующихся при окислении асас-лигандов и осаждении металла на УНМ в процессе термоокислительной деструкции Pt-M(acac)_n. Поэтому давление паров СО2 и Н2О в условиях, ограничивающих их отток, может препятствовать диффузии зародышей металла по поверхности УНМ, уменьшая их агломерацию. Температура нагревания смесей Pt(acac)₂/фуллерит, Pd(acac)₂/фуллерит, а также Pt(acac)₂/фуллеренол и Pd(acac)₂/фуллеренол (210°С) соответствовала температуре начала экзотермического эффекта окисления асас-лигандов (рис. 1, а, б). Нагревание смесей Rh(acac)₃/фуллерит и Ir(acac)₃/фуллерит при 250°С в предварительно нагретых до 250°С тиглях позволяло предотвратить потери Rh(acac)3 и Ir(acac)3 из-за их сублимации.

На рентгенограммах полученных таким образом композитов присутствуют рефлексы, соответствующие фуллериту и платиновым металлам (рис. 4). Рефлексы металлов имеют структуру с гранецентрированной кубической решеткой, например рефлексы Ir 20 40.7, 47.3, 69.2, 83.5, 88.1°. Оцененный по формуле Шерера размер кристаллитов металла, нанесенного на фуллерит, составляет 3–8 нм при содержании металла 5 мас%. Средний размер кристаллитов металла на фуллереноле составляет 6 нм при содержании металла 7 мас%. Таким образом, наблюдается уменьшение размера частиц металла по

Рис. 4. Рентгенограммы продуктов реакций горения смесей в условиях с ограниченным оттоком паров CO₂ и H₂O.

 $a - \text{Pt-M}(\text{acac})_n/фуллерит [1 - \text{Pt}(\text{acac})_2, 2 - \text{Pd}(\text{acac})_2, 3 - \text{Rh}(\text{acac})_3, 4 - \text{Ir}(\text{acac})_3], 6 - \text{Pt-M}(\text{acac})_n/фуллеренол [1 - \text{Pt}(\text{acac})_2, 2 - \text{Pd}(\text{acac})_2].$

100 нм

200 нм

200 нм

в

Рис. 5. Микрофотография поверхности композитов Pt-M/УНМ, полученных нагреванием в закрытых тиглях исходных порошковых смесей с содержанием металла 5 мас% (СЭМ): *a* — Pt/фуллерит, *б* — Ir/ДНА, *s* — Ir/та-унит; с содержанием металла 10 мас%: *c* — Pt/таунит (СЭМ), *д* — Pd/ДНА (СЭМ), *e* — Pd/фуллеренол (ПЭМ).

сравнению с частицами, полученными горением $Pt-M(acac)_n/VHM$ на воздухе в открытой системе.

На рис. 5 представлены микрофотографии поверхности композитов УНМ с нанесенными наночастицами металлов. Частицы метал-

г

лов достаточно равномерно распределены по поверхности УНМ. Размер частиц составляет 3–7 нм при содержании металла 5 мас% и 7–10 нм при 10 мас%, что в среднем меньше размера частиц, образующихся в реакциях горения Pt-M(acac)_n/УНМ на открытом воздухе. Таким образом, ограничение к оттоку выхода паров CO₂ и H₂O в термическом процессе горения смесей Pt-M(acac)_n/УНМ является стерическим препятствием, предотвращающим агломерацию образующихся металлических частиц.

Выводы

Синтез наноразмерных частиц платинового металла (Pt, Pd, Rh, Ir), нанесенных на углеродные наноматериалы (фуллерит, детонационные наноалмазы, таунит, фуллеренол, фуллеренсодержащая сажа), осуществлялся одностадийным in situ методом с использованием процесса низкотемпературного горения (~ 250-270°C) порошковой смеси Pt-M(acac)_n/углеродные наноматериалы в среде воздуха. Методами термического анализа показано, что в основе процесса лежит катализируемая углеродными наноматериалами термоокислительная деструкция металлоорганического комплекса с окислением (горением) органической части и выделением металла в конденсированную фазу. В открытой системе термический процесс протекает в режиме низкотемпературного тления (210-250°С), размер образующихся наночастиц 7-30 нм. В условиях, ограничивающих доступ воздуха к реакционной смеси и свободный отток газофазных продуктов, образующихся при окислении асас-лигандов, размер наночастиц уменьшается до 3-10 нм. Также размер нанесенных частиц зависит от загрузки металла в исходной смеси порошков и морфологии носителя. Использование термических реакций ацетилацетонатов платиновых металлов в твердофазной смеси с углеродными наноматериалами позволяет осуществить в мягких условиях декорирование углеродных наноматериалов наночастицами платиновых металлов. В термическом и химическом поведении смесей Pt-M(acac)_n/углеродные наноматериалы независимо от их массы (5 или 200 мг) не наблюдается значительных различий, что свидетельствует о возможности масштабируемости in situ процесса синтеза нанесенных на углеродные наноматериалы частиц Рt металлов.

Работа выполнена при поддержке и на оборудовании Центра коллективного пользования КНЦ СО РАН.

Список литературы

- Hu B., Deng W., Li R., Zhang Q., Wang Y., Delplanque-Janssens F., Paul D., Desmedt F., Miquel P.
 // J. Catal. 2014. V. 319. P. 15–26.
- [2] Prasad V., Vasanthkumar M. S. // J. Nanoparticle Res. 2015. V. 17. N 10. P. 1–8.
- [3] Shi J., Hu X., Zhang J., Tang W., Li H., Shen X., Saito N. // Progress Natural Sci: Mater. Int. 2014.
 V. 24. N 6. P. 593–598.
- [4] Alegre C., Gálvez M. E., Moliner R., Lazaro M. J. // Catalysts. 2015. V. 5. N 1. P. 392–405.
- [5] Palanisamy S., Thirumalraj B., Chen S. M., Ali M. A., Al-Hemaid F. M. A. // J. Colloid Interface Sci. 2015. V. 448. N 15. P. 251–256.
- [6] Zhang X., Ma L. X., Zhang Y. C. // Electrochim. Acta. 2015. V. 177. N 20. P. 118–127.
- [7] Song M. J., Kim J. H., Lee S. K., Lim D. S. // Anal Sci. 2011. V. 27. N 10. P. 985–989.
- [8] Leghrib R., Dufour T., Demoisson F., Claessens N., Reniers F., Llobet E. // Sensors Actuators. B: Chemical. 2011. V. 160. N 1. P. 974–980.
- [9] Bai Z., Niu L., Chao S., Yan H., Cui Q., Yang L., Qiao J., Jiang K. // Int. J. Electrochem. Sci. 2013.
 V. 8. P. 10068–10079.
- [10] Yao Y., Chen F., Nie A., Lacey S. D., Jacob R. J., Xu S., Huang Z., Fu K., Dai J., Salamanca-Riba L., Zachariah M. R., Shahbazian-Yassar R., Hu L. // ACS Cent. Sci. 2017. V. 3. N 4. P. 294–301.
- [11] Choi I. D., Lee H., Shim Y. B., Lee D. // Langmuir. 2010. V. 26. N 13. P. 11212–11216.
- [12] Merche D., Dufour T., Baneton J., Caldarella G., Debaille V., Job N., Reniers F. // Plasma Processes Polymers. 2016. V. 13. N 1. P. 91–104.
- [13] Mercado-Zúñiga C., Vargas-García J. R., Hernández-Pérez M. A., Figueroa-Torres M. Z., Cervantes-Sodi F., Torres-Martinez L. M. // J. Alloys Compd. 2014. V. 615. P. S538–S541.
- [14] Wang Y., He Q., Ding K., Wei H., Guo J., Wang Q., O'Connor R., Huang X., Luo Z., Shen T. D., Wei S., Guo Z. // Electrochem. Soc. 2015. V. 162. N 7. P. F755–F763.
- [15] Исакова В. Г., Петраковская В. Г., Глущенко Г. А., Булина Н. В., Чурилов Г. Н. // ЖПХ. 2005.

T. 78. № 9. C.1412–1415 [*Isakova V. G., Petrakov-skaya E. A., Glushchenko G. A., Bulina N. V., Churilov G. N.* // Russ. J. Appl. Chem. 2005. V. 78. N 9. P. 1386–1390].

- [16] Isakova V. G., Petrakovskaya E. A., Isakov V. P., Bayukov O. A., Velikanov D. A. // Phys. Metals Metallography. 2006. V. 102. N Suppl.1. P. S57– S60.
- [17] Исакова В. Г., Исаков В. П. // ФТТ. 2004. Т. 46. № 4. С. 607–609 [Isakova V. G., Isakov V. P. // Phys. Solid State. 2004. V. 46. N 4. P. 622–624].
- [18] Isakova V. G., Isakov V. P., Lyamkin A. I., Zharikova N. V., Yunoshev A. S., Nemtsev I. V. // Int. J. Chem. 2015. V. 7. N 1. P. 1–9.
- [19] Гончарова Е. А., Исакова В. Г., Томашевич Е. В., Чурилов Г. Н. // Вестн. СибГАУ. 2009. Т. 1. № 22. С. 90–93.
- [20] Boehm H. P. // Carbon. 1994. V. 32. N 5. P. 759–769.
- [21] Пат. РФ 2495880 (опубл. 2013). Способ получения ацетилацетонатов металлов платиновой группы.
- [22] Vargas J. R., Goto T. // Mater. Transactions. 2003.
 V. 44. N 9. P. 1717–1728.