УДК 549.057

УСЛОВИЯ ОБРАЗОВАНИЯ ВКЛЮЧЕНИЙ ЖЕЛЕЗО-УГЛЕРОДНОГО РАСПЛАВА В ГРАНАТАХ И ОРТОПИРОКСЕНАХ ПРИ *Р-Т* ПАРАМЕТРАХ ЛИТОСФЕРНОЙ МАНТИИ

© 2018 г. Ю. В. Баталева^{а, *}, Ю. Н. Пальянов^а, Ю. М. Борздов^а, И. Д. Новоселов^{а, b}, О. А. Баюков^с, Н. В. Соболев^{а, b}

^аИнститут геологии и минералогии имени В.С. Соболева СО РАН, Просп. Академика Коптюга, 3, Новосибирск, Россия ^bНовосибирский государственный университет, ул. Пирогова, 2, Новосибирск, Россия ^cИнститут физики им. В.Л. Киренского СО РАН, Академгородок 50, стр. 38, Красноярск, Россия *E-mail: bataleva@igm.nsc.ru Поступила в редакцию 30.03.2018 г. Получена после доработки 17.05.2018 г.

Одним из принципиальных вопросов, касающихся проблемы редокс-эволюции мантийных пород, является реконструкция сценариев переработки Fe⁰⁻ или Fe₃C-содержащих пород агентами окислительного мантийного метасоматоза, а также оценка устойчивости этих фаз при воздействии флюидов и расплавов различных составов. Представлены оригинальные результаты высокотемпературных высокобарических экспериментов ($P = 6.3 \ \Gamma \Pi a$, $T = 1300 - 1500^{\circ}$ C) в системах карбидоксид-карбонат (Fe₃C-SiO₂-(Mg,Ca)CO₃ и Fe₃C-SiO₂-Al₂O₃-(Mg,Ca)CO₃). Определены условия формирования мантийных силикатов с включениями металлического или металл-углеродного расплава и выполнена оценка их устойчивости в присутствии СО₂-флюида – потенциального агента мантийного окислительного метасоматоза. Установлено, что взаимодействие в системе карбидоксид-карбонат происходит путем декарбонатизации с образованием граната или ортопироксена и СО₂-флюида, а также последующих редокс-реакций СО₂ с карбидом железа. В результате формируется ассоциация железистых силикатов и графита. В гранате и ортопироксене установлены включения расплава Fe-C, а также графита, фаялита и ферросилита. Экспериментально продемонстрировано, что присутствие СО₂-флюида в интерстициальном пространстве не влияет на сохранность металлических включений, а также включений графита в силикатах. Избирательный захват включений расплава Fe-C мантийными силикатами, устойчивыми к метасоматическим преобразованиям, является одним из потенциальных сценариев сохранения металлического железа в мантийных доменах, подвергающихся воздействию агентов мантийного окислительного метасоматоза.

Ключевые слова: высокобарический эксперимент, металл-углеродный расплав, графит, алмаз, CO₂флюид, мантийные силикаты, мантийный метасоматоз **DOI:** 10.1134/S086959031806002X

введение

Фугитивность кислорода (fO_2) оказывает существенное влияние на устойчивость мантийных минералов, флюидов и расплавов, контролируя окислительно-восстановительное состояние мантии Земли. Значения fO_2 в мантийных породах определяются преимущественно формами нахождения и концентрациями элементов с переменной валентностью, таких как железо и углерод. В работах, посвященных выявлению закономерностей распределения фугитивности кислорода в мантийных породах (Ballhaus, Frost, 1994; Frost et al., 2004; Rohrbach et al., 2007; Rohrbach, Schmidt, 2011; Shirey et al., 2013), показано, что ее значения подчиняются общей тенденции понижения с глубиной. Экспериментально продемонстрировано, что на глубинах $\geq 250-300$ км мантия приобретает восстановленный характер, fO_2 на 5 лог. ед. ниже уровня буфера фаялит-магнетиткварц (FMQ), и становится металлсодержащей. В данных условиях в мантийных породах становится устойчивым металлическое железо, карбиды и железо-углеродные расплавы. В работах (Frost, McCammon, 2008; Dasgupta, Hirschmann, 2010; Marty, 2012) показано, что в условиях деплетированной мантии, при валовых концентрациях углерода в породах на уровне ~20–120 ppm, весь углерод будет растворен в металле, в то время как в неистощенной мантии (300–800 ppm C) углерод

57

Cuatava			Наве	ески, мг		Валовый состав, мас. %							
Система	Fe ₃ C	SiO ₂	Al ₂ O ₃	MgCO ₃	CaMg(CO ₃) ₂	Si	Al	Fe	Mg	Ca	С	0	
Fe ₃ C-SiO ₂ -(Mg,Ca)CO ₃	30.0	36.0	0.0	13.4	3.4	20.3	0.0	33.8	5.2	0.9	5.3	34.6	
Fe ₃ C-SiO ₂ -Al ₂ O ₃ -(Mg,Ca)CO ₃	24.6	29.5	16.8	11.0	2.8	16.3	10.5	27.1	4.1	0.7	4.2	37.1	

Таблица 1. Состав систем

находится в составе карбидов (Fe₃C и Fe₇C₃). Обнаружение включений Fe⁰ и Fe₃C в алмазах является прямым свидетельством присутствия карбидов и Fe⁰ в литосферной мантии (Sharp et al., 1966; Соболев и др., 1981; Bulanova, 1995; Stachel et al., 1998; Jacob et al., 2004; Kaminsky, Wirth, 2011; Smith, Kopylova, 2014), и, кроме того, свидетельствует об их возможной генетической связи с алмазом (Rohrbach, Schmidt, 2011; Palyanov et al., 2013b; Smith et al., 2016).

Несмотря на то что величины fO₂ в мантийных породах характеризуются общей тенденцией понижения с глубиной, распределение значений фугитивности кислорода в мантии подчиняется гораздо более сложным закономерностям (Каminsky et al., 2015). Находки окисленных ксенолитов, вынесенных на поверхность с больших глубин (Woodland, Koch, 2003; Creighton et al., 2009), свидетельствуют о том, что часть литосферной мантии подвергалась воздействию мобильных агентов окислительного метасоматоза, таких как СО₂-флюид или карбонатсодержащий расплав. В присутствии этих агентов Fe⁰, карбид и металлуглеродные расплавы окисляются и вступают в алмаз/графитобразующие реакции (Rohrbach, Schmidt, 2011; Palyanov et al., 2013b; Рябчиков, Когарко, 2013). Вопросы об устойчивости карбида железа в различных мантийных обстановках неоднократно рассматривались в современных работах, посвященных исследованиям глобального углеродного шикла и процессов алмазообразования (Рябчиков, 2009; Рябчиков, Каминский, 2014; Rohrbach et al., 2014; Palyanov et al., 2013b; Bataleva et al., 2017). Таким образом, реконструкция потенциальных сценариев поведения преимущественно металлических или карбидных фаз в процессах окислительного мантийного метасоматоза является принципиально важной в рамках проблемы редокс-эволюции мантийных пород.

Учитывая тот факт, что Fe^0 и Fe_3C устойчивы во включениях в алмазе, можно предположить, что они могут сохраняться и в других мантийных минералах. Более того, когенит и самородное железо описаны в качестве включений в мантийных гранатах из алмазсодержащих пород (Jacob et al., 2004). Основными целями настоящей работы являются выявление условий образования металлических включений в мантийных силикатах (ортопироксенах и гранатах) и оценка их устойчивости в присутствии СО₂-флюида – агента окислительного метасоматоза.

МЕТОДЫ ИССЛЕДОВАНИЯ

Экспериментальное исследование, направленное на определение условий формирования гранатов и ортопироксенов с металлическими включениями, а также на оценку их устойчивости в присутствии СО₂-флюида, выполнено в системах Fe₃C-SiO₂-(Mg,Ca)CO₃ и Fe₃C-SiO₂-Al₂O₃-(Mg,Ca)CO₃. Эксперименты проведены на многопуансонном аппарате высокого давления типа "разрезная сфера" (БАРС) (Palyanov et al., 2010) при давлении 6.3 ГПа, в интервале температур 1300-1500°С и длительности 20 ч. Методические особенности сборки, схемы ячейки высокого давления, а также данные по особенностям калибровки опубликованы ранее (Pal'yanov et al., 2002а; Palyanov et al., 2010; Sokol et al., 2015). В качестве исходных реагентов использованы природные магнезит и доломит (в мольной пропорции 8:1), предварительно синтезированный карбид железа (когенит, Fe_3C), а также синтетические Al_2O_3 и SiO₂ (<0.01 мас. % примесей). Пропорции исходных карбонатов и оксидов (табл. 1) подобраны таким образом, чтобы при полном прохождении реакций взаимодействия образовалась ассоциация ортопироксен + СО₂-флюид или гранат + СО₂-флюид (Pal'yanov et al., 2002b). Для создания оптимальных условий кристаллизации силикатных фаз использована традиционная схема сборки ампул, при которой исходные реагенты измельчаются и гомогенизируются. Однако для реконструкции характера взаимодействия карбида с силикатами часть исходного карбида не измельчали, а добавляли в шихту в виде фрагментов кри-

№ эксп.	<i>T</i> , °C	Полученные фазы
		Система Fe ₃ C-SiO ₂ -(Mg,Ca)CO ₃
970-О	1300	<i>Орх, Оl, Gr,</i> (Fe-C) _{p-в} , (Fe-C) _{p-в} включ., <i>Ol</i> включ., <i>Gr</i> включ.
1029-О	1400	<i>Орх, Ol, Gr</i> , (Fe-C) _{p-B} *, (Fe-C) _{p-B} включ., <i>Ol</i> включ., <i>Орх</i> включ., <i>Gr</i> включ.
936-O	1500	<i>Орх, Ol, Gr</i> , (Fe-C) _{p-в} включ., <i>Ol</i> включ., <i>Орх</i> включ., <i>Gr</i> включ.
		Система Fe ₃ C-SiO ₂ -(Mg,Ca)CO ₃ -Al ₂ O ₃
971-G	1300	<i>Grt, Opx, Gr, Mgt,</i> (Fe-C) _{p-в} включ., <i>Opx</i> включ., <i>Gr</i> включ.
1030-G	1400	<i>Grt, Opx, Gr</i> , (Fe-C) _{p-в} включ., <i>Opx</i> включ., <i>Gr</i> включ.
937-G	1500	<i>Grt, Opx, Gr</i> , (Fe-C) _{p-в} включ., <i>Opx</i> включ., <i>Gr</i> включ.

Таблица 2. Результаты экспериментов в системах карбид-оксид-карбонат при давлении 6.3 ГПа и длительности 20 ч

Примечание. Здесь и в табл. 3, 4, на рис. 1–3: *Ol* – оливин, *Opx* – ортопироксен, *Gr* – графит, *Grt* – гранат, *Mgt* – магнетит, Fe-C_{p-B} – закаленный железо-углеродный расплав, включ. – включения, *единичные находки.

сталлов размером 300—400 мкм, при этом в системах намеренно создавался небольшой избыток карбида железа по отношению к оксидам и карбонатам. Учитывая предшествующий опыт работы с карбидами и железосодержащими оксидами при мантийных *P-T* параметрах (Dasgupta et al., 2009; Palyanov et al., 2013b; Баталева и др., 2015), в качестве оптимального материала ампул был выбран графит.

Аналитические исследования выполнены в ЦКП Многоэлементных и изотопных исследований СО РАН (Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск). Фазовый и химический состав полученных образцов определяли методами микрозондового анализа (Camebax-micro) и энергодисперсионной спектроскопии (Tescan MIRA3 LMU сканирующий электронный микроскоп). Съемка силикатных, оксидных, металлических и карбидных фаз проводилась при ускоряющем напряжении 20 кВ, силе тока зонда 20 нА и 10 с на каждой аналитической линии и диаметре зонда 2-4 мкм. При исследовании состава закаленного металл-углеродного расплава, представляющего собой агрегаты микродендритов, диаметр пучка электронов увеличивали. Исследование фазовых взаимоотношений в образцах выполнено методом сканирующей электронной микроскопии. Определение состава железосодержащих фаз, валентного состояния железа в них, а также распределения железа по фазам и неэквивалентным позициям выполнено методом мессбауэровской спектроскопии, измерения

проведены при комнатной температуре на спектрометре MC-1104Eм с источником $Co^{57}(Cr)$ на порошковых поглотителях толщиной 1–5 мг/см² (Институт физики им. В.Л. Киренского СО РАН, Красноярск).

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Результаты экспериментов в системе Fe₃C-SiO₂-(Mg,Ca)CO₃

Параметры и результаты проведенных экспериментов, а также составы полученных фаз представлены в табл. 2-4. Установлено, что при наиболее низкой температуре (1300°С) образуется ассоциация ортопироксена, оливина и графита, а также происходит формирование железо-углеродного расплава (Fe-C_{р-в}). Представительный фрагмент образца показан на рис. 1а. По расчетам баланса масс, преобладающей фазой в реакционном объеме (82 мас. %) является ортопироксен Fe_{1.2}Mg_{0.7}Ca_{0.1}Si₂O₆ (размерность ~30-50 мкм). Во многих кристаллах ортопироксена установлены включения расплава Fe-C, графита и железистого оливина (рис. 1б). В интерстициях поликристаллического агрегата ортопироксена располагаются микросферы Fe-C, к которым пространственно приурочены кристаллы графита и оливина Fe1.5Mg0.5SiO4 (рис. 1а). Структура микросфер Fe-C представлена дендритовым агрегатом Fe⁰ и Fe₃C (рис. 1в), что позволяет интерпретировать эти микросферы как закаленный расплав железо-уг-

Nº	T°C	Ф аза	N.		Coc	став, мас	c. %		n(0)		Формул	тьные ед	циницы	
эксп.	1, C	Фаза	¹ A	SiO ₂	FeO	MgO	CaO	сумма	11(0)	Si	Fe	Mg	Ca	сумма
970-O	1300	Opx	12	49.8 ₍₁₎	36.3 ₍₉₎	11.9 ₍₈₎	1.5(1)	99.6	6	2.00(1)	1.22 ₍₄₎	0.72 ₍₄₎	0.06(0)	4.00
		Ol	10	32.0 ₍₅₎	56 ₍₁₎	11.0(5)	0.07(1)	99.6	4	1.00(1)	1.48 ₍₄₎	0.52(2)	—	3.00
1029-O	1400	Opx	10	49.6 ₍₉₎	36 ₍₂₎	12 ₍₂₎	1.5(10)	99.5	6	1.99 ₍₁₎	1.20(9)	0.7(1)	0.06(4)	4.01
		Ol	8	32.1 ₍₃₎	55.6 ₍₆₎	12.0(2)	_	99.7	4	1.00(1)	1.44 ₍₀₎	0.56(1)	_	3.00
936-O	1500	Opx_1	16	48.9 ₍₅₎	38.8 ₍₇₎	10.3(9)	1.6 ₍₄₎	99.6	6	1.99 ₍₁₎	1.32 ₍₄₎	0.63(5)	0.07(2)	4.01
		Opx_2	6	47.4 ₍₉₎	42.8 ₍₉₎	6.5 ₍₉₎	2.6 ₍₅₎	99.4	6	1.99 ₍₂₎	1.50 ₍₈₎	0.41 ₍₉₎	0.11(2)	4.01
		Ol	10	32.3 ₍₁₎	55.6 ₍₈₎	11.8 ₍₈₎	—	99.8	4	1.00(0)	1.44 ₍₁₎	0.55 ₍₁₎	—	2.99

Таблица 3. Средние составы силикатов, полученных в системе Fe₃C-SiO₂-(Mg,Ca)CO₃

Примечание. Здесь и в табл. 4: $N_{\rm A}$ – количество анализов. В круглых скобках указана величина стандартного отклонения для последнего знака.

лерод. Концентрация углерода в закаленном расплаве составляет ~4–5 мас. %.

В результате взаимодействия в системе карбид-оксид-карбонат при 1400°С получена ассоциация ортопироксена, оливина и графита, а также установлен рост алмаза на затравочных кристаллах. При этом в реакционном объеме также присутствуют единичные микросферы (~10 мкм) закаленного расплава железо-углерод. Полученный образец представляет собой поликристаллический агрегат ортопироксена Fe_{1.2}Mg_{0.7}Ca_{0.1}Si₂O₆ (размерность ~70-100 мкм), в интерстициях которого располагаются оливин (Fe_{1.4}Mg_{0.6}SiO₄) и графит (рис. 1г). В ортопироксене установлены включения закаленного расплава Fe-C, графита и оливина (рис. 1д-1з). Согласно расчетам, массовые пропорции полученных ортопироксена, оливина, графита и расплава Fe-C соответствуют 63 : : 31 : 5 : 1.

При 1500°С получена ассоциация ортопироксена, оливина и графита. Ортопироксен ($Fe_{1.3}Mg_{0.6}Ca_{0.1}Si_2O_6$) представлен относительно крупными призматическими кристаллами размером 150–200 мкм (рис. 2а). В кристаллах ортопироксена установлены включения закаленного расплава Fe-C, графита, а также более высокожелезистого ортопироксена (рис. 2а, 26).

Результаты экспериментов в системе Fe₃C-SiO₂-Al₂O₃-(Mg,Ca)CO₃

Установлено, что при температуре 1300°С в результате взаимодействия в системе карбид-оксид-карбонат образуется ассоциация граната, ортопироксена, графита и магнетита (табл. 2). Преобладающей фазой в реакционном объеме является гранат (размерность ~5–40 мкм), содержащий включения Fe-C, графита, а также железистого ортопироксена (рис. 2в, 2г). Состав граната варьирует в пределах $Prp_{54}Alm_{34}Ski_1Grs_{11}$ — $Prp_{34}Alm_{56}Ski_5Grs_5$ (табл. 3). В интерстициях поликристаллического агрегата граната находятся ортопироксен, магнетит и графит. Ортопироксен по составу неоднороден, концентрация FeO в нем изменяется от 11.5 до 40.4 мас. %. Методом мессбауэровской спектроскопии установлено, что в некоторых кристаллах ортопироксена присутствует примесь трехвалентного железа, на уровне $Fe^{3+}/\Sigma Fe \sim 0.04$.

При более высоких температурах (1400 и 1500°С) в системе получена ассоциация гранат + + ортопироксен + графит, а также установлен рост алмаза на затравочных кристаллах. Гранат, поликристаллический агрегат которого занимает большую часть объема ампулы, характеризуется однородным составом *Prp*₃₅*Alm*₅₇*Ski*₃*Grs*₅ (1400°C) и *Prp*₃₇*Alm*₅₆*Ski*₂*Grs*₅ (1500°С) и размерностью кристаллов ~30-70 мкм. В гранате установлены включения закаленного расплава Fe-C, графита, а также железистого ортопироксена. В интерстициях гранатового матрикса находится мелкокристаллический агрегат ортопироксен + графит. Ортопироксен, полученный при 1400°С, по составу соответствует Fe_{1.41}Mg_{0.56}Si_{2.02}O₆, а при $1500^{\circ}C - Fe_{0.33}Mg_{1.62}Ca_{0.03}Si_2O_6.$

m
Ô
ŏ
×
Ga
<u> </u>
<u>5</u>
2
Ť
õ
5
A
Ĩ.
റ്
Ĭ
Ú
- ဆ
ГĽ
o
Σ
Ы
୍ରତ
ы
~
1 X
9
臣
Ξ
e
5
5
2
Г.
m i
P
Ē
3
ŏ
N C
31
ö
Ē
КЗ
П
5
5
Ĩ
BE
5
5
õ
0
И€
Ξ
Ĕ
ď
Ū
4
B
5
0
Ĩ

$\odot O$ MgOCaOcymmaSiAI Fe^{2+} Fe^{3+} MgCacymma 86_{00} 8.9_{00} 2.1_{10} 99.5 2.90_{10} 2.05_{40} 1.70_{10} 0.14_{70} 0.17_{20} 8.00 6_{20} 14_{10} 4.2_{70} 99.5 2.86_{20} 2.23_{50} 1.0_{10} 0.03_{20} 1.38_{10} 8.00 6_{20} 14_{10} 4.2_{70} 99.5 2.86_{20} 2.23_{50} 1.0_{10} 0.03_{20} 1.38_{10} 8.00 1.5 1.2_{10} 4.2_{70} 99.7 2.01 $$ 0.34 $$ 4.00 1.5 1.2_{10} $$ 99.4 1.98 $$ 1.25 0.05 0.72 $ 4.00$ 8.7_{10} 7.6_{20} $$ 99.4 1.98 $$ 1.27_{60} 0.10_{10} 0.13_{10} 8.00 8.7_{10} 9.4_{10} $$ 99.4 1.93_{10} 1.76_{10} 0.10_{10} 0.10_{10} $ 4.00$ 8.7_{10} 9.4_{10} $$ 99.4 $$ $ 0.6_{10}$ $ 4.00$ 8.7_{10} 9.4_{10} $$ 99.4 $ 8.7_{10}$ 9.4_{10} $ 8.7_{10}$ $ -$ <th>Γ,°C Φa3a Λ</th> <th>Фаза</th> <th><</th> <th>_ _</th> <th></th> <th></th> <th>Состав,</th> <th>мас. %</th> <th></th> <th></th> <th></th> <th></th> <th>Форму</th> <th>льные еді</th> <th>аницы</th> <th></th> <th></th>	Γ,°C Φa3a Λ	Фаза	<	_ _			Состав,	мас. %					Форму	льные еді	аницы		
86_{6} $8.9_{(6)}$ $2.1_{(1)}$ 99.5 $2.90_{(1)}$ $2.05_{(4)}$ $1.70_{(6)}$ $0.14_{(7)}$ $0.17_{(3)}$ 8.00 6_{10} $14_{(1)}$ $4.2_{(7)}$ 99.5 $2.86_{(2)}$ $2.23_{(3)}$ $10_{(1)}$ $0.33_{(1)}$ 8.00 15 $14_{(1)}$ $4.2_{(7)}$ 99.5 $2.86_{(2)}$ $2.23_{(3)}$ $10.0_{(3)}$ $1.58_{(3)}$ $0.33_{(1)}$ 8.00 15 31.3 $ 99.7$ 2.01 $ 0.34_{(1)}$ $ 4.00$ 8.6 12.0 $ 99.7$ 2.01 $ 1.37$ $ 1.00$ $ 4.00$ 8.7 10.2 $ 99.4$ $ 99.4$ $ 0.35_{(1)}$ $ 4.00$ $8.7_{(2)}$ $ 99.4$ $ 99.4$ $ 4.00$ $0.8_{(2)}$ $ 99.4$ $ 99.4$ $ -$ <t< th=""><th>si02 Al₂O₃</th><th>SiO₂ Al₂O₃</th><th>SiO₂ Al₂O₃</th><th>SiO₂ Al₂O₃</th><th>Al₂O₃</th><th></th><th>FeO</th><th>MgO</th><th>CaO</th><th>сумма</th><th>Si</th><th>M</th><th>Fe^{2+}</th><th>Fe^{3+}</th><th>Mg</th><th>Ca</th><th>сумма</th></t<>	si02 Al ₂ O ₃	SiO ₂ Al ₂ O ₃	SiO ₂ Al ₂ O ₃	SiO ₂ Al ₂ O ₃	Al ₂ O ₃		FeO	MgO	CaO	сумма	Si	M	Fe^{2+}	Fe^{3+}	Mg	Ca	сумма
6_{0} $14_{(1)}$ $4.2_{(7)}$ 99.5 $2.86_{(3)}$ $2.23_{(3)}$ $10_{(1)}$ $0.33_{(1)}$ 8.00 8.00 1.5 31.3 $ 99.7$ 2.01 $ 0.34$ $ 4.00$ 0.4 10.2 $ 99.7$ 2.01 $ 0.34$ $ 4.00$ 0.4 10.2 $ 99.9$ 2.01 $ 1.37$ $ 0.62$ $ 4.00$ 8.6 12.0 $ 99.4$ 1.98 $ 1.37$ $ 0.62$ $ 4.00$ $8.7_{(5)}$ $9.4_{(3)}$ $1.7_{(4)}$ 99.4 $ -$	1300 Grt_{kaiima} 12 37.5(1) 22.5(5)	$Grt_{\rm kaitma}$ 12 37.5 ₍₁₎ 22.5 ₍₅₎	12 37.5 ₍₁₎ 22.5 ₍₅₎	37.5 ₍₁₎ 22.5 ₍₅₎	22.5 ₍₅₎		$28.6_{(8)}$	$8.9_{(6)}$	2.1 ₍₁₎	99.5	2.90 ₍₁₎	2.05 ₍₄₎	$1.70_{(6)}$	$0.14_{(7)}$	$1.03_{(1)}$	0.17 ₍₂₎	8.00
	$G \pi_{\rm luertp}$ 16 39.0 ₍₅₎ 25.8 ₍₄₎	<i>Gr</i> _{пентр} 16 39.0 ₍₅₎ 25.8 ₍₄₎	16 39.0 ₍₅₎ 25.8 ₍₄₎	39.0 ₍₅₎ 25.8 ₍₄₎	25.8 ₍₄₎		$16_{(2)}$	$14_{(1)}$	$4.2_{(7)}$	99.5	$2.86_{(2)}$	2.23 ₍₅₎	$1.0_{(1)}$	$0.03_{(2)}$	$1.58_{(5)}$	$0.33_{(1)}$	8.00
0.4 10.2 $ 99.9$ 2.01 $ 1.37$ $ 0.62$ $ 4.00$ 8.6 12.0 $ 99.4$ 1.98 $ 1.25$ 0.05 0.72 $ 4.00$ $0.8_{(2)}$ $7.6_{(3)}$ $ 99.4$ $ 0.56_{(1)}$ $2.00_{(0)}$ $0.43_{(1)}$ $ 2.99$ $0.8_{(2)}$ $ 98.4$ $ 0.56_{(1)}$ $2.00_{(0)}$ $0.43_{(1)}$ $ 2.99$ $8.7_{(5)}$ $9.4_{(2)}$ $1.7_{(4)}$ 99.5 $2.99_{(3)}$ $1.93_{(4)}$ $1.76_{(4)}$ $0.16_{(3)}$ $1.09_{(3)}$ $0.15_{(2)}$ $ 4.00$ 8.0 $9.2_{(6)}$ $ 9.2_{(0)}$ $ 9.9_{(1)}$ $ 9.06_{(1)}$ $ 4.00$ 8.0 $ 9.2_{(0)}$ $ 9.9_{(1)}$ $ 9.9_{(1)}$ $ 4.00$ $1.0_{(0)}$	Opx_1^* 1 56.9 - 1	Opx_1^* 1 56.9 - 1	1 56.9 -]	56.9 -]		—	11.5	31.3	I	2.66	2.01	I	0.34	I	1.65	I	4.00
8.6 12.0 - 99.4 1.98 - 1.25 0.05 0.72 - 4.00 $0.8_{(2)}$ $7.6_{(2)}$ - 98.4 - - 0.56_{(1)} 2.00_{(0)} 0.43_{(1)} - 2.99 $0.8_{(2)}$ $7.6_{(2)}$ - 98.4 - - 0.56_{(1)} 2.00_{(0)} 0.43_{(1)} - 2.99 $8.7_{(3)}$ $9.4_{(2)}$ $1.7_{(4)}$ 99.5 2.99_{(3)} $1.93_{(4)}$ $1.76_{(4)}$ 0.15_{(2)} - 2.99 $1.0_{(7)}$ $9.4_{(2)}$ $1.7_{(4)}$ 99.5 2.99_{(3)} $1.93_{(4)}$ $1.76_{(4)}$ $0.15_{(2)}$ 2.19 2.99 $1.0_{(7)}$ $9.2_{(6)}$ $1.7_{(4)}$ 99.5 $2.02_{(0)}$ $1.74_{(9)}$ $0.16_{(1)}$ $ 4.00$ $8_{(1)}$ $10.0_{(6)}$ $1.7_{(4)}$ 99.9 $3.02_{(1)}$ $1.91_{(2)}$ $1.74_{(9)}$ $0.05_{(2)}$ $0.14_{(1)}$ 8.00 $1_{(2)}$ $31_{(2)}$ $0.8_{(2)}$ <td>$0px_2^*$ 1 49.4 – 4</td> <td>Opx_2^* 1 49.4 - 4</td> <td>1 49.4 - 4</td> <td>49.4 - 4</td> <td> </td> <td>4</td> <td>0.4</td> <td>10.2</td> <td>I</td> <td>6.66</td> <td>2.01</td> <td>I</td> <td>1.37</td> <td>I</td> <td>0.62</td> <td>I</td> <td>4.00</td>	$0px_2^*$ 1 49.4 – 4	Opx_2^* 1 49.4 - 4	1 49.4 - 4	49.4 - 4		4	0.4	10.2	I	6.66	2.01	I	1.37	I	0.62	I	4.00
$3(3)$ $7.6_{(2)}$ $ 98.4$ $ 0.56_{(1)}$ $2.00_{(0)}$ $0.43_{(1)}$ $ 2.99$ $3.7_{(5)}$ $9.4_{(2)}$ $1.7_{(4)}$ 99.5 $2.99_{(3)}$ $1.93_{(4)}$ $1.76_{(4)}$ $0.10_{(3)}$ $1.09_{(3)}$ $0.15_{(2)}$ 8.00 $0_{(7)}$ $9.2_{(6)}$ $ 99.5$ $2.99_{(3)}$ $1.93_{(4)}$ $1.76_{(4)}$ $0.10_{(3)}$ $1.09_{(3)}$ $0.15_{(2)}$ 8.00 $0_{(7)}$ $9.2_{(6)}$ $ 99.5$ $2.02_{(0)}$ $ 1.41_{(1)}$ $ 0.56_{(1)}$ $ 4.00$ $8(1)$ $10.0_{(6)}$ $1.7_{(4)}$ 99.9 $3.02_{(1)}$ $1.91_{(2)}$ $1.74_{(9)}$ $0.05_{(2)}$ $1.14_{(3)}$ $0.14_{(1)}$ 8.00 $8(1)$ $10.0_{(6)}$ $1.7_{(4)}$ 99.9 $3.02_{(1)}$ $1.91_{(2)}$ $1.74_{(9)}$ $0.05_{(2)}$ $1.14_{(3)}$ $0.14_{(1)}$ 8.00 $8(1)$ 99.5 $2.00_{(1)}$ $ 0.33_{(7)}$ $-$ </td <td>Opx_3^* 1 48.9 – 38</td> <td>Opx_3^* 1 48.9 - 38</td> <td>1 48.9 - 38</td> <td>48.9 - 38</td> <td>- 38</td> <td>38</td> <td>3.6</td> <td>12.0</td> <td>I</td> <td>99.4</td> <td>1.98</td> <td>I</td> <td>1.25</td> <td>0.05</td> <td>0.72</td> <td>l</td> <td>4.00</td>	Opx_3^* 1 48.9 – 38	Opx_3^* 1 48.9 - 38	1 48.9 - 38	48.9 - 38	- 38	38	3.6	12.0	I	99.4	1.98	I	1.25	0.05	0.72	l	4.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mgt 6 – – 90	Mgt 6 - 90	90		- 60	90).8(2)	7.6(2)	I	98.4	I	I	$0.56_{(1)}$	$2.00_{(0)}$	$0.43_{(1)}$	l	2.99
$0_{(7)}$ $9.2_{(6)}$ $ 99.5$ $2.02_{(0)}$ $ 1.41_{(1)}$ $ 0.56_{(1)}$ $ 4.00$ (1) $10.0_{(6)}$ $1.7_{(4)}$ 99.9 $3.02_{(1)}$ $1.91_{(2)}$ $1.74_{(9)}$ $0.05_{(2)}$ $1.14_{(3)}$ $0.14_{(1)}$ 8.00 (2) $31_{(2)}$ $0.8_{(2)}$ 99.5 $2.00_{(1)}$ $ 0.33_{(7)}$ $ 1.62_{(8)}$ $0.03_{(1)}$ 4.00	1400 Grt 15 38.6 ₍₄₎ 21.1 ₍₆₎ 28	<i>Grt</i> 15 38.6 ₍₄₎ 21.1 ₍₆₎ 28	15 38.6 ₍₄₎ 21.1 ₍₆₎ 28	38.6 ₍₄₎ 21.1 ₍₆₎ 28	21.1 ₍₆₎ 28	28	.7 ₍₅₎	$9.4_{(2)}$	1.7 ₍₄₎	99.5	2.99 ₍₃₎	$1.93_{(4)}$	$1.76_{(4)}$	$0.10_{(3)}$	$1.09_{(3)}$	0.15 ₍₂₎	8.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<i>Opx</i> 7 49.2 ₍₃₎ - 41	7 49.2 ₍₃₎ – 41	49.2 ₍₃₎ – 41	- 41	41	.0 ₍₇₎	$9.2_{(6)}$	I	99.5	$2.02_{(0)}$	I	$1.41_{(1)}$	I	$0.56_{(1)}$	I	4.00
(2) $31_{(2)}$ $0.8_{(2)}$ 99.5 $2.00_{(1)}$ $ 0.33_{(7)}$ $ 1.62_{(8)}$ $0.03_{(1)}$ 4.00	1500 $G\pi$ 15 39.3 ₍₄₎ 21.1 ₍₃₎ 21	<i>Grt</i> 15 $39.3_{(4)}$ $21.1_{(3)}$ 28	15 39.3 ₍₄₎ $21.1_{(3)}$ 28	39.3 ₍₄₎ 21.1 ₍₃₎ 28	21.1 ₍₃₎ 28	58	8 ₍₁₎	$10.0_{(6)}$	1.7 ₍₄₎	9.99	$3.02_{(1)}$	$1.91_{(2)}$	$1.74_{(9)}$	$0.05_{(2)}$	$1.14_{(3)}$	$0.14_{(1)}$	8.00
	$0px \qquad 10 \qquad 56.6_{(7)} \qquad - \qquad 1$	<i>Opx</i> 10 56.6(7) - 1	10 56.6(7) - 1	56.6(7) - 1		—	1(2)	$31_{(2)}$	$0.8_{(2)}$	99.5	$2.00_{(1)}$	Ι	$0.33_{(7)}$	I	$1.62_{(8)}$	$0.03_{(1)}$	4.00

ПЕТРОЛОГИЯ том 26 № 6 2018

(a) — поликристаллический агрегат ортопироксена с железистым оливином, графитом и микросферами закалочного расплава Fe-C в интерстициях (1300°C); (б) — включения Fe-C_{p-B}, железистого оливина и графита в ортопироксене (1300°C); (в) — структура Fe-C_{p-B} (1300°C); (г) — поликристаллический агрегат ортопироксена с железистым оливином и графитом в интерстициях (1400°C); (д) — микросферы Fe-C_{p-B} в ортопироксене (1400°C); (е) — включения Fe-C_{p-B}, железистого оливина и графита в ортопироксене (1400°C); (д) — микросферы Fe-C_{p-B}, в ортопироксене (1400°C); (е) — включения Fe-C_{p-B}, келезистого оливина и графита в ортопироксене (1400°C); (з) — полифазное включение, состоящее из Fe-C_{p-B}, железистого оливина и графита, окруженных каймой железистого оливина.

ОСОБЕННОСТИ ВКЛЮЧЕНИЙ В СИЛИКАТАХ

Включения в ортопироксене и гранате установлены во всем интервале температур и представлены закаленным расплавом Fe-C, графитом, а также высокожелезистыми оливином и ортопироксеном (рис. 16, 1д–13, 3). Помимо монофазных включений закаленного расплава, графита и оливина, во многих кристаллах ортопироксена отмечены полифазные включения

Рис. 2. РЭМ-микрофотографии (BSE) приполированных фрагментов полученных образцов. (а, б) – система Fe₃C-SiO₂-(Mg,Ca)CO₃, $T = 1500^{\circ}$ C, (в, г) – система Fe₃C-SiO₂-(Mg,Ca)CO₃-Al₂O₃, $T = 1300^{\circ}$ C: (а, б) – кристалл ортопироксена с линзовидными включениями закаленного железо-углеродного расплава (Fe-C_{p-B}); (в) – включения Fe-C_{p-B} в гранате; (г) – включения графита и оливина в гранате (1300°C).

 $Fe-C_{p-B}$ + графит, $Fe-C_{p-B}$ + графит + оливин, оливин + графит, $Fe-C_{p-B}$ + графит + Fe-ортопироксен и $Fe-C_{p-B}$ + графит + оливин + Fe-ортопироксен (рис. 1д–13).

Включения железо-углеродного расплава в ортопироксене

Включения закаленного расплава Fe-C, полученные при 1300 и 1400°C, преимущественно представляют собой микросферы (рис. 16, 1д–13, 3а), их состав характеризуется концентрацией углерода 4–6 мас. %, что в целом соответствует расплаву, образующемуся в системе. Установлено, что наиболее крупные единичные включения (10–17 мкм) приурочены к центральным частям вмещающих кристаллов, а наиболее мелкие (3–5 мкм) и многочисленные – к периферии. Строение наиболее распространенных полифазных включений, содержащих расплав Fe-C, показано на рис. 1д, 1е. Включения, состоящие из микросферы закалочного расплава \pm графита, обнаружены более чем в 80% кристаллов ортопироксена, и являются наи-

ПЕТРОЛОГИЯ том 26 № 6 2018

более часто встречающимися. Представительная микрофотография второго по распространенности типа включений приведена на рис. 1ж. Эти включения состоят из микросферы закалочного расплава Fe-C, частично или полностью окруженной железистым оливином, а также пластинчатых кристаллов графита. В некоторых случаях в этих включениях также присутствует железистый ортопироксен (рис. 1з). Включения Fe-C, полученные при 1500°C, лишь частично представлены микросферами, большинство из них характеризуются линзовидной формой (рис. 2a, 2б). К этим линзовидным включениям пространственно приурочены включения высокожелезистого ортопироксена и графита (рис. 2a, 2б).

Включения графита и железистых силикатов в ортопироксене

Включения графита представлены пластинками размером 3–5 мкм. Они присутствуют в ортопироксене как в виде монофазных (рис. 3г), так и в составе полифазных включений – в ассоциации

Рис. 3. Оптические микрофотографии (отраженный свет, режим темного поля) включений в ортопироксене ($T = 1400^{\circ}$ C).

(а) – микросферы закаленного расплава Fe-C; (б) – микросфера Fe-C, пластинки графита и железистый оливин; (в) – микросферы закаленного расплава Fe-C и железистый оливин; (г) – включения графита различной морфологии.

с закаленным расплавом Fe-C и/или с оливином (рис. 16, 1е–13, 3в, 3г). Включения железистого оливина установлены в ортопироксенах только в экспериментах, проведенных при 1300 и 1400°С. Они являются наиболее крупными, их размер в среднем составляет 10 мкм, а иногда достигает 20 мкм (рис. 16, 3в). Характерной особенностью этих включений является их округлая морфология (рис. 1б). Составы включений соответствуют Fe_{1.5}Mg_{0.5}SiO₄ (1300°С) и Fe_{1.4}Mg_{0.6}SiO₄ (1400°С). Высокожелезистый ортопироксен при 1400°С установлен в составе единичных полифазных включений (рис. 13), а при 1500°С является одним из наиболее распространенных включений в ортопироксенах (рис. 2б). Состав данных включений соответствует $Fe_{1.5}Mg_{0.3}Ca_{0.2}Si_2O_6$, а их размер в среднем составляет 10 мкм.

Включения в гранате

Включения в гранате обнаружены в интервале температур от 1300 до 1500°С и представлены закаленным расплавом Fe-C, графитом, а также высокожелезистым ортопироксеном (рис. 2в, 2г). Все вышеупомянутые фазы находятся в составе как монофазных, так и полифазных включений – Fe-C_{p-в} + графит, графит + Fe-ортопироксен, Fe-C_{p-в} + графит + Fe-ортопироксен (рис. 2в, 2г). В отличие от аналогичных включений в ортопироксене, полученных в системе Fe_3C -SiO₂-(Mg,Ca)CO₃, характерные особенности включений в гранате не зависят от температуры. Установлено, что включения закаленного расплава Fe-C (C ~ 4–5 мас. %) присутствуют в кристаллах граната в виде микросфер размером 2–3 мкм. Графит во включениях представлен пластинками размером до 7 мкм. Железистый ортопироксен (Fe_{1.22}Mg_{0.34}Ca_{0.33}Si₂O₆) формирует изометричные включения размером до 10 мкм.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Процессы образования силикатов, графита (± алмаза) и железо-углеродного расплава

Результаты проведенных экспериментов свидетельствуют, что при $1300-1500^{\circ}$ С происходит полная декарбонатизация систем, в результате чего образуется ортопироксен или гранат и выделяется CO₂-флюид (1)–(2), который, в свою очередь, вступает в редокс-взаимодействие с карбидом железа (3):

$$2(Mg,Ca)CO_3 + 2SiO_2 \rightarrow \rightarrow (Mg,Ca), Si_2O_6 + 2CO_2,$$
(1)

$$3(Mg,Ca)CO_3 + Al_2O_3 + 3SiO_2 \rightarrow \rightarrow (Mg,Ca)_3 Al_2Si_3O_{12} + 3CO_2,$$
(2)

$$3Fe_{3}C + 3CO_{2} \rightarrow 6FeO_{B CHJUKATAX} + + 3Fe-C_{DACHJAB} + 5C^{0}.$$
(3)

В процессе редокс-взаимодействия (3) происходит образование элементарного углерода (графита), расплава Fe-C, а также FeO, не формирующего самостоятельную фазу, а входящего в состав силикатов — ортопироксена, граната или оливина. При этом новые порции CO₂-флюида, образующиеся на последующих стадиях экспериментов, вступают в углерод-продуцирующее редокс-взаимодействие с расплавом Fe-C:

$$3\text{Fe-C}_{\text{расплав}} + 3\text{CO}_2 \rightarrow$$

$$\rightarrow 6\text{FeO}_{\text{в силиктах}} + 4\text{C}^0.$$
(4)

Необходимо отметить, что в качестве одной из возможных причин кристаллизации метастабильного графита в поле устойчивости алмаза в данном случае может рассматриваться ингибирующее влияние примесей, например кислорода и азота, которые были адсорбированы на исходных реагентах. В исследованиях по кристаллизации алмаза в металл-углеродных системах в присутствии примесей (Palyanov et al., 2010, 2013b;) показано, что для образования метастабильного графита в области термодинамической стабильности алмаза достаточно ~0.48 мас. % H₂O или ~0.1 мас. % азота в расплаве Fe-Ni-C. Кристаллизация метастабильного графита вместо алмаза установлена и в других модельных системах, например в карбонат-силикатных (Пальянов и др., 2001) и во флюидных (Пальянов и др., 2000), как правило, при относительно невысоких температурах.

Формирование включений в ортопироксене и гранате

Обнаружение включений как в центральных, так и в краевых зонах кристаллов граната и ортопироксена свидетельствует о том, что их захват происходил на всех стадиях декарбонатизации. При этом приуроченность наиболее крупных включений расплава Fe-C к центральным частям кристаллов силикатов, с уменьшением их размера к периферии, отражает изменение степени декарбонатизации системы и глубины прохождения реакции (4) на разных этапах экспериментов. Очевидно, что на начальной стадии экспериментов, при образовании первых порций CO_2 -флюида, по редокс-реакции (4) окислялось гораздо меньшее количество расплава Fe-C, чем при полной декарбонатизации системы на финальных

ПЕТРОЛОГИЯ том 26 № 6 2018

стадиях опытов, что напрямую влияло на размер захваченных во включения микросфер.

Валовый анализ включений показывает, что свыше 80% из них представлено только расплавом Fe-C либо расплавом Fe-C + графитом. При этом установлено, что доминирующим компонентом в среде кристаллизации силикатов являлся СО₂-флюид, включения которого ни в гранате, ни в ортопироксене не обнаружены. Для примера на рис. За показано, что одним кристаллом ортопироксена (около 60 мкм) может быть захвачено более 45 включений размером 1-8 мкм, содержащих только расплав Fe-C. Результаты проведенных исследований позволяют сделать вывод об избирательном захвате включений преимушественно металлического расплава силикатами в процессах их кристаллизации по реакциям декарбонатизании.

Детальное исследование составов и строения полифазных включений показало, что часть из них претерпевала изменения фазового состава после захвата. В том случае, если в ходе кристаллизации ортопироксена или граната происходил захват капель расплава Fe-C совместно с небольшим количеством СО₂-флюида, в объеме включения реализовывалась реакция между контрастными по fO_2 фазами — Fe-C и флюидом. В данном случае формировался особый тип включений (рис. 13). Реакция расплава Fe-С и СО₂-флюида во включении приводит к кристаллизации графита, а также образованию FeO, который вступает в реакцию с вмещающим ортопироксеном, в результате чего во включении кристаллизуются две новые силикатные фазы – высокожелезистый ортопироксен и высокожелезистый оливин. Наиболее вероятно, при захвате включений расплава Fe-C и CO₂ возможно образование тонкой пленки FeO вокруг расплава, препятствующей быстрому прохождению редокс-реакции между расплавом и флюидом. Помимо фазового состава, данные включения также характеризуются принципиальной особенностью – округлой морфологией новообразованного оливина (рис. 16, 13), по всей видимости, наследующего форму исходной капли расплава Fe-C. Помимо этого, в качестве другой "диагностической" особенности данного типа включений можно указать образование высокожелезистого ортопироксена на границе вмещающий кристалл/включение. Для включений, полученных в большом количестве в эксперименте при 1500°С и состоящих из линз расплава Fe-C, графита и высокожелезистого ортопироксена, предполагаются аналогичные процессы образования. В случае быстрого роста кристаллов ортопироксена возможен вариант захвата включений, в которых количество СО₂-флюида преобладает над количеством расплава Fe-C. В результате редокс-взаимодействия, происходяшего в таких включениях, после эксперимента мы можем наблюдать полифазные включения, состоящие из линз Fe-C, пластинок графита и высокожелезистого ортопироксена. Необходимо подчеркнуть, что, несмотря на свидетельства редокс-реакций внутри отдельных включений, установлено, что абсолютное большинство включений не демонстрирует признаков воздействия СО₂-флюида. Таким образом, экспериментально доказано, что гранат и ортопироксен могут являться надежным "щитом" между металлическими или карбидными фазами и контрастными по фугитивности кислорода агентами мантийного метасоматоза.

Условия образования силикатов с включениями железо-углеродного расплава и графита в природных обстановках литосферной мантии

По современным представлениям, в восстановленной металлсодержащей мантии присутствует около 1400 ppm Fe⁰ (Rohrbach et al., 2007), которое, в зависимости от концентрации углерода, а также от P-T параметров, находится в виде металла, расплава Fe-C или карбидов (Frost, Mc-Cammon, 2008; Dasgupta, Hirschmann, 2010; Marty, 2012). Предполагается, что в условиях субдукции корового материала, металлические или карбидные фазы взаимодействуют с окисленным слэбом, являющимся источником карбонатов и СО2-флюида (Добрецов, 2010; Когарко, Рябчиков, 2013; Перчук и др., 2013). Одними из наиболее распространенных типов реакций, характерных для условий субдукции, являются реакции декарбонатизации, осуществляемые при взаимодействии карбонатного материала с мантийными оксидами или силикатами. Однако субдуцируемые Mg-Ca карбонаты могут быть устойчивы до глубин нижней мантии (Brenker et al., 2007; Boulard et al., 2011; Merlini et al., 2012; Oganov et al., 2013). Как показано в работах (Berman, 1991; Palyanov et al., 2007; Martin, Hammouda, 2011; Bataleva et al., 2016), присутствие железа может существенно снижать температуру начала реакций декарбонатизации и являться своеобразным "триггером", запускающим процесс образования железистых силикатов в ассоциации с СО₂-флюидом. Установлено, что экспериментально воспроизведенные процессы декарбонатизации с участием металлического железа или карбида могут локально происходить в природных обстановках, в условиях субдукции окисленного материала в восстановленную мантию.

ЗАКЛЮЧЕНИЕ

Таким образом, в результате экспериментального молелирования процессов взаимолействия в системе карбид-оксид-карбонат, определены условия образования включений расплава Fe-С и графита в мантийных силикатах и проведена оценка их устойчивости в присутствии СО₂-флюида – потенциального агента окислительного метасоматоза в условиях литосферной мантии. Установлено, что в условиях быстрой кристаллизации ортопироксенов и гранатов при мантийных давлениях и температурах может быть реализован избирательный захват включений металл-углеродного расплава и графита. Присутствие СО₂-флюида в интерстициональном пространстве не влияет на сохранность металлических включений, а также включений графита в силикатах. Экспериментально доказано, что избирательный захват включений металлического расплава и графита силикатами, устойчивыми в присутствии СО2-флюида, является одной из потенциальных возможностей сохранения металлической фазы и С⁰ в мантийных доменах, подвергающихся переработке агентами окислительного метасоматоза.

Работа выполнена при финансовой поддержке РФФИ (проект № 16-35-60024), а также в рамках Государственного задания НИР (проект № 0330-2016-0007).

СПИСОК ЛИТЕРАТУРЫ

Баталева Ю.В., Пальянов Ю.Н., Сокол А.Г. и др. Роль пород, содержащих самородное железо, в образовании железистых карбонатно-силикатных расплавов: экспериментальное моделирование при *P*-*T* параметрах литосферной мантии // Геология и геофизика. 2015. Т. 56. № 1–2. С. 188–203.

Добрецов Н.Л. Петрологические, геохимические и геодинамические особенности субдукционного магматизма // Петрология. 2010. Т. 18. № 1. С. 88–110.

Когарко Л.Н., Рябчиков И.Д. Алмазоносность и окислительный потенциал карбонатитов // Петрология. 2013. Т. 21. № 4. С. 350–371.

Пальянов Ю.Н., Сокол А.Г., Хохряков А.Ф. и др. Кристаллизация алмаза и графита в СОН флюиде при *P*-*T* параметрах природного алмазообразования // Докл. АН. 2000. Т. 375. № 3. С. 384–388.

Пальянов Ю.Н., Шацкий В.С., Сокол А.Г. и др. Экспериментальное моделирование кристаллизации метаморфогенных алмазов // Докл. АН. 2001. Т. 380. № 5. С. 671–675.

Перчук А.Л., Шур М.Ю., Япаскурт В.О., Подгорнова С.Т. Экспериментальное моделирование мантийного метасоматоза, сопряженного с эклогитизацией корового вещества в зоне субдукции // Петрология. 2013. Т. 21. № 6. С. 632–653.

Рябчиков И.Д. Механизмы алмазообразования – восстановление карбонатов или частичное окисление углеводородов? // Докл. АН. 2009. Т. 428. № 6. С. 797–800.

Рябчиков И.Д., Каминский Ф.В. Физико-химические параметры материала мантийных плюмов по данным термодинамического анализа минеральных включений в сублитосферных алмазах // Геохимия. 2014. Т. 52. № 11. С. 963–971.

Рябчиков И.Д., Когарко Л.Н. Физико-химические параметры материала глубинных мантийных плюмов // Геология и геофизика. 2013. Т. 57. С. 874–888.

Соболев Н.В., Ефимова Э.С., Поспелова Л.Н. Самородное железо в алмазах Якутии и его парагенезис // Геология и геофизика. 1981. № 12. С. 25–28.

Ballhaus C., Frost B.R. The generation of oxidized CO_2 bearing basaltic melts from reduced CH_4 -bearing upper mantle sources // Geochim. Cosmochim. Acta. 1994. V. 58. P. 4931–4940.

Bataleva Y.V., Palyanov Y.N., Sokol A.G. et al. Wüstite stability in the presence of a CO_2 -fluid and a carbonate-silicate melt: implications for the graphite/diamond formation and generation of Fe-rich mantle metasomatic agents // Lithos. 2016. V. 244. P. 20–29.

Bataleva Y.V., Palyanov Y.N., Borzdov Y.M. et al. Iron carbide as a source of carbon for graphite and diamond formation under lithospheric mantle *P-T* parameters // Lithos. 2017. V. 286–287. P. 151–161.

Berman R.G. Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications // Can. Mineral. 1991. V. 29. P. 833–855.

Boulard E., Gloter A., Corgne A. et al. New host for carbon in the deep Earth // Proceed. Natl. Acad. Sci. USA. 2011. V. 108. I. 13. P. 5184–5187.

Brenker F.E., Vollmer C., Vincze L. et al. Carbonates from the lower part of transition zone or even the lower mantle // Earth Planet. Sci. Lett. 2007. V. 260. P. 1–9.

Bulanova G.P. The formation of diamond // J. Geochem. Explor. 1995. V. 53. P. 2–23.

Creighton S., Stachel T., Matveev S. et al. Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism // Contrib. Mineral. Petrol. 2009. V. 157. P. 491–504.

Dasgupta R., Hirschmann M.M. The deep carbon cycle and melting in Earth's interior // Earth Planet. Sci. Lett. 2010. V. 298. I. 1–2. P. 1–13.

Dasgupta R., Buono A., Whelan G., Walker D. High-pressure melting relations in Fe-C-S systems: Implications for formation, evolution, and structure of metallic cores in planetary bodies // Geochim. Cosmochim. Acta. 2009. V. 73. P. 6678–6691.

Frost D.J., McCammon C.A. The redox state of Earth's mantle // Annu. Rev. Earth Planet. Sci. 2008. V. 36. P. 389–420.

Frost D.J., Liebske C., Langenhorst F., McCammon C.A. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle // Nature. 2004. V. 428. P. 409–412.

Jacob D.E., Kronz A., Viljoen K.S. Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond

aggregates // Contrib. Mineral. Petrol. 2004. V. 146. I. 5. P. 566–576.

Kaminsky F.V., Wirth R. Iron carbide inclusions in lowermantle diamond from Juina, Brazil // Can. Mineral. 2011. V. 49. P. 555–572.

Kaminsky F.V., Ryabchikov I.D., McCammon C.A. et al. Oxidation potential in the Earth's lower mantle as recorded by ferropericlase inclusions in diamond // Earth Planet. Sci. Lett. 2015. V. 417. P. 49–56.

Martin A.M., Hammouda T. Role of iron and reducing conditions on the stability of dolomite + coesite between 4.25 and 6 GPa – a potential mechanism for diamond formation during subduction // Eur. J. Mineral. 2011. V. 23. V. 5–16.

Marty B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth // Earth Planet. Sci. Lett. 2012. V. 313–314. P. 56–66.

Merlini M., Crichton W.A., Hanfland M. et al. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle // Proceed. Natl. Acad. Sci. USA. 2012. V. 109. I. 34. P. 13509–13514.

Oganov A.R., Hemley R.J., Hazen R.M., Jones A.P. Structure, bonding and mineralogy of carbon at extreme conditions // Rev. Mineral. Geochem. 2013. V. 75. I. 1. P. 47–77.

Pal'yanov Y.N., Sokol A.G., Borzdov Y.M., Khokhryakov A.F. Fluid-bearing alkaline carbonate melts as the medium for the formation of diamonds in the Earth's mantle: an experimental study // Lithos. 2002a. V. 60. I. 3–4. P. 145–159.

Pal'yanov Y.N., Sokol A.G., Borzdov Yu.M. et al. Diamond formation through carbonate-silicate interaction // Amer. Mineral. 2002b. V. 87. P. 1009–1013.

Palyanov Y.N., Borzdov Y.M., Bataleva Y.V. et al. Reducing role of sulfides and diamond formation in the Earth's mantle // Earth Planet. Sci. Lett. 2007. V. 260. I. 1–2. P. 242–256.

Palyanov Y.N., Borzdov Y.M., Khokhryakov A.F. et al. Effect of nitrogen impurity on diamond crystal growth processes // Cryst. Growth Des. 2010. V. 10. I. 7. P. 3169–3175.

Palyanov Y.N., Khokhryakov A.F., Borzdov Y.M., Kupriyanov I.N. Diamond rowth and morphology under the influence of impurity adsorption // Cryst. Growth Des. 2013a. V. 13. I. 12. P. 5411–5419.

Palyanov Y.N., Bataleva Y.V., Sokol A.G. et al. Mantle–slab interaction and redox mechanism of diamond formation // Proceed. Natl. Acad. Sci. USA. 2013b. V. 110. I. 51. P. 20408–20413.

Rohrbach A., Schmidt M.W. Redox freezing and melting in the Earth's deep mantle resulting from carbon – iron redox coupling // Nature. 2011. V. 472. P. 209–212.

Rohrbach A., Ballhaus C., Golla-Schindler U. et al. Metal saturation in the upper mantle // Nature. 2007. V. 449. P. 456–458.

Rohrbach A., Ghosh S., Schmidt M.W. et al. The stability of Fe-Ni carbides in the Earth's mantle: Evidence for a low Fe-Ni-C melt fraction in the deep mantle // Earth Planet. Sci. Lett. 2014. V. 388. P. 211–221.

Sharp W.E. Pyrrhotite, a common inclusion in South African diamonds // Nature. 1966. V. 21. I. 1. P. 402–403.

ПЕТРОЛОГИЯ том 26 № 6 2018

Shirey S.B., Cartigny P., Frost D.G. et al. Diamonds and the geology of mantle carbon // Rev. Mineral. Geochem. 2013. V. 75. P. 355–421.

Smith E.M., Kopylova M.G. Implications of metallic iron for diamonds and nitrogen in the sublithospheric mantle // Can. J. Earth Sci. 2014. V. 51. I. 5. P. 510–516.

Smith E.M., Shirey S.B., Nestola F. et al. Large gem diamonds from metallic liquid in Earth's deep mantle // Science. 2016. V. 354. I. 6318. P. 1403–1405. Sokol A.G., Borzdov Y.M., Palyanov Y.N., Khokhryakov A.F. High-temperature calibration of a multi-anvil high pressure apparatus // High Pres. Res. 2015. V. 35. I. 2. P. 139–147.

Stachel T., Harris J.W., Brey G.P. Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania // Contrib. Mineral. Petrol. 1998. V. 132. I. 1. P. 34–47.

Woodland A.B., Koch M. Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal Craton, southern Africa // Earth Planet. Sci. Lett. 2003. V. 214. P. 295–310.