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Abstract—The collective magnetization motion in an array of magnetostatically interacting ferromagnetic
square elements is studied theoretically and experimentally. Dispersion laws are obtained for collective modes
for some particular cases of the distribution of the topological charges πT of magnetic vortices in particles.
Resonance curves are plotted with allowance for dissipation for various values of πT. An experimental inves-
tigation of the ferromagnetic resonance in a two-dimensional array of particles qualitatively supports the cal-
culation results.
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1. INTRODUCTION

Interest in studying nano- and microobjects
(nano- and microdots) is related to the prospects of
using such materials in ultrahigh-density data storage
devices, spintronic devices, and microsurgery. The
magnetic properties of individual nanodots and their
arrays have important specific features. For example,
one such element can hold two bits. One bit can be
coded in the sign of polarity p of a magnetic vertex
core, and the second bit, in the sign of chirality q.
Under certain conditions, the equilibrium magnetiza-
tion distribution in nanodots is known to be a mag-
netic vortex with a core, which is a small region having
a strongly nonuniform magnetization, at its center.
The magnetization direction at the center of the core
is perpendicular to the nanodot surface and is charac-
terized by polarity p = ±1, conventionally “up” and
“down”. The average core radius can be estimated
from the relation δ ≈ , where A and Keff are the
exchange and surface anisotropy constants, respec-
tively. δ for most soft magnetic materials is several tens
of nanometers. Magnetization in a vortex can have a
conventional clockwise or counterclockwise direction,
which is characterized by the sign of parameter q = ±1.

The analytical description of the dynamic proper-
ties of nanodots is based on the Landau–Lifshitz–
Gilbert equation and its modification proposed by
Thiele [1]. The Thiele approach is as follows. In the

presence of magnetization soliton heterogeneity, the
equation of magnetization motion is rewritten in terms
of collective variables, one of which is the coordinate
of the center of the heterogeneity. In this form,
Thiele’s equation acquires a non-Newtonian form for
the description of a magnetic vortex at a nanodot [2].
In an ac field, the core of a magnetic soliton is involved
in complex motion under the action of a gyroforce [3–
6]. It should be noted that the trajectory of core
motion in nanospots with a nonspherical (elliptical)
shape can differ substantially from a circular one, and
the application of Thiele’s equation is complicated.

Force microscopy is the main method for con-
trolling the magnetic state in submicron particles [7–
10]. To control polarity and chirality under resonance
conditions, researchers use short spin-polarized cur-
rent pulses (see, e.g., [11]) and field pulses [12–15],
and gradient fields turn out to be effective in the arrays
of square elements [16].

The element arrangement density in a matrix
should be as high as possible in high-density data stor-
age devices and spintronic devices. The interaction
between the magnetic subsystems substantially affects
the magnetization dynamics in such arrays of closely
spaced magnets. As a rule, this interaction has a mag-
netostatic origin; however, an indirect exchange of
conduction electrons [17] and a direct exchange can
take place in the presence of magnetic “bridges”
between neighboring elements [18]. Therefore, a spec-
trum of experimental and theoretical works has
recently appeared to study the influence of an inter-† Deceased.
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Fig. 1. Schematic diagram of the equilibrium magnetiza-
tion structure in a square ferromagnet: (1) core and
(2) domain wall.
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particle interaction on the static and dynamic mag-
netic properties of arrays.

For theoretical calculations, researchers most often
apply the model concepts where a magnetostatic inter-
action is set in the dipole approximation. For example,
the authors of [19, 20] analytically calculated the laws
of dispersion of one- and two-dimensional arrays with
allowance for only the dipole interaction of the mag-
netic moments of cores. The law of dispersion was
studied in [21] using the model of an array of circular
elements with the same chirality, and this law was
investigated in [9] by alternating both parameters. In
both arrays with a large number of nano- and micro-
dots and small sets [22–25], the removal of resonance
frequency degeneracy due to the interaction between
elements was predicted and discovered. In most works
dealing with the collective modes in arrays, calcula-
tions were carried out without regard for dissipation
and only for some possible combinations of polarities
and chiralities. In this work, we try to close this gap for
an array of square micron-sized (submicron) ele-
ments.

The behavior of a core in ac magnetic fields at a rel-
atively low frequency (less than 1 GHz) is similar to
the gyrotropic motion of a quasiparticle in the field of
effective forces [26–31]. A structure of triangle
domains separated by 90° walls of the Néel type forms
in micron and submicron square magnets. The core of
a vortex forms at the intersection of domain walls at
the center of a square (Fig. 1). When the core moves
from the center of a square, the action of demagnetiz-
ing fields causes an effective restoring force and a
gyroforce, which is induced by spin precession in the
effective field of a magnet. In this case, the motion of
the core is similar to the Larmor gyration of a charged
particle about the lines of a magnetic field. The gyra-
tion frequency is several hundred megahertzs, which is
significantly lower than the domain wall oscillation
frequency. It is interesting that both magnetization
JOURNAL OF EXPERIMENTAL AN
motion modes, namely, core gyration and domain wall
oscillation, were experimentally detected in the arrays
of square elements [32]. The substantial difference
between the frequencies of these modes suggests that
the presence of a domain structure insignificantly
affects the character of the gyrotropic motion of a vor-
tex core.

We write Thiele’s equation in the form

(1)
where G is the gyrovector, v is the velocity vector of the
magnetic vortex core, D is the coefficient of effective
viscous friction, and U is the effective potential core
energy. The gyrovector can be represented as [11,
30, 33]

where πT = pq is the topological charge of the magnetic
vortex [34, 35], G0 = 2πMsl/γ, Ms is the saturation
magnetization, h = Hz/Hs, Hs ≈ 10 kOe is the satura-
tion field along axis z, l is the element thickness, and γ
is the gyromagnetic ratio. Axis z is perpendicular to the
film surface and k is the unit vector along axis z. U is
the core energy in the effective field of a square ele-
ment. The effective field can include the terms caused
by the Zeeman energy, the interparticle interaction
energy, the stray field energy, and so on. From here
on, we restrict ourselves to these factors,

(2)

where UH is the core energy related to the interaction
of the magnetic subsystem of the element and an
applied magnetic field. Udip describes the energy of the
pair magnetostatic interaction between array ele-
ments. The interaction between the magnetic
moments of the cores, which is relatively weak
(because of the small core volume) [36] should be dis-
tinguished from the interaction between the magnetic
moments of the remaining volume of squares. The for-
mer interaction exists irrespective of a vector coordi-
nate. The latter interaction can be high and appears
between induced magnetic moments solely due to the
shift of a core from the center of a magnet. To estimate
this shift, it is useful to apply the magnetic charge
method in the rigid vortex model [37, 38]. Parameter
Up is the potential energy of the core, which increases
when it shifts from an equilibrium position (center of
spot). As a rule, an increase in this term is related to an
increase in the demagnetizing fields. For an insignifi-
cant displacement of a core from its equilibrium posi-
tion, we can write Up = κr2, where κ = κ0(1 – h2) is the
effective rigidity of the quasi-elastic force on the core
(for circular elements, see [11, 30, 33]) and r is the
radius vector of the center of the core that originates in
the center of the square. The problem of an explicit
dependence of parameter D on the parameters of mag-
netic elements is rather complex, and it is difficult to
find an analytical expression. In this work, we use the
estimates obtained in [39–42].

× − − ∇ = 0,D UG v v

= π −0(1 ) ,TG phG k

= + +dip ,p HU U U U
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Fig. 2. Magnetization configuration of a shifted rigid vor-
tex in a square nanodot (m is magnetization unit vector).
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Despite a wide spectrum of works dealing with the
magnetic properties of individual square submicron-
sized magnets, the question of an explicit form of κ0 is
still open. As a rule, this problem is partly resolved by
a numerical simulation of magnetization dynamics,
since this approach does not need an analytical for-
mula. The purpose of this work is to calculate magne-
tization oscillation spectra. Therefore, we first
approximately compute the effective rigidity as a func-
tion of the magnet parameters.

2. EFFECTIVE CORE POTENTIAL 
IN A SQUARE MICROELEMENT

We now estimate the change in the potential mag-
netostatic energy when the core of a rigid vortex shifts
from the center of a square nanodot (Fig. 2). When the
core moves, magnetostatic charges appear on the lat-
eral surface and interact with each other. Eight charge-
alternating regions, which are indicated by curly
brackets in Fig. 2, can be distinguished. We now calcu-
late the energy of their pair interaction.

As an example, we consider the interaction of
regions 1–2 in detail. An expression for the surface
density of magnetic charges in region 1 has the form

(3)

where L is the side of square. Similar formulas can be
derived for other regions. Then, for the energy of inter-
action of small regions located at distances u and 
from the vortex core, we can write

(4)

where μ0 is the magnetic constant. From here on, we
introduce dimensionless variables u' = u/L and  =

/L. For the interaction energy of regions on one face,
we have

(5)

Similarly, we obtain expressions for the energies of
interaction of the other three faces, E34, E56, and E78.

σ = φ =
− +

1 2 2
sin ,

( /2 )
s s

uM M
L x u

v

( ) ( )

( ) ( )

−

−

μ=
π −

⎧⎡ ⎤ ⎡ ⎤⎫× − + − +⎨ ⎬⎢ ⎥ ⎢ ⎥
⎩⎣ ⎦ ⎣ ⎦⎭

μ=
π −

⎧⎡ ⎤ ⎡ ⎤⎫× − + − +⎨ ⎬⎢ ⎥ ⎢ ⎥
⎩⎣ ⎦ ⎣ ⎦⎭

2 2
0

12

1/22 2
2 2

2 2
0

1/22 2
2 2

4

2 2

' ' ' '
4 ' '

1 1' ' ,
2 2

s

s

M h u duddE
u

L Lx u x

M h L u du d
u

x xu
L L

v v

v

v

v v

v

v

v'
v

( )

( ) ( )

− −

− +

−

μ=
π −

⎧⎡ ⎤ ⎡ ⎤⎫× − + − +⎨ ⎬⎢ ⎥ ⎢ ⎥
⎩⎣ ⎦ ⎣ ⎦⎭

∫ ∫
v v

v

1 1
2 22 2

0
12

'1
2

1/22 2
2 2

' ' ' '
4 ' '

1 1' ' .
2 2

y y
L L

s

y u
L

M h L u du dE
u v

x xu
L L
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
Moreover, we have to calculate the interaction ener-
gies of regions on different faces. For example, for the
pair energy of neighboring faces 12–78, we can write

(6)

where

(7)

A similar calculation is performed for the remaining
pairs of regions. The total energy of a square element is

(8)

Figure 3 shows the results of a numerical calculation of
the dimensionless part of energy (integrals). It is seen
that, as the core travels a certain critical distance from
the center of square, the restoring force disappears.
The core freely moves toward the edge of the element
and disappears. This effect does take place, but the
rigid vortex model cannot give a reliable critical dis-
placement. The further analysis is performed provided
the displacement of the core from the center of square
is small.
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Fig. 3. (Color online) Profile of the dimensionless part of the potential energy (7) of a square element: (a) outline picture and
(b) potential surface.
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At a small core displacement, potential (8) is well
approximated by the function

(9)

and we can write

(10)

for the quasi-rigidity coefficient at small displace-
ments. Figure 4 shows the qualitative (without regard
for the type of substance) trajectory of a vortex core in
potential (9) that was plotted using the results of a
numerical solution of Eq. (1).

In the presence of a constant force component in
the magnet plane, the vortex core moves from the cen-
ter to a potential region with a lower quasi-rigidity
coefficient, which follows from Eq. (9). The period of
core revolution increases with the in-plane compo-
nent of force. This finding explains the high sensitivity
of resonance curves to the sample orientation with
respect to a dc magnetic-field component [9]. Note
that this effect is much weaker in circular nanodots,
since the effective rigidity of the magnetic subsystem
in circular magnets weakly depends on the core dis-
placement. Thus, the motion of the core in a square
magnet can be described in a linear approximation at
the in-plane fields that are much lower than those
allowed for circular elements.
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3. NORMAL MODES 
OF COLLECTIVE CORE MOTION

We now consider a model to qualitatively under-
stand the cause of splitting of ferromagnetic resonance
(FMR) frequencies. Let us analyze a two-dimensional
array of ferromagnetic square elements, the centers of
which are spaced d apart. In this case, the coordinates
of the centers of the elements are set as follows: Xn, m =
nd and Yn, m = md (Fig. 5).

The interaction as a function of the interparticle
distance in the array was studied in a number of works.
The authors of [43, 44] showed that the interaction
energy is proportional to d–6 in the absence of an
applied field. The mutual influence of the magnetic
subsystems of a pair of elements causes the effect that
is analogous to the polarization of gas molecules;
therefore, the authors pointed to an analogy with the
van der Waals forces. As was shown in [41], the energy
of pair interaction is proportional to d–3.6 in the pres-
ence of a magnetic field applied normal to the film
surface. The reduction in the power can be explained
if we take into account the relative weakness of the
magnetostatic interaction as compared to the Zeeman
energy in the fields that can substantially change effec-
tive parameters G and κ. When the applied fields
increases, the quality of the dipole approximation
used to describe the interaction energy becomes
higher. Here, we restrict ourselves to the dipole
approximation where energy is proportional to d–3,
which is admissible for an insignificant core displace-
ment from an equilibrium position, a predominant
perpendicular dc field component and a minor in-
D THEORETICAL PHYSICS  Vol. 126  No. 4  2018
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Fig. 4. (Color online) (a) Characteristic trajectories of the core of a magnetic vortex in a square microelement. (b) Time depen-
dence of the core coordinate; the period of core revolution increases with the displacement from the center of the square. (dotted
curves) Trajectories in the presence of a magnetic field in the square plane along axis y and (solid curves) trajectory in zero field. 
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plane ac field component, and the field created by the
magnetization of the remaining array elements.

We now represent the terms from Eq. (2) as func-
tions of the core coordinate. For the energy of the
magnetostatic interaction of two elements spaced n
horizontal periods and m vertical periods apart, we can
write (Fig. 6)

where rn, m is the radius vector connecting the centers
of the squares under study. Figure 6 shows the sche-
matic diagram that can help one to understand how
the magnitude and the orientation of magnetic
moment M of an element depend on the core coordi-
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Fig. 5. Model for a two-dimensional array of square ele-
ments.
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d
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nate. Obviously, for the projections of the magnetic
moment of an element onto the coordinate axes, we
can write

Then, for the energy of interaction of a certain element
with the remaining matrix, we obtain

= − φ = − 0sin / ,xM qM qMy R

= φ = 0cos / .yM qM qMx R
YSICS  Vol. 126  No. 4  2018

Fig. 6. Coordinate system and the scheme of the magneto-
static interaction between square elements. A heavy point
indicates the position of the vortex core, and a heavy
arrow, the direction of a magnetic moment. Both disks
have the same chirality q = 1 (clockwise magnetization
direction near the core). Thin arrows near the disk edges
indicate possible core motion directions.
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(11)

where R0 is the root-mean-square radius of the vortex

core trajectory and ε = μ0M2/ d3. It is important that
the sign of πT affects the direction of the effective mag-
netic moment of the disk when the core moves and the
direction of core rotation about the center of the
square (clockwise or counterclockwise) [31, 45].

The Zeeman energy of an element with indices
{n, m} can be written as

(12)

where H = Hzk = hHsk is the dc magnetic field applied
normal to the film surface. h0(t) = h0(t)j is the small ac
component of the applied field along axis y (unit vec-
tor j). Then, allowing for Fig. 6, for energy UH we have

(13)

Under steady core motion conditions, quantity U0 =
‒MzHz does not change in time and not depend on
radius vector r of the core.

With allowance for Eqs. (11) and (13), we obtain
the following system of equations for Eq. (1) in projec-
tions onto the coordinate axes (for brevity, indices {0,
0} are omitted):

(14)
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For further calculations, we assume that the ac
field component changes according to a harmonic law
h0(t) = ηcosωt at cyclic frequency ω. We now solve
the system of equations (14) in the form of traveling
waves [9],

where K is the wavevector. The values of ωn, m under
steady conditions are the same in magnitude for differ-
ent elements, and its sign (core precession direction) is
determined by parameter πT.

We now consider particular cases of the distribu-
tion of parameters p and q. Assume that only elements
of two kinds with parameters {p1, q1} and {p2, q2} form
a matrix and that they are symmetrically distributed
with respect to axes x and y. For example, this distri-
bution corresponds to staggered and banded struc-
tures, which will be considered below. The assumption
of a symmetric distribution of the element parameters
substantially simplifies the calculations of the sums in
Eqs. (15).

As a result of the substitution of such calculations
into Eq. (14), we obtain the following system for ele-
ments of both kinds:

(16)

For the sums, we introduced the following designa-
tions:

(17)

The sums in Eqs. (17) should be taken according to the
kind of element; that is, n and m should be indices for
elements with the same combination of p and q. Thus,
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Fig. 7. Possible combinations of polarities and chiralities
{p1, p2, q1, q2} of arrays of elements of two kinds arranged
in a staggered order. Elements with different chiralities
have different contrasts. The direction of core polarity is
indicated by black or white filling of the central region in a
square.
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first kind, and sums  and , over the elements of
the second kind.

Using the system of equations (16), we can deter-
mine complex amplitudes { , , , }. The tra-
jectory of a magnetic vortex core in a square element
of the first kind is close to an elliptical trajectory with
semiaxes  = | | and  = | |, where

(18)

Quantity Z has the form

(19)

Similarly, we can derive expressions for the core tra-
jectory characteristics for an element of the second
kind.

The resonance frequencies are determined by both
the characteristics of individual magnets (G, κ, D) and
the rigidity of a magnetostatic coupling, which is
determined by ε and sums (17). It is important that the
removal of degeneracy of frequencies with different
combinations of polarities and chiralities is explained
by the presence of terms having product G1G2 raised to
odd powers in Eqs. (18) and (19). In addition, the
absolute values of parameters G, κ, and D depend on
the perpendicular component of the magnetic field;
therefore, its change leads to a change in the frequency
and a displacement of a resonance peak.

We now consider a particular staggered distribution
of the kinds of elements in an array. This distribution
of the topological charge of elements is most often in a
film [46]. Figure 7 shows possible combinations of p
and q.

In the absence of an external field (h = 0), the abso-
lute values of parameters G1 and G2 are the same;
therefore, the distributions from Fig. 7 form two sets
with different frequencies and each set is octuple-
degenerate. For example, combinations with numerals
{1, 4, 5, 8, 9, 12, 13, 16} have eigenfrequency ω1 and set
{2, 3, 6, 7, 10, 11, 14, 15} has eigenfrequency ω2. The
differences between the resonance frequencies in this
case ensure different signs of chirality irrespective of
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the sign of polarity. When a field is applied (h > 0), the
degeneracy of frequencies ω1 and ω2 is partly removed
because of the dependence of parameters G and κ on
the value and the sign of h. In this case, six sets,
namely, {1, 4}, {2, 3}, {5, 8, 9, 12}, {6, 7, 10, 11}, {13,
16}, {14, 15}, give curves with eight resonance peaks.
The mode frequencies can be determined from the
extremum of the array-absorbed power, which can be
estimated from the expression

(20)

Figure 8 shows the P(ω, h) curves obtained in the
long-wavelength limit (Kx = Ky = 0) using Eq. (20)
with allowance for Eqs. (18) and analogous expres-
sions for  and . At Kx = Ky = 0, from Eqs. (17) we
have

As a consequence of pair equality of sums, the mode
frequencies of sets {2, 3}, {5, 8, 9, 12} and {14, 15}, {5,
8, 9, 12} coincide. We used Eq. (10) to calculate the
parameter of the quasi-elastic force coefficient.

We now consider another interesting case of the
distribution of the kinds of element over an array,
namely, a banded structure. The schematic of such a
structure is shown in Fig. 9. We assume that parame-
ters p and q are unchanged along axis y and alternate
along x.

In this case, the calculation of power (20) differs
from the previous calculation only in summation (17).

ω
= ω + + +

1 2 1 2

1 1 2 2

{ , , , }
2 2 2 2 2

0 0 0 0

( , )

(| | | | | | | | ).
p p q qP h

D x y x y

20x
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= = − = = −(1) (1) (2) (2)
1 2 1 20.474, 1.256.S S S S
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Fig. 8. (Color online) Resonance curves calculated by
Eq. (20) for a staggered distribution of the kinds of ele-
ments at a magnetic field h = 0.1 and the center distance of
squares d = 5L. Vertical dashed lines indicate resonance
frequencies. p and q combination numbers are given in
curly brackets at the curves according to Fig. 7. 
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Fig. 9. Possible combinations of polarities and chiralities
{p1, p2, q1, q2} of elements of two kinds forming a banded
structure.
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As in the case of a staggered structure, we have eight res-
onance frequencies for sets with the same combinations
of p and q in the presence of a magnetic field. Sums (17)
for such a structure take the following values:

No coinciding resonance frequencies exist since  ≠
 ≠  ≠ . Figure 10 shows resonance curves for

a banded structure.
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4. DISPERSION LAWS
It is difficult to perform an analytical calculation of

the dependences of the mode frequencies on wave-
numbers Kx and Ky in the general case with allowance
for damping; therefore, we assume D ≪ G1, G2 for sim-
plicity. In this case, allowing for Eq. (19), we can write
the following eigenfrequency equation:

(21)

The solution to this biquadratic equation is

(22)
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The following simple particular cases are of inter- Another useful case corresponds to the absence of an

est. In the absence of interaction between magnetic
elements, Eq. (22) takes the form

(24)

Frequencies (24) correspond to the well-known
result for the motion of cores in two independent ele-
ments with different values of gyrovectors.

κω = + ± −
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applied magnetic field (h = 0). In this case, we have |G1| =
|G2| = G and, from Eq. (22), for the frequencies obtain

(25)

ω = κ + ε + ε κ + ε + ε

=

ω = κ + ε + ε κ + ε − ε

= −

2 (1) (2) (1) (2)
1 1 1 2 22

1 2

2 (1) (2) (1) (2)
2 1 1 2 22

1 2

1 ( )( ),

,
1 ( )( ),

.

S S S S
G

q q

S S S S
G

q q
D THEORETICAL PHYSICS  Vol. 126  No. 4  2018



MAGNETIZATION DYNAMICS IN TWO-DIMENSIONAL ARRAYS 531

Fig. 10. (Color online) Resonance curves calculated by
Eq. (20) for a banded structure at a magnetic field h = 0.1
and the center distance of squares d = 5L. Vertical dashed
lines indicate resonance frequencies. 
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Here, we have the frequencies of two modes corre-
sponding to core rotation in one direction (ω1) and in
opposite directions (ω2).
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Fig. 11. Dispersion surfaces for (a, b) staggered and (c, d) ban
ranges are separated. The surface were plotted at h = 0.1. 
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Let us return to the general case h ≠ 0 (G1 ≠ G2).
The eigenfrequencies of the corresponding modes are
determined from the extremum of the absorbed
power,

This condition allows us to find dispersion laws
ω(Kx, Ky , which are shown in Fig. 11.

In conclusion of this section, we note that, in prin-
ciple, modern experimental facilities can be used to
excite and detect short-wavelength modes and, hence,
to study ω(Kx, Ky) dependences in arrays of ferromag-
netic nano- and microelements [11].

5. EXPERIMENT
Arrays of square nanodots were formed by lift-off

lithography from a continuous film using high-vac-
uum thermal deposition of an 80NKhS alloy onto a
photoresist-coated silicon wafer. A negative AZ Nlof
2035 photoresist was used to create the required sur-
face morphology of the substrate. To observe the mag-

∂ ω =
∂ω 1 2 1 2{ , , , }( , ) 0.p p q qP h

1 2 1 2{ , , , }) p p q q
YSICS  Vol. 126  No. 4  2018

ded structures. For convenience, the high- and low-frequency
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Fig. 12. Atomic force microscopy image of the magnetiza-
tion structure in part of the array of square elements. 

3 μm

Fig. 13. (Color online) (circles) Integrated power absorp-
tion curves obtained from experimental data in compari-
son with (solid curves) calculated absorption power for
arrays with the center distance of elements of (a) 9 and
(b) 5 μm. 
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netic structure of ferromagnetic nanospots, we applied
a Veeco MultiMode NanoScope IIIa SPM System
scanning probe force microscope. Figure 12 depicts a
characteristic scan of the magnetic structure, which
was taken according to a two-pass technique under
cantilever frequency modulation. The reverse pass
height was z0 = 50 nm. These images allow the conclu-
sion that an equilibrium structure with a closed mag-
netic f lux (quasi-vortex) of four domains separated by
90° Néel boundaries most often forms in square ele-
ments. A core, which is similar to that formed at the
center of circular elements, is located at the center of a
square, at the intersection of diagonals.

The resonance behavior of magnetization was
studied on an FMR spectrometer. A sample was
placed at the antinode of a high-frequency magnetic
field of frequency ω = 415 MHz. The in-plane ac mag-
netic field amplitude was 1 Oe. The field was normal
to the waveguide plane. A signal from the sample was
amplified by a selective amplifier at a modulation fre-
quency of 1 kHz and was transferred to a synchronous
detector. Applied magnetic field H was changed in the
range 0–5 kOe. The square element thickness was
about 12 nm.

It should be noted that we could not control chiral-
ity during sample preparation; therefore, we expected
that parameter q in an array of elements was randomly
distributed. However, force microscopy showed that
the film was actually divided into islands, i.e., families
of neighboring elements with the same chirality. The
number of element in the islands is random and varied
over wide limits; on average, it is about ten. The chi-
ralities of the elements belonging to neighboring
JOURNAL OF EXPERIMENTAL AN
islands and located at their boundaries are opposite.
Thus, a variety of structures with various combina-
tions of parameters {p, q} takes place in the array of
particles. Note that the same value of polarity p can be
ensured by magnetizing the film to saturation in the
direction normal to the surface under resonance con-
ditions.

As a result of the experiment, we obtained absorp-
tion curves, the integrated shape of which is shown as
dots in Fig. 13. The solid line illustrates the theoretical
dependence obtained by the summation of Eq. (20)
over various combinations of polarity and chirality for
a staggered structure taken as the most general case.
The calculation was performed in the long-wavelength
limit (Kx = Ky = 0) by summation over all possible
combinations of parameters p and q with weighting
factors as adjustable parameters.

As is seen in Fig. 13, one absorption peak exists at
large distances between array elements, when the
mutual influence is negligible. This peak corresponds
D THEORETICAL PHYSICS  Vol. 126  No. 4  2018
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to the resonance motion of vortex cores in the ele-
ments where the combination of the signs of polarity
and chirality turned out to be favorable for a given
direction and magnitude of a magnetic field. At small
distances between elements, the interaction between
them causes coupled core motion, and different oscil-
lation modes are excited at different fields for certain
combinations of polarity and chirality. As a result, we
observe a set of resonance frequencies. Since no direct
contact or magnetic bridges between elements are
observed, it is reasonable to assume that the magneti-
zations interact via magnetostatics.

6. CONCLUSIONS

In the model of noninteracting elements, only the
elements that have a favorable core polarity would
exhibit resonance behavior of magnetization. Only
one resonance frequency is fixed in this case. At a gen-
erator frequency ω > ω0, the polarity direction along
an applied magnetic field is favorable (ω0 is the core
frequency in an isolated element in the absence of a
magnetic field). At ω < ω0, a resonance is fixed when
polarity is opposite to the field direction [8]. The col-
lective motion of cores in normal modes can occur in
the presence of an interaction between the magnetic
subsystems of the elements. Such modes are excited
when elements with a favorable polarity direction exist
in an array.

Satisfactory qualitative agreement between the
experimental data and the analytical estimates sug-
gests that the assumption regarding a magnetostatic
origin of the splitting of the FMR frequency is correct
(see Fig. 13). The normal mode frequencies of magne-
tization oscillation differ weakly from the resonance
frequency of core motion in an individual element at a
large distance between array elements because of the
weakness of their interaction. In this case, power
absorption curves are superimposed to form only one
clear maximum. When the distance between the ele-
ments in an array decreases, the coupling between the
magnetic moments of the elements becomes substan-
tial, and the differences between the normal mode fre-
quencies are so high that individual peaks in absorp-
tion curves appear.

The quantitative discrepancy between the calcula-
tion by Eq. (20) and the experimental data can be
explained by the following factors: a neglected magne-
tostatic interaction between the magnetic moments of
the cores, noncylindrical symmetry of the potential in
which a core is located as a quasiparticle, and the error
related to the application of the rigid vortex model. In
addition, the following interesting factors are opera-
tive: (a) a quadrupole term is to be taken into account
in the calculation of the magnetostatic interaction
energy of noncircular elements [47]; (b) the shape of
elements causes anisotropy in the film plane, and the
axis direction can change as a function of the ele-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
ment–element distance [48]. It should be noted that
these factors introduce quantitative corrections and do
not change the general picture of removing frequency
degeneracy.

In conclusion, we note that the mutual effect of
elements can be an obstacle to the attempts to find a
reliable method for controlling the state of magnetiza-
tion (polarity, chirality) in arrays of close-packed ele-
ments, which is important for spintronic devices. This
factor is especially important at the magnetic field fre-
quencies that are close to eigenfrequencies. However,
this factor opens up fresh opportunities for almost
simultaneous control of the state of the set of elements
involved in one oscillation mode. In any case, when
designing devices based on large arrays of nano- and
microelements, researchers have to take into account
the mutual influence of their magnetic subsystems.
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