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Abstract—For systems with strong electron correlations and strong electron–phonon interaction, we analyze
the electron–phonon interaction in local variables. The effects of the mutual influence of electron–electron
and electron–phonon interactions that determine the structure of local Hubbard polarons are described.
Using a system containing copper–oxygen layers as an example, we consider the competition between the
diagonal and off-diagonal interactions of electrons with the breathing mode as the polaron band structure is
formed within a corrected formulation of the polaron version of the generalized tight-binding method. The
band structure of Hubbard polarons is shown to depend strongly on the temperature due to the excitation of
Franck–Condon resonances. For an undoped La2CuO4 compound we have described the evolution of the
band structure and the spectral function from the hole dispersion in an antiferromagnetic insulator at low
temperatures with the valence band maximum at point (π/2, π/2) to the spectrum with the maximum at point
(π, π) typical for the paramagnetic phase. The polaron line width at the valence band top and its temperature
dependence agree qualitatively with angle-resolved photoemission spectroscopy for undoped cuprates.
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1. INTRODUCTION

Developing the ideas of such materials as high-
temperature superconducting cuprates and many
other transition metal oxides (manganites, cobaltites,
etc.) combined under the term “systems with strong
electron correlations” requires a proper allowance for
not only the effects of local Coulomb electron–elec-
tron interaction but also strong electron–phonon
interaction (EPI). As a rule, such systems are studied
in the simplest case in the Hubbard model or the low-
energy effective t–J model; more realistic approaches
are based on the multiband p–d model or its reduction
to a single-band Hamiltonian. In this case, the pho-
non subsystem and the electron–phonon interaction
are described in terms of the Holstein Hamiltonian [1,
2] with a constant coupling constant g(k, q) = g and
dispersionless modes ωq = ω or in terms of the Fröh-
lich Hamiltonian [3] with a coupling constant
g(k, q) ~ 1/q as well as in terms of modified Hamilto-
nians with coupling constants that take into account
the peculiarities of the interaction [4–17]. (Here, k
and q are the initial electron momentum and the
transferred phonon momentum, respectively.)

The interaction of electronic excitations with lat-
tice ones is considered in various ways, depending on
the EPI strength. If lattice vibrations change signifi-
cantly the electron spectrum, then polarons are said to
be formed and the bound state of electrons and pho-
nons is investigated. Otherwise, the interaction of
electrons with phonons is described in terms of the
perturbation theory, i.e., by assuming that the already
formed quasiparticles interact with the lattice. Allow-
ance should be made for the fact that in strongly cor-
related systems the electronic quasiparticle excitations
differ from the Fermi-liquid ones: in view of the strong
local Coulomb interaction between electrons, the
two-particle states turn out to be pushed out into the
high-energy part of the spectrum. This leads to a redis-
tribution of the spectral weight between single- and
two-particle excitations and, as a consequence, to sig-
nificant peculiarities of the electronic structure of the
material. The corresponding quasiparticle excitations
are called Hubbard fermions.

The interaction of formed Hubbard fermions with
phonons was considered previously in [18], also in the
scheme of the generalized tight-binding method [19,
20], where the transition to the corresponding low-
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energy Hamiltonian was made [19]. In this paper we
will discuss the formation and properties of quasipar-
ticle excitations due to the simultaneous strong influ-
ence of electron–electron and electron–phonon
interactions. Such a statement of the problem is rele-
vant for undoped and weakly doped cuprates as well as
for many other Mott–Hubbard 3d-oxides-insulators
in the regime of strong coupling between the electron
and phonon subsystems.

The inapplicability of the adiabatic approach and
single-electron approximations suggests a search for
new ways of description. The proposed method is
based on the assumption that the renormalizations of
electronic excitations by the Coulomb and electron–
phonon interactions are attributable primarily to their
local part. The procedure of the method is such that
when the quasiparticle excitations are determined, the
local and nonlocal effects of electron–electron and
electron–phonon interactions are taken into account
exactly and within the approximation chosen for the
problem under consideration, respectively.

The subsequent plan of the paper is as follows. A
consistent derivation of the EPI Hamiltonian for sys-
tems with strong electron correlations in local vari-
ables is considered in Section 2. The role of competi-
tion between the diagonal and off-diagonal EPI for the
breathing mode during the formation of local CuO-
cluster states is analyzed in Section 3. For the conve-
nience of the readers, the ideology and the computa-
tional scheme of the polaron version of the generalized
tight-binding method taking into account the tem-
perature effects are briefly outlined in Section 4. The
band structure and the spectral weight of Hubbard
polarons at finite temperatures are presented in Sec-
tion 5. A discussion of the results and our conclusions
are contained in Section 6.

2. ANALYSIS OF THE ELECTRON–PHONON 
INTERACTION FOR STRONGLY 

CORRELATED SYSTEMS IN LOCAL 
VARIABLES

When choosing the initial Hamiltonian, we will
take into account the fact that in systems with strong
electron correlations (SECs) the quasiparticle exci-
tations can possess the properties of a Hubbard fer-
mion and a polaron simultaneously. In the polaron
version of the generalized tight-binding method we
call such quasiparticles Hubbard polarons. Their dis-
persion is determined by the hybridization of Hubbard
fermion bands with local Franck–Condon resonances
[21]. Despite the fact that the characteristic scales of
the electronic structure in cuprates exceed appreciably
the frequencies of vibrational modes strongly interact-
ing with electrons, renormalizations of the electronic
structure over the entire depth of not only the valence
band but also the conduction band emerge at a suffi-
cient EPI strength [21]. In other words, elementary
quasiparticle excitations are formed outside the low-
JOURNAL OF EXPERIMENTAL AN
energy windows of effective single-band Hamiltoni-
ans. In this case, an adequate description and subse-
quent construction of the corresponding effective
Hamiltonians must be based on the approaches that
start from realistic models and take into account the
electron–electron and electron–phonon interactions
on an equal footing. One of such approaches was pro-
posed previously in [22] and was developed in [21]
within the generalized tight-binding (GTB) method.
In this section we will refine the formulation of the
polaron version of this method by performing a con-
sistent analysis of the EPI for systems with SECs in
local variables.

Since the choice of a Hamiltonian for the electron
subsystem also depends on what vibrations will be
taken into consideration, we will begin with a discus-
sion of the modes that are the sources of the strongest
EPI in cuprates. As is well known [23, 24], first, the
high-energy modes changing the oxygen–copper
hopping integrals and, thus, modulating a high
Zhang–Rice singlet energy belong to them. These are
the breathing and half-breathing vibrations of oxygen
atoms in the CuO plane. Second, these are the buck-
ling and tilting modes involving the in-phase or out-
of-phase vibrations of planar oxygen atoms across the
CuO plane along the c axis. Some of them are related
to the instability of the system with respect to the
structural phase transition. Finally, these include the
modes characterized by the motions of an apical oxy-
gen atom along the c axis (apical breathing). Their
strong coupling with electrons [25] is attributable to
weak screening of the electrostatic Coulomb interac-
tion in this direction. All of the listed vibrations exhibit
various anomalies of the phonon spectra pointing to
their strong interaction with electrons in certain dop-
ing and temperature ranges [26–28].

For our model description of the EPI in the
polaron version of the GTB method, we will take into
account the optical, so-called planar, breathing mode.
It is present in all parent compounds of high-Tc cupra-
tes. Its dominant contribution to the total electron–
phonon coupling constant has been repeatedly
demonstrated in various approximations [6, 29, 30].
For example, when estimating the EPI effects in
cuprates based on first-principles calculations and the
Migdal approximation, Giustino et al. [31] showed
that for an optimally doped compound the contribu-
tion of breathing planar modes to the real part of the
electron self-energy due to the their interaction with
phonons is dominant [31].

In contrast to the breathing mode, the contribution
to the electron–phonon interaction from the buckling
and tilting modes in the first order in displacements
arises either from the distortion of CuO planes or in
the presence of a finite electric field along the c axis
due to, for example, the asymmetric environment of
the CuO-plane atoms [5]. In addition, allowance for
the buckling vibrations requires attention to the anhar-
D THEORETICAL PHYSICS  Vol. 126  No. 5  2018
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monicity effects [32]. In contrast, the breathing vibra-
tions of apical oxygen atoms are apparently of no cru-
cial importance in describing the electronic structure
and some properties of cuprates due to the orthogo-
nality of the phonon wave vector and the electron
momentum in the CuO plane [7, 33]. This conclusion
is confirmed by the experiments on site-selective oxy-
gen isotope substitution [34] pointing to a dominant
contribution of the planar oxygen atoms in the isotope
shift of the critical temperature Tc.

To describe the interaction of CuO-plane electrons
with the longitudinal breathing mode, let us consider
the following Hamiltonian:

(1)
where Hel is the Hamiltonian of the realistic three-
band p–d model of cuprates including all relevant
interactions in the CuO plane:

(2)

Here, the vectors g number the copper sites and the
vectors g + δ specify the positions of the surrounding
oxygen atoms. The quantities εd and εp are the local
energies of the copper and oxygen atomic orbitals,

= dg,σ and  = pg+δ,σ are the corre-
sponding number operators for particles (holes) with
spin σ, tpp and tpd are the overlap integrals of these
orbitals, μ is the chemical potential, Ud and Up are the
intraatomic Coulomb matrix elements, and Vpd is the
interatomic one. The phase factors Pδδ' and Pδ are
equal to ±1, depending on whether the orbitals (with
real wave functions) have identical or opposite signs in
the overlap region.

We will write the Hamiltonians of the phonon sys-
tem and the electron–phonon interaction at this stage
in the most general case by noting that for optical pho-
nons the deformation potential is proportional simply
to the displacements of atoms:
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where ζ = (k, γ, σ), ν = (q, s), and –ν = (–q, s). The
operators (fν) and (cζ') describe, respectively, the
creation (annihilation) of an s-branch phonon with
momentum q and frequency ωqs or an electron with
band index γ, momentum k, and spin σ. The wave vec-
tors k, k', and q are related by the energy conservation
law. Finally, M(ν, ζ, ζ') is the EPI matrix element.

Out of all possible processes of energy exchange
between the subsystems of electrons and phonons, we
will take into account only the largest contributions for
one breathing mode in Eq. (4). These are the terms
related to the modulation of the hopping parameter tpd
and the local energy εd of electrons on copper atoms
(the charge density displacement type of electron–
phonon interaction). They are also called transitive
(or off-diagonal) and local (or diagonal) EPI in the lit-
erature, respectively. Due to the obvious competition
between these two contributions, it is important to
consider their combined influence on the system’s
characteristics. For a separate molecule the latter con-
tribution is responsible only for the vibration fre-
quency renormalization as the electron occupation
numbers change [35]. In contrast, in a lattice energy is
exchanged between phonons and d electrons. The
small overlap between the orbitals of neighboring cop-
per ions allows us not to describe the corresponding
hopping in the electron Hamiltonian, while the mass
of the copper atoms, much larger than the mass of the
oxygen atoms, allows the copper displacements to be
neglected. At the same time, the change in the crystal
field on copper may turn out to be significant for a
strongly correlated system, because it leads to a change
in the energy of quasiparticle excitations, which, as a
result, determine the electronic structure and, hence,
this contribution requires an analysis.

Suppose that the mode under consideration is dis-
persionless. In the site representation Eqs. (3) and (4)
will then take a simple form:

(5)

(6)

To implement the procedure [36, 37] of the GTB
method, the total Hamiltonian (1) should be divided
into the intracluster and intercluster parts, solving the
concomitant problem of orthogonalization of the
molecular orbitals of the neighboring cells. This will
allow us to find exact solutions for the CuO4 cluster, to
pass to the Hubbard operator representation on their
basis, and then to take into account the intercluster
interaction via the perturbation theory. It is important
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way will contain the effects of both strong local Cou-
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lomb interaction and EPI already in the zeroth
approximation of the perturbation theory.

The orthogonalization problem for the electron
Hamiltonian was solved by Shastry [38] through the
introduction of “canonical” fermions. A detailed
description of this procedure for a multiband p–d
model within the GTB method is presented in [36].
The authors of [22] suggested using a similar approach
for the EPI Hamiltonian as well. While developing this
idea, we will correct its formulation in accordance
with the general approaches to the EPI in crystals [39].

Let us consider in detail the off-diagonal contribu-
tion  to the EPI in Eq. (6) and take into account
the relation of the phonon field operators to the pho-
non displacement operator. For one dispersionless
mode we have

where m is the mass of the oxygen atom. On the other
hand, the normal coordinate Qg of the planar breath-
ing vibrations corresponds to the following superposi-
tion of the displacements of oxygen atoms:

(7)

Here, α = x, y and aα are the unit-cell vectors. The
choice of the signs before the displacements corre-
sponds to an EPI constant Mpd > 0 and shows that the
overlapping integral tpd decreases with increasing Cu–
O bond length. Let us introduce auxiliary bosonic
operators for each displacement,

(8)

and simplify the notation by combining the operators
in pairs in such a way that

The Hamiltonian of the off-diagonal electron–pho-
non interaction will then take the form

(9)

Here, we took into account the phase factors Pδ by rec-
onciling their choice with [36]. Finally, let us perform
the Fourier transform in the last expression by noting
that for the operators that are not centered on copper
sites they obey the following rule:
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As a result, we will obtain

(10)

where we denote sα, k = sin(kαaα/2). Next, following
Shastry [38], we will define the “canonical” bosons
and “canonical” fermions. As can be seen from
Eq. (10), for the mode (7), (8) under consideration the
canonical transformations of the operators  are
similar in form to the transformations for the operators
pα, k, differing only by the sign:

(11)

and

(12)

where μk = . The new bosonic and fermi-
onic operators are centered on copper sites and satisfy
the necessary commutation relations [bk, ]+ = 0 and

[Bq, ]– = 0. Making the corresponding substitu-
tions, we will ultimately find

(13)

where  = (  + Aq). As would be expected, the
transformed Hamiltonian contains only one form of
bosonic operators, the one that preserves the symme-
try of the initial vibrational mode. In addition, in com-
parison with the previous version of the transforma-
tions [21, 22], the Wannier coefficient before the con-
stant of the off-diagonal contribution changed in
Eq. (13). These results distinguish the proposed for-
mulation of the method from that realized previously
in [21, 22].

Making similar transformations for the Hamilto-
nian  describing the diagonal contribution to the
EPI in Eq. (6), we will obtain

(14)

Here, we took into account the fact that the energy of
the holes on copper increases as the Cu–O bond
length increases, with Md > 0. Due to the symmetry of
the vibrations, the off-diagonal coupling constant
depends on both transferred momentum q and initial
electron momentum k, while the diagonal contribu-
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tion a depends on the vector q only, which is consistent
with the results of other authors [7, 40].

To rewrite the free-phonon Hamiltonian (5) Hph in
new variables (12), we will take into account the rela-
tion of the normal coordinate Qg to the normal
momentum Pg, express each of the quantities Qg and

Pg in operators (eα, g) and then in “canonical-

boson” operators (Aq) and (Bq):

(15)

It is important that the bosonic-excitation operators
(Bq) are not mixed with any other excitations of the

total Hamiltonian and, therefore, may be completely
excluded from consideration.

The above transformations allow the Hamiltonians
of the phonon system and the electron–phonon inter-
action to be broken down in the site representation
into the local intracluster, , and intercluster,

, parts. For the electron Hamiltonian (2) we will
immediately use the result of the corresponding trans-
formations (11). As a result, the total Hamiltonian will
be written as
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Here, we neglected the rapidly decreasing with dis-
tance intercluster contributions from the Coulomb
matrix elements Up and Vpd [36]. The Fourier trans-
forms of the Wannier coefficients are given by the
expressions

The proposed form of our analysis of the electron–
phonon interaction in local variables allows the con-
sideration of the strong electron correlation and EPI
effects to be combined in a unified scheme of the gen-
eralized tight-binding method.

3. THE ROLE OF COMPETITION BETWEEN 
THE DIAGONAL AND OFF-DIAGONAL EPI 

FOR THE BREATHING MODE DURING THE 
FORMATION OF LOCAL CLUSTER STATES

In the scheme of the generalized tight-binding
method the local cluster states determine the possible
quasiparticle excitations that are a result of the transi-
tion from one state to another. Let us consider how the
EPI strength affects the structure of the local states of
correlated electrons. We will diagonalize the total
Hamiltonian Hc for various configurations of copper
and oxygen orbitals corresponding to an undoped
compound with one hole per site (d9p6, d10p5) as well as
to the cases with zero (d10p6) and two holes per site
(d9p5, d10p4, and d8p6). Due to the electron–phonon
interaction, each electronic state of the cluster is
smeared into a set of polaron levels differing by the
phonon “coat.” For example, for a “vacuum” sector
with the number of holes nh = 0 the cluster eigen-
states are

(23a)
where |ν〉 is a multiphonon state with the number of
phonons nph = ν, For single-hole, nh = 1, and two-
hole, nh = 2, sectors we will take into account only the
lower polaron states formed by the spin doublet |1σ〉
and the singlet |2〉, respectively. Then,
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Fig. 1. (Color online) The structure of the ground state of
local polarons in a single-particle sector, nh = 1. The num-
ber of phonons ν is along the x axis; the total probability to
find a hole with given ν, i.e., the sum of the squares of the
amplitudes in Eq. (23b), is along the y axis.
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The scheme of the local states is considered in detail
in [21].

The parameters of the electron Hamiltonian Hel of
the multiband p–d model (2) for La2CuO4 were
obtained previously [41] by projecting [42] the elec-
tronic structure determined from first principles in the
local electron density approximation onto the Wan-
nier function basis. The corresponding parameters of
the Hamiltonian  are given below. In contrast to
the data of Table III from [42], we do not normalize
the hopping integrals to tpd. Thus,

(all values are in electronvolts). The Coulomb matrix
elements were taken from [43], where the electronic
structure was fitted to the data of experimental angle-
resolved photoemission spectroscopy (all in electron-
volts):

Here, the coefficients Φ0000 and Φ000, along with ν00
and μ00 from Eq. (17), describe the changes in the ini-
tial parameters of Hel when the molecular orbitals of
neighboring clusters are orthogonolized [44].

We specify the EPI strength by the dimensionless
parameter λd(pd) = /W ω, where the frequency
of the planar breathing mode is ω = 0.09 eV and W is
the half-width of the free electron band. In the tight-
binding method W = zt, where z is the coordination
number; in our calculations W = 2.15 eV. Such a defi-
nition of the dimensionless coupling constant is often
used in literature [24, 45, 46]. Basically, the parameter
λ is the ratio of the energy of a localized electron in a

el
cH

ε = ε = ε = ε − ν =000, 0.9, 2 0.35,d p b p ppt
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deformed lattice to the kinetic energy of its delocaliza-
tion [17].

According to Eqs. (23), the structure of the local
polaron states (Fig. 1) is determined, first, by the elec-
tron density distribution in orbitals and, second, by
the number of phonons ν from 0 to Nmax involved in
the formation of a polaron state at a given EPI
strength. We do not fix Nmax in our calculations in
advance but defining it for a given EPI in such a way
that the sum of the probabilities of the electron density
distribution in all states with index ν is at least 99%.
Third, the local states are characterized by a probabil-
ity maximum of the electron density distribution in
states with various numbers of phonons. According to
these maxima, we call the states zero-phonon, single-
phonon, etc., although the number of phonons is not
a quantum number in this case.

Figure 1 shows the structure of the ground state of
local polarons in a single-particle sector for various
ratios of the diagonal and off-diagonal EPI parameters
demonstrating their mutual influence.

As can be seen from a comparison of Figs. 1a and
1b, the diagonal EPI leads to much weaker renormal-
izations of the electronic states. For example, a state
with a probability maximum at zero phonons is
formed at λd = 0.05 and λpd = 0, while a multiphonon
state with a probability maximum for ν = 4 is realized
in the opposite case (λd = 0 and λpd = 0.05). Figure 1c
demonstrates a weakening of the off-diagonal contri-
bution by the diagonal one, suggesting their competi-
tive character. Note also the electron density redistri-
bution with respect to the case without EPI: the diag-
onal and off-diagonal contributions lead to an
increase in the population of copper and oxygen orbit-
als, respectively. The mutual influence of these contri-
butions is responsible for the transition from a small
local polaron to a large one.

Let us consider in detail how the competition
between the diagonal and off-diagonal EPI affects the
transition from zero-phonon states to multiphonon
ones. Figure 2 shows a map of such transitions for the
ground state in single-particle (Fig. 2a) and two-parti-
cle (Fig. 2b) sectors. The formation of multiphonon
states due to the off-diagonal contribution, i.e., on the
line λd = 0 to the right of the band of zero-phonon
states, begins from λpd ≥ 0.025 for nh = 1 and from
λpd = 0.008 for nh = 2, while the diagonal contribution
gives rise to multiphonon states only for λd larger by an
order of magnitude, more specifically, at λd ≥ 0.3 for
nh = 1 and λd ≥ 0.2 for nh = 2. Since the diagonal con-
tribution is strongly suppressed by the off-diagonal
one, the band of multiphonon states due to the diago-
nal contribution is realized in a very narrow range of
the parameter λpd and cannot be displayed in the figure
at a given scale. Thus, for the breathing mode the off-
diagonal contribution is dominant, while its growth is
conducive to a rapid shift in the probability of the elec-
D THEORETICAL PHYSICS  Vol. 126  No. 5  2018
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Fig. 2. (Color online) Influence of the EPI parameters on the position of the probability maximum in the electron density distri-
bution in states with various numbers of phonons ν.
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tron density distribution to states with a large number
of phonons.

We also considered the influence of the Coulomb
interaction Ud on the structure of local polaron states
under conditions of strong EPI. For this purpose, we
compared the maps of the transitions from zero-pho-
non states to multiphonon ones for the ground state in
a two-particle sector at various values of the parameter
Ud. The probability distributions in states with various
numbers of phonons show that at a larger value of the
local Coulomb interaction parameter the multipho-
non states are realized for larger EPI parameters. For
example, on the line λd = 0 the multiphonon states
begin from λpd = 0.008 at Ud = 9 eV, from λpd = 0.009
at Ud = 13 eV, or from λpd = 0.010 at Ud = 18 eV. For the
diagonal interaction the effect is more pronounced: on
the line λpd = 0 the multiphonon states begin from λd =
0.20 at Ud = 9 eV, from λd = 0.24 at Ud = 13 eV, or from
λd = 0.26 at Ud = 18 eV. Thus, during the formation of
local polaron states the electron correlations suppress
the EPI effects.

A comparison of the probability distributions in
states with various numbers of phonons for single-par-
ticle and two-particle sectors at identical local Cou-
lomb interaction parameters also suggests that the
Coulomb interaction enhances the compensation of
the diagonal contribution by the off-diagonal one. In
other words, the suppression of EPI effects by electron
correlations is more pronounced for the diagonal con-
tribution. This can be explained by the fact that the
local Coulomb correlations suppress the charge den-
sity f luctuations on copper, while the latter play a
decisive role precisely in the diagonal EPI.

The mutual influence of strong electron correla-
tions and strong EPI is one of the key problems of the-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
oretically describing systems with SECs. Obviously,
the result of interference between these interactions
can differ not only for modes of different symmetries
but also for different contributions from one mode.
The approaches starting with a microscopic descrip-
tion are interesting from this viewpoint. Let us con-
sider how the results obtained above correlate with the
conclusions of other authors.

The authors of [13, 14] discussed the diagonal and
off-diagonal EPI effects for a planar breathing mode
based on the t–J model, i.e., for the quasiparticle exci-
tations already formed by strong correlations. In this
case, the diagonal interaction is related to the modula-
tion of the Zhang–Rice singlet energy due to the
changes in the set of parameters tpd, εd, εp, and Upd,
while the off-diagonal contribution is determined by
the modulation of the hopping parameter for the
Zhang–Rice singlet (for comparison, see Eq. (6) and
the reasoning before it). This description is valid for a
weaker EPI and cannot be directly compared with the
conclusions reached above. Nevertheless, note that by
analyzing the superconducting pairing potential, the
quasiparticle renormalizations, and the tunneling and
optical spectra, the authors of [13] emphasize the
decisive role of the off-diagonal contribution. This
conclusion is retained not only in the regime of a
Mott–Hubbard insulator, where the charge f luctua-
tions are suppressed, but also in the regime of weak
doping, where the EPI vertex renormalizations play a
significant role.

It is worth noting that the matrix elements of the
corresponding contributions were analyzed in [14].
Based on the assumptions about the distance depen-
dence of the hopping, tpd, and Coulomb interaction,
Vpd, parameters, the authors showed the off-diagonal
YSICS  Vol. 126  No. 5  2018
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matrix element to be much smaller than the diagonal
one. However, this does not contradict our conclu-
sions, because it can be seen from the above analysis
that the role of the diagonal contribution during the
formation of local polarons remains insignificant even
for coupling parameters exceeding the off-diagonal
contribution by an order of magnitude.

Finally, note [47], where the authors considered
the EPI effects in a correlated system within the
framework of a microscopic p–d model, and showed
that the off-diagonal EPI with the breathing mode
contributes significantly to the band renormalizations.

The conclusions about the dominant off-diagonal
contribution are indirectly confirmed by the studies of
the dynamic charge susceptibility in [48]. It was shown
that the set of all experimental data could be explained
only by assuming the interaction through the phonon
field to be different in different parts of the Fermi sur-
face, i.e., the electron–phonon coupling parameters
depend on both transferred momentum q and wave
vector k. Such a dependence arises within the pro-
posed approach only for the off-diagonal contribu-
tion, as can be seen from a comparison of Eqs. (13)
and (14).

The authors of [49] investigated the influence of
strong electron correlations on the renormalizations of
the phonon spectra within a unified approach for var-
ious one-dimensional EPI models corresponding to
the diagonal [1] and off-diagonal [50] types of interac-
tions. Using the time-dependent Gutzwiller approxi-
mation, they showed that the phonon frequency
renormalizations due to the diagonal contribution
decrease with increasing local Coulomb interaction.
This result complements the conclusions in [51] that
for higher-dimensional systems electron–electron
correlations effectively screen the electron coupling to
the lattice and is consistent with our data on the sup-
pression of EPI effects by Coulomb correlations.

Thus, the results obtained above correlate with the
results of other authors and can serve as a starting
point in choosing the way of describing the various
properties of systems with strong electron correlations
and strong EPI.

4. THE SCHEME FOR CALCULATING
THE ELECTRONIC STRUCTURE

IN THE POLARON VERSION
OF THE GENERALIZED

TIGHT-BINDING METHOD
After the diagonalization of the cluster Hamilto-

nian (17)–(19), the total Hamiltonian (17)–(22) can
be rewritten in the Hubbard operators constructed on
the basis of local polaron states |0, ν〉, |1, i〉, and |2, j〉
according to the following rule:

(24)= 〈 〉 = γ∑ ∑
,

| | .pq m m

p q m

Q p Q q X Xg g g g
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Here, Qg is an arbitrary operator at site g and γm is the
matrix element defining the probability of excitation
from the initial state |q〉 to the final state |p〉 for a given
mth pair of states. In the new representation the Fermi
operators describe the quasiparticle hole, , and

electron, , excitations that change the average
number of phonons and the polarization of the oxygen
environment of the copper atom.

When investigating the total Hamiltonian, we will
exactly take into account the EPI effects due to the
local intracluster contributions (18), (19) and will dis-
card the intercluster EPI (21), (22) by noting that the
Wannier coefficients μgg' and νgg' renormalizing it
decrease rapidly with distance. We will obtain

(25)

Here,  are the Bose Hubbard operators of local
exciton excitations, occurring without any change in
the number of holes in the initial and final states, and
ε0ν, ε1i, ε2j are the energies of the many-electron and
many-phonon eigenstates for a cluster with the num-
ber of holes nh = 0, 1, 2, respectively. Note that, by

definition, the matrix elements  in the expression
for Hcc contain the intracluster EPI effects.

According to Eq. (24), in the Hubbard operator
representation the electron Green function

with band indices λ = b, d is expressed via the quasi-
particle functions

by the relation

(26)

The expressions for the quasiparticle Green functions
were derived in a generalized Hartree–Fock approxi-
mation using a procedure like the Mori projection
technique [52, 53]. In this approach the zero Green
function in the Dyson equation contains static spatial
correlation functions that renormalize significantly
the spectrum of Hubbard excitations [54–57]. As a
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result, the dispersion equation for quasiparticles
appears as follows:

(27)
Note that the indices m and n number the quasiparti-
cle excitations, while the indices in parentheses, for
example, (zw), specify these excitations directly as the
transitions between the corresponding states z and w.
The quantity Ωm ≡ Ω(pq) = εq – εp defines the quasipar-
ticle excitation energy. The coefficients Fm ≡ F(pq) =
〈Zpp〉 + 〈Zqq〉 depend on the average occupation num-
bers of the initial and final states and are called the
occupation factors. The elements tmn(k) of the inter-
cluster hopping matrix are

(28)

The contribution of the spin correlation functions is
specified by the elements of the matrix Σmn(k) =

(k):

Here, the eigenfunctions are sorted out in such a way
that the number of holes nh in the u, z, q, and s states is
one less than that in the , w, p, and r states. In addi-
tion, the p and  (or w and s) states in the structure of
the spin correlation function  have opposite
spin projections. We will take into account the correla-
tors constructed only on the ground single-hole states
and assume that an isotropic spin liquid state with a
short-range antiferromagnetic order is realized in the
system. In this case, the Fourier transforms of the spin
correlation functions are

(29)

where  = –σ.
The presence of an occupation factor in Eq. (27)

leads to temperature dependences of the band struc-
ture and the spectral weight of quasiparticles [58]. This
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effect for systems with strong electron correlations has
been demonstrated previously using the LaCoO3 com-
pound as an example, where the strong temperature
dependence of the occupation numbers is due to the
crossover between the low-spin and high-spin Co+3

states. The occupation of single-hole eigenstates in a
cluster at room temperature is specified by the Boltz-
mann distribution

(30)

At T = 0 K only the excitations involving an occupied
ground state have a nonzero spectral weight. The
occupation of the ground state decreases with rising
temperature, while the occupation of the first, second,
and succeeding excited states increases in accordance
with Eq. (30). For example, at T = 800 K the occupa-
tion is significant up to the seventh excited state:

Note that we disregard the anharmonic effects whose
role increases with temperature and, therefore, the
results presented below for high temperatures are qual-
itative.

5. THE BAND STRUCTURE
AND THE SPECTRAL WEIGHT

OF POLARONS AT FINITE TEMPERATURES
The band structure of quasiparticle excitations in a

system with strong electron correlations and strong
EPI consists of the Hubbard fermion bands split into
subbands as a result of their hybridization with multi-
phonon Franck–Condon resonances. Both diagonal
and off-diagonal EPI lead to splittings of the coherent
excitation band in a certain energy range and to the
spectral weight transfer to high-energy multiphonon
excitations with a weak dispersion. The electron–pho-
non coupling strength affects the number and degree
of splittings, the spectral weight distribution between
multiphonon excitations. The loss of spectral weight
and dispersion smearing suggest a partial loss of qua-
siparticle coherence. In other words, the quasiparticles
are defined more poorly. The effect from the diagonal
EPI is seen to be much smaller (Fig. 3a) than that from
the off-diagonal one (Fig. 3b). In the case of diagonal
EPI with λd = 0.025, a weak splitting into subbands
occurs in the conduction band; the valence band is
barely affected (Fig. 3a). In the case of off-diagonal
EPI (λpd = 0.025), the energy ranges where the inter-
action with multiphonon excitations destroys the
coherence of the band-forming quasiparticles are
clearly distinguished in the conduction and valence
bands (Fig. 3b). The simultaneous presence of diago-
nal and off-diagonal EPI is accompanied by their par-
tial compensation. In the regime of equal diagonal and
off-diagonal EPI, the diagonal EPI reduces the effect

=
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Fig. 3. (Color online) The band structure of Hubbard polarons when only the diagonal (a) and off-diagonal (b) EPI are taken into
account for temperature T = 10 K. The upper and lower parts of the figure show the conduction and valence bands, respectively.
The color at each point of the dispersion dependence characterizes the spectral intensity of a quasiparticle excitation with given
k and ωk on the relative scale shown on the right.
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from the off-diagonal EPI to a small degree, the high-
est-energy excitations lose their spectral weight, and
the splittings in the wide Hubbard fermion band are
closed at the energies of these excitations (Fig. 4a). On
the whole, the dispersion of low-energy excitations in
the case of equal diagonal and off-diagonal EPI
remains the same as that in the case of only off-diago-
nal EPI.

As the temperature rises, the quasiparticles con-
structed with the involvement of occupied single-hole
excited states acquire dispersion and spectral weight.
We can separate the contributions to the dispersion
reconstruction with increasing temperature from the
N–N excitations without any change of the local state
number and the N–N' excitations with a change of the
polaron state number. The N–N excitations are
involved in the formation of a split-off subband in the
upper part of the valence band and in the lower part of
the conduction band. The multiphonon N–N' exci-
tations form subbands as a result of the Hubbard fer-
mion band splittings, as do the multiphonon 0–N'
excitations. The contribution of the N–N excitations
to the temperature dependence of the electronic struc-
ture is retained even at zero EPI. Without EPI the N–
N excitations are phonon-free excitations (transitions
between local states with the same number of pho-
nons). The multiphonon N–N ' excitations (transi-
tions with a change of the number of phonons) with-
out EPI have zero intensity due to the absence of an
overlap between the initial and final phonon states.

A rise in temperature causes a reconstruction of the
split-off band and a smearing of the valence and con-
duction bands in the region of existence of multipho-
non excitations with a nonzero spectral weight
(Fig. 4). The reconstruction of the split-off valence
band consists predominantly in the growth of the elec-
JOURNAL OF EXPERIMENTAL AN
tronic excitation energy at points (0, 0) and (π, π). In
contrast, the energy decreases for low-intensity exci-
tations in the remaining lower part of the valence band
in the vicinity of point (π, π). Flat bands, more intense
at point (π, π) and less intense at point (0, 0), are
formed at T = 400 K at points (0, 0) and (π, π) of the
split-off band (Fig. 4b). Owing to the presence of f lat
bands, the density of states at T = 400 K has a peak at
energy ω ≈ 0.763 eV (Fig. 5, the red line), in contrast
to the monotonic dependence at T = 10 K (Fig. 5, the
black line). As the temperature rises further, the local
maximum at point (π/2, π/2) becomes a local mini-
mum, i.e., the split-off band of N–N excitations is
turned upside down (see Fig. 4c, T = 600 K), taking a
form typical for the dispersion in the paramagnetic
phase with a low-intensity maximum at point (0, 0)
and a high-intensity maximum at point (π, π) (see
Fig. 4d, T = 800 K). In this case, the f lat band reaches
the valence band top. For small EPI constants the
valence band top at all temperatures is formed by
coherent excitations, the region of incoherent multi-
phonon excitations with the largest spectral weight lies
below in energy. At λd = λpd = 0.025 the boundary of
the smearing region almost coincides with the energy
of the f lat band of coherent excitations at temperatures
above T = 400 K. On the whole, a rise in temperature
leads to an increase in the width of the valence and
conduction bands and to their shift characterized by a
decrease in the dielectric gap.

The dispersion smearing at the energies of the most
intense multiphonon excitations includes the growth
of the Hubbard fermion band splittings, the decrease
in the slope of the dispersion curve, and the spectral
weight redistribution. The splitting of the Hubbard
fermion band into several subbands increases as a
result of additional hybridization with multiphonon
D THEORETICAL PHYSICS  Vol. 126  No. 5  2018
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Fig. 4. (Color online) Evolution of the band structure of Hubbard polarons as the temperature increases from 10 to 800 K in the
regime of weak EPI at λd = λpd = 0.025. At T = 400, 600, and 800 K a f lat band is clearly seen in the vicinity of points k = (π, π)
and (0, 0).
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N–N ' excitations having energies close to those of 0–
N" excitations. In this case, the dispersion of each sub-
band becomes weaker with increases temperature in
the vicinity of the splitting points, the slope of the dis-
persion curve becomes smaller, and the segment of the
Hubbard fermion band gradually turns into a f lat band
(see Figs. 4b–4d). The spectral weight is distributed
more uniformly over the points in k-space in each sub-
band. Thus, in the energy range from 0.25 to 0.75 eV of
the valence band (and from 2.5 to 3 eV of the conduc-
tion band) a rise in temperature turns the high-inten-
sity coherent excitations with wave vectors within a
certain range into slow and heavy polaron quasiparti-
cles will all possible wave vectors. The smearing region
grows with rising temperature; at T = 800 K its size is
0.8 eV in the valence band (and 0.9 eV in the conduc-
tion band).

The spectral function of quasiparticle excitations

(31)( ) λ σ λ σ ω+ δ
λ σ

ω = − γ γ 〈〈 〉〉
π ∑

†
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, ; ,

1( , ) ( )*Im | nm n m
i
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A X Xk kk
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and its temperature dependence depend significantly
on the wave vector. We will analyze the spectral func-
tion at point (π/2, π/2) in k-space, because the most
dramatic temperature effect, a broadening of the peak
of the lower Hubbard band, was revealed in the exper-
iments on angle-resolved photoemission spectroscopy
precisely at this point. At a low temperature T = 10 K
for λd = λpd = 0.025 the spectral function at point (π/2,
π/2) consists of a high-intensity 0–0 excitation peak
and low-intensity peaks of multiphonon excitations
(Fig. 6a). The rise in temperature from 10 to 400 K
does not lead to a significant increase in the intensity
of multiphonon excitations. The spectral weight redis-
tribution when the excited local polaron states are
occupied becomes more noticeable as the temperature
increases further (T = 600 K, Fig. 6b); the 0–0 peak
loses its intensity, while the multiphonon peaks, on
the contrary, become more intense. Due to the recon-
struction of the split-off subband, the 0–0 peak
approaches the multiphonon peaks and at high tem-
peratures falls into the smearing region of the valence
band by N–N ' excitations (T = 800 K, Fig. 6c). The
hybridization of 0–0 and N–N ' excitations is accom-
YSICS  Vol. 126  No. 5  2018
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Fig. 5. (Color online) The density of states N(ω) of Hub-
bard polarons at the valence band top at T = 10 K (black
line) and 400 K (red line) in the regime of weak EPI. The
highest peak at T = 400 K is attributable to the presence of
a f lat band near points (0, 0) and (π, π).
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Fig. 6. (Color online) (a–c) Evolution of the spectral function of
in the regime of weak EPI at point k = (π/2, π/2); λd = λpd = 0
δ = 0.001 eV. (d) The broadening of the spectral function with r
λd and λpd: T = 10 K, ΓFWHM = 0.06 eV (curve 1); T = 400 K
(curve 3); T = 800 K, ΓFWHM = 0.1 eV (curve 4).
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panied by an additional redistribution of the spectral
weight between them. As a result, it becomes impossi-
ble to associate each peak of the spectral function with
a specific Franck–Condon process, the quasiparticle
excitations are a superposition of various multiphonon
processes with similar weights. In this case, the spec-
tral function is a wide distribution of peaks. When the
finite lifetime of quasi-particle excitations is taken into
account by increasing the Lorentzian width δ =
0.03 eV, the distribution of peaks merges into a single
wide peak. The rise in temperature from 10 to 400 K
does not lead to an increase in the width of the peak of
the spectral function at point (π/2, π/2) (Fig. 6d). As
the temperature rises from 400 to 800 K, the full width
at half maximum of the peak, ΓFWHM, increases by
more than half.

At large EPI constants the region where the wide
Hubbard fermion bands are split into Hubbard
polaron subbands grows. At λd = λpd = 0.1 the conduc-
tion and valence bands are split in the energy interval
of 0.8 eV (Fig. 7a); this interval becomes larger with
D THEORETICAL PHYSICS  Vol. 126  No. 5  2018
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Fig. 7. (Color online) Evolution of the band structure of Hubbard polarons as the temperature rises from 10 to 600 K in the regime
of strong EPI at λd = λpd = 0.1. At T = 400 and 600 K the f lat band in the vicinity of points k = (0, 0) and k = (π, π) breaks up
into a set of less intense f lat subbands of polaron excitations.
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rising temperature. The spectral weight is distributed
over all weakly dispersive subbands and over all quasi-
particles inside each subband. The quasiparticles in
wide regions of the k-space whose shape follows that
of the Hubbard fermion bands at zero EPI constants
remain more intense, i.e., the dispersion of the Hub-
bard fermion band is also retained at strong EPI if it is
traced by the maxima of the spectral function. The
spectral function of the valence band at point
(π/2, π/2) is characterized by a wide distribution of
low-intensity peaks of quasiparticles, which are a
superposition of multiphonon Franck–Condon 0–N
excitations, already at low temperatures (Fig. 8a).
However, the FWHM of the peak of the spectral func-
tion at a low temperature and λd = λpd = 0.1 (for the

Lorentzian width δ = 0.03 eV),  = 0.07 eV dif-
fers only slightly from that at EPI constants λd = λpd =

0.025 (  = 0.06 eV).

As the temperature rises, the transformation of the
split-off band manifests itself as a redistribution of the
spectral weight inside the Hubbard subbands. This

Γ0.1
FWHM

Γ0.025
FWHM
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transformation occurs against the background of a
reconstruction of the Hubbard subbands, the spectral
weight redistribution between various subbands and
between valence band inside each subband (see Fig. 7)
caused by the occupation of excited local polaron
states with temperature. For large EPI constants the
spectral weight redistribution is stronger with rising
temperature. Therefore, the dispersion of the Hub-
bard bands is strongly smeared at high temperatures,
the valence band top (and the conduction band bot-
tom) consists of weakly dispersive polaron subbands
with a spectral weight distributed uniformly over all
points of the Brillouin zone (see Fig. 7d).

A significant redistribution of the spectral weight
between Hubbard polarons for large EPI constants
manifests itself as a broadening of the distribution of
peaks in the spectral function and a change in the
shape of their envelope (Figs. 8b and 8c). As the tem-
perature increases from 10 to 400 K, the FWHM of the
peak constructed for the Lorentzian width δ = 0.03 eV
almost doubles and is ΓFWHM = 0.13 eV (Fig. 8d). The
calculated broadening agrees in order of magnitude
YSICS  Vol. 126  No. 5  2018
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Fig. 8. (Color online) (a)–(c) Evolution of the spectral function of Hubbard polarons at point k = (π/2, π/2) as the temperature
increases from 10 to 600 K in the regime of strong EPI at λd = λpd = 0.1. The calculations were performed for the Lorentzian width
δ = 0.001 eV. (d) The broadening of the spectral function at the same point with rising temperature at δ = 0.003 eV and λd =
λpd = 0.1.
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with the broadening of the spectra measured by angle-
resolved photoemission spectroscopy: in the experi-
ment the increase in temperature from 200 to 400 K is
accompanied by an increase in the FWHM of the peak
of the lower Hubbard band by a factor of 2. In the tem-
perature range from 10 to 600 K the FWHM of the
peak increases by more than a factor of 2.5 (Fig. 8d).
Thus, it can be seen that the degree of broadening and
the change in the shape of the peak with temperature
are largely governed by the EPI strength.

6. CONCLUSIONS

In this paper we corrected the formulation of the
polaron version of the generalized tight-binding
method. We considered the mutual influence of the
electron correlations and electron–phonon interac-
tion for the breathing mode within the proposed
approach by taking into account the microscopic
peculiarities of the structure of the material. Subse-
quently, this will allow us to describe the polarons
formed under conditions of simultaneously strong
JOURNAL OF EXPERIMENTAL AN
Coulomb and electron–phonon interactions using
effective low-energy models. Based on the polaron
version of the generalized tight-binding method, we
considered the competition between the diagonal and
off-diagonal contributions in the interaction of cor-
related CuO-plane electrons with breathing mode
vibrations. We showed that during the formation of
local polaron states, (1) the off-diagonal contribution
due to the modulation of the oxygen–copper hopping
integral is predominant; (2) in addition, the Coulomb
interaction suppresses the EPI effects, weakening the
influence of the diagonal contribution to a greater
extent. Thus, the off-diagonal EPI with the breathing
mode plays a major role in forming the quasiparticle
excitations of Hubbard polarons.

We also reached similar conclusions about the role
of these contributions and their relationship when
investigating the electronic structure of the systems
under consideration. A strong EPI leads to the loss of
quasiparticle excitation coherence, with the transfor-
mation of the band structure being determined pre-
dominantly by the off-diagonal contribution.
D THEORETICAL PHYSICS  Vol. 126  No. 5  2018
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We demonstrated a number of important effects.
First, the band structure of Hubbard polarons has a
strong temperature dependence. For ordinary elec-
tronic bands the temperature effects are weak, because
the characteristic electronic excitation energies are
great compared to the thermal energy. For Hubbard
polarons the situation is different, because the
Franck–Condon resonance energy is comparable to
the thermal one. This leads to the strong reconstruc-
tion of the dispersion and the spectral function of
Hubbard polarons described above.

Second, we showed that the temperature depen-
dence of the band structure for strongly correlated sys-
tems based on copper oxides is characterized by a
gradual evolution from the antiferromagnetic disper-
sion with the valence band top at point (π/2, π/2) at
low temperatures to the paramagnetic dispersion with
the valence band top at point (π, π) at high tempera-
tures. At intermediate temperatures a narrow flat
band, which gives a sharp peak in the density of states
in the vicinity of room temperature, splits off at the
valence band top. The spectral functions of the polar-
ons at the valence band top broaden with decreasing
amplitude as the temperature rises, in qualitative
agreement with the photoelectron spectra.
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