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Abstract—We present the derivation of a microscopic superexchange Hamiltonian for undoped magnetic
insulators with an arbitrary spin. It is established that the sign of the (ferromagnetic or antiferromagnetic)
superexchange between magnetic ions in the dn configuration depends on the spin nature of virtual multielec-
tron states dn ± 1, viz., low-spin or high-spin partners with S ± 1/2 relative to ground state of the dn configu-
ration with spin S. A macroscopic substantiation is given for the Goodenough–Kanamori rules and simple
mean-field estimates connecting the magnetic ordering temperature with the exchange constant. The con-
ventional Anderson superexchange for magnetic materials with spin S = 1/2 and the P/T magnetic phase dia-
gram for ferroborate FeBO3 with spin crossover S = (5/2 ↔ 1/2) at the Fe3+ ion under a high pressure are also
reproduced as a test.
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1. INTRODUCTION
It is well known that phase transitions with spin

crossover at a magnetic ion can be induced by an
external pressure [1]. Analysis of the evolution of the
magnetic order in the spin crossover conditions is usu-
ally based on the concepts borrowed from the Hub-
bard model [2, 3], in which the effective Heisenberg-
type exchange Hamiltonian with exchange parameter
J = t2/U (t is the hopping integral and U is the Cou-
lomb interaction potential at an atom) preserves its
form for all values of pressure, and the spin of a cation
changes its value at the crossover point. Such a simpli-
fied approach is justified at the first stage of the
research, when the initial idea concerning the interre-
lation between the electronic structure and the super-
exchange interaction under the external action are for-
mulated. It should be noted that analogous changes in
the spin value can be induced by an optical excitation
[4, 5] at the frequency of the d–d transition. Later, a
microscopic approach accounting for the effects of
pressure [6] as well as optical pumping [7] on the elec-
tronic structure and the superexchange interaction in
the Mott–Hubbard materials was developed. The
aspects associated with structural effects in the spin
crossover have also been investigated recently in [8],
where the physical origin of these effects was
attributed to the difference in the ionic radii of the
competing states with different spins. However, the
thermodynamic relations in [8] contain the superex-
change interaction that has been introduced phenom-
enologically, and its behavior during the crossover

remains unclear. A consistent approach to the descrip-
tion of the exchange interaction between ions with
possible coexistence of different multielectron terms
requires separate accurate analysis because only the
ground terms of the involved multielectron states of
ions participate in the standard theory of exchange
interaction. Precisely this problem is considered in this
article. It should be noted that an analogous problem
was considered earlier in [9, 10]. In the course of our
analysis, we will compare, whenever possible, our
results with the conclusion drawn in [9, 10] concern-
ing the superexchange. In spite of the fact that the for-
mulation of the problem in [9, 10] differs from that in
the present work, our approach is methodically simi-
lar. In particular, the multielectron representation
using the Hubbard X operators is used in both cases.

We are also interested in the correctness of simple
physical estimates in analysis of spin crossovers and
the situation in which the corresponding inaccuracies
the derivation of microscopic parameters for specific
materials are immaterial. By way of example, we will
use iron borate FeBO3 with a high spin S = 5/2 in the
undeformed state [3]. Since the initial local density
approximation and the generalized tight binding
(LDA + GTB) approach has been discussed more
than once (see, for example, [11, 12]), the emphasis in
our study will be laid precisely on the theory of super-
exchange in magnetic insulators, which will be con-
structed in the second order of perturbation theory
from the GTB Hamiltonian.
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Fig. 1. Configuration space of a unit cell of a Mott–Hub-
bard material. The cross on the ground energy level for the
configuration with N0 electrons indicates the state occu-
pied at zero temperature; all remaining states are empty.
Arrows indicate quasiparticle states with the lowest bind-
ing energy (first removal electron states (frs), viz., a hole at
the top of the valence band and first extra states (fes), viz.,
an electron at the bottom of the conduction band [24]).
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2. SUPEREXCHANGE INTERACTION
OF MAGNETIC IONS

WITH AN ARBITRARY SPIN

There are many approaches to analysis of the
superexchange interaction in the Hubbard model and
its multiband generalizations (see [13–21] and the lit-
erature cited therein). In addition, a consistent
approach using the X operators was developed in [9,
10]. Only the contributions of the ground terms of the
multielectron states are often taken into account, viz.,
the filled dn term and unfilled d(n – 1) and d(n + 1) terms,
which will be referred to as virtual states. In the case of
spin crossover, the states of high-spin as wells low-spin
terms must be taken into account simultaneously in each
of the configuration dn, d(n – 1), and d(n + 1) of the mag-
netic ion. We will operate from the very outset within
the cell perturbation method in constructing the effec-
tive Hamiltonian, which is logically matched with the
LDA + GTB approach to calculating the electronic
structure [12], as well as the superexchange approxi-
mation in Mott–Hubbard materials under an external
action [6, 7]. We begin with the multielectron Hamil-
tonian in the representation of X operators,  =  +

, where
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here, root vectors r and r' run through all possible one-
particle transitions {l, ν} (creation of an electron) and
{l, τ} (creation of a hole) between the multielectron
states

with energies εl and εν(τ) in the sectors of the configu-
ration space in Fig. 1 with N0 and N± = N0 ± 1 elec-
trons per cell.

The derivation of this Hamiltonian from the Ham-
iltonian  =  +  +  +  of the pd model,
where

(5)

has already been considered in [11, 22]. Here,  =

dλfσ,  = pλfσ, and subscripts f and g run
through all cells with localized atomic (dλf) and cellu-
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, and Jλλ' are the Coulomb interaction potentials at
an orbital and the Hund exchange interaction; Vλλ' is
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resentation, one-electron  and  operators can
be written in the form of a superposition of transitions
involving low- and high-spin partners |ν(τ)〉 with
Sν(τ) = Sl ± 1/2 relative to the ground state |l〉:

(6)

where new operators (νl) and (lτ) are given
in accordance with the momenta summation rules by

(7)

Operator  corresponds to the quasiparticle
excitation of electrons in the valence band, N–(Sτ) →
N0(Sl = Sτ – 1/2) with a decrease of spin by 1/2 and
N‒(Sτ) → N0(Sl = Sτ + 1/2) with an increase of spin by
1/2 for s and t indices, respectively. Analogous expres-
sions can be written for  with the substitutions
τ ↔ l and l ↔ ν in the conduction band. Actually, the
main criterion in the transition from Hamiltonian (5)
to (1) and (2) is the possibility of constructing well-
localized Wannier functions for the X operators, while
the disadvantage is the lack of a general derivation of
the representation for “canonical fermions” [23] or an
analogous representation of a more general form [11,
22, 25, 26] for an arbitrary symmetry of the cell. We
will further assume that such a representation still
exists, and the Wannier functions for a cell are local-
ized sufficiently for disregarding the contributions of
the Coulomb interaction between electrons in differ-
ent cells. In such an approach, quasiparticles are one-
electron excitations on the basis of multielectron states
of a cell, which correspond to transitions between dif-
ferent sectors N0 and N± of the configuration space.
Each such excitation forms a quasiparticle band with
root vector r in the configuration space for all possible
|l〉, |ν〉, and |τ〉 multielectron states of the cell (see
Fig. 1). The superexchange interaction  appears in
the second order of perturbation theory relative to
hopping processes, which corresponds to virtual per-
turbations via the dielectric gap to the conduction
band and back. These excitations are described by
nondiagonal elements  with root vectors r = {τ, l}
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and {l, ν}. In the Hubbard model, there is only one
such element corresponding to excitations between the
lower and upper Hubbard bands. In the general case,
as can be seen from Fig. 1, the number of such contri-
butions can be significant. For separating these contri-
butions, we can use the method of projection operator
Pτ and Pν [13] for a Mott–Hubbard material with an
arbitrary spectrum [7], where

Each of these operators satisfies the relations

Let us introduce the Hamiltonian of the exchange-
coupled (i, j) pair:

where

are the intra- and interband contributions for

In the unitary transformation of the Hamiltonian of
the (i, j) pair, we have  = , where  satisfies
the equation

(8)
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Fig. 2. Configuration space of a unit cell for FeBO3.
Ellipses show one-electron transitions involving virtual
states |τ〉 and |ν〉 in the superexchange AFM interaction
between the ith and jth cells.
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In this case, we have

(12)

where Δlτν = (εν + ετ) – 2εl is the energy of production
of an electron–hole pair from initial state |l〉 to final
states |τ〉 and |ν〉; this energy is an analog of the Hub-
bard repulsion in the simple Hubbard model. We will
further operate with spin Sl = 5/2 and with the config-
uration space of iron borate FeBO3 in Fig. 2 [27]. In
sector N–, subscript τ runs through the states

in sector N0, subscript l runs through the states

while in sector N+, subscript ν runs through the states

This is done to reflect the physical specific features
of a given material and to draw conclusions. The
superexchange interaction appears even in the second-
order of perturbation theory; the effects of the ligand
surroundings of magnetic ions are accounted for using
the Wannier cell functions and the exact diagonaliza-
tion procedure in the construction of the configura-
tion space of a unit cell.

To single out spin variables , as well as  and 
in expression (9) in explicit form, we must use their
relation with one-particle operators  and  in
definition (6); in the unified X representation for these
variables and the ground filled high-spin d5 energy
level, these relations have the form
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Fig. 3. Spin crossovers  = 5/2 ↔ 1/2,  = 2 ↔ 1, and
 = 2 ↔ 0 in sectors N0 and N–, respectively, as well as

the superexchange FM interaction for FBO3 under a high
pressure P > .

i-th cell j-th cell

|l〉 = |2T2〉

|l0〉 = |6A1〉
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|τ0〉 = |5E〉
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Fig. 4. Spin crossover  = 2 ↔ 0 in sector N+ and the
superexchange AFM interaction for FeBO3 under pressure

 > P > . Semi-ellipse indicates the forbidden fes
states that are absent in the superexchange.
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where

Using these relations in the calculation of the commu-
tator in expression (9), we collect the spin variables
into separate terms and sum over all (i, j) pairs.
Depending on the combination of indices k and k',
two different contributions to spin Hamiltonian  =

 +  in relation (9) are possible. If states |ν〉
and |τ〉 belong to identical spin partners (e.g., |5T2〉 and
|5E〉 in Fig. 2), which corresponds to the combination
of s and t in relations (11) and the primed symbol of
summation over l, ν, and τ, we have

(15)

where exchange interaction constant is Jij(lτ, lν)/(2Sτ +

1)(2Sl + 1) and Jij(lτ, lν) = 2( )/Δlτν. The first term
in expression (15) corresponds to the conventional
AFM superexchange with correction by factor
(2Sτ + 1)–1(2Sl + 1)–1, which is associated with its
one-electron nature, and is additive in virtual states
|ν(τ)〉 in sectors N±.

The contribution from the second term in expres-
sion (15) corresponds to the superexchange interac-
tion between a hole in the valence band and an elec-
tron in the conduction band. At low temperatures, the
contribution to the magnetic energy of the material
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from this interaction is close to zero, since there are no
carriers in the conduction band and the valence band.
The superexchange in the Hubbard model does not
contain this contribution since these states can only be
spin singlets. This contribution can differ from zero in
doped materials or in materials under optical pumping
[7]. However, the form of this contribution is not
determined in this case because, in contrast to the first
term in expression (15), it is additive in excited states |l〉
of the magnetic ion. The contributions with different
signs are summed over l because Δlτν can assume both
positive and negative value for excited states |l〉.

On the other hand, if |ν〉 and |τ〉 belong to different
spin partners (e.g., states |3T1〉 and |A1〉 in Fig. 3), which
corresponds to the combination of s and s or t and t in
expression (11) and to the double-primed summation
symbol, the superexchange interaction reverses its
sign:

(16)

where the sum contains no terms at all and  = 0
(i.e., there exists the AFM ordering) because of the
maximal spin  = 5/2 at the Fe3+ ion in undeformed
FeBO3. There is no contribution in expression (16)
from the exchange interaction between a hole and an
electron because  ≠ 0 for deformed FeBO3 with a
set of spins  = 1/2,  = 0, and  = 1 in Fig. 3, but
the spin of the fes quasiparticle in the conduction band
is equal to  (i.e., to zero).

Expressions (15) and (16) do not contain non-
Heisenberg contributions with allowance for the
orbital degrees of freedom [10, 28], which appear in

( )
≠ τν τ

τ ν
= − +

+ +∑∑
'' ( , ) 3ˆ ˆˆ ˆ ˆ ,

(2 1)(2 1) 4
FM ij
s il jl il jl

i j l l

J l l
H S S n n

S S

ˆ FM
sH

0lS

ˆ FM
sH

0lS ν0
S τ0

S

ν0
S
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Table 1

δ Electron configuration Magnetic ordering

δ+ d6,  = 0, N+ FM, TC

d4,  = 1, N–

d5(Fe3+, Mn2+),  = , N0

δ– d5(Fe3+, Mn2+),  = , N0
AFM, TN

d4,  = 2, N–

d6,  = 2, N+

ν0
S

τ0
S

0lS 1
2

0lS 5
2

τ0
S

ν0
S

fact in initial Hamiltonian (9). Such contributions
were calculated in [7] for a magnetic semiconductor
under optical pumping at the frequency of the d–d
transitions (exciton excitations), where multielectron
states form the complete set

of eigenvectors in the one-cell model, and operators

which form the pseudospin commutation relations,
determine the probability of a transition from state |l〉
to state |l'〉 under optical pumping. Analysis of such
exciton excitations in the superexchange is beyond the
scope of this paper; here, we are interested in certain
conclusions concerning the exchange interaction
between ions in states with an arbitrary multiplicity
(including different spin multiplicities).

In view of different combinations of indices t and s
in expression (11), in the derivation of the expression
for the exchange interaction constant in relations (15)
and (16), the sign of this constant is independent of
spin Sl at the magnetic ion, but is completely deter-
mined by the spin origin of the virtual states (these can
be high-spin or low-spin partners |τ〉 and |ν〉 relative to
the ground state of the magnetic ion with δ( , Sl ±
|σ|) ≠ 0). The exchange constant in the first term in
expressions (15) and (16) is additive in quasiparticles
with participation of states |τ〉 and |ν〉. The main con-
tribution comes from frs and fes quasiparticles in Fig. 1
because the denominator Δlτν in the exchange constant
is the smallest for them. However, these quasiparticles
can be absent in the material in view of the equality of
the matrix elements in expression (4) to zero [24]. Ori-
enting our analysis onto to the main contribution, we
arrive at the conclusion that the superexchange is anti-
ferromagnetic if two identical high-spin or low-spin
partners with  =  are involved in it. If, however,
virtual partners |τ0〉 and |ν0〉 belong to different catego-
ries, the FM ordering occurs.

〉〈 =∑ | | 1
l

l l

±τ = τ = −( ) ' ' '1ˆ ˆ, ( ),
2

ll z ll l l
i i iX X X

ν τ0 0( )S

ν0
S τ0

S
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3. SUPEREXCHANGE INTERACTION IN IRON 
BORATE UNDER PRESSURE. CONCLUSIONS

1. The type (AFM or FM) of the superexchange
interaction is determined by the combination of high-
spin and low-spin virtual |τ0〉 and |ν0〉 partners in the
N± sectors of the configuration space (see Fig. 1) for
ground state |l0〉 of the magnetic ion with the selection
rule δ( ,  ± |σ|) ≠ 0. If two identical high-spin
or low-spin partners with the condition  =  are
involved in the main contribution, the superexchange
is of the AFM type. If, however, partners |τ0〉 and |ν0〉

belong to different spin categories with  = (  ± 1),
we have the FM ordering. For example, in the Hub-
bard model with  = 1/2 and one state |l〉 per cell
( =  = 0), we have the AFM ordering. Analo-
gously to La214 cuprates with low-spin terms, for
which the situation in the Hubbard model is realized,
the AFM ordering is also observed for ground state of
iron borate (  =  = 2; see Fig. 2). Analogous con-
clusions were also drawn in [9, 10] for the superex-
change between localized spins in the Hubbard model
with degeneracy.

It is interesting to note that a simple consequence
of this statement is the absence of a dependence of the
magnetic ordering type on the spin crossover for the
ground state |l0〉 of the magnetic ion. However, the
crossover can eliminate the main contributions from
frs and (or) fes quasiparticles to the superexchange
interaction, due to a change in the matrix elements of
electron excitations; in this case, its type is determined
by the spin origin of the first excited states |τ〉 and |ν〉.
The superexchange interaction can also be changed
under optical pumping of only one of the ions in a
magnetically coupled pair [7] or under the concomi-
tant spin crossover for the ground states in the N± sec-
tors. In fact, we have a complete spin crossover
accompanying changes in the crystal field δ. Using
such a helpful microscopic interpretation of the
Goodenough–Kanamori rules for the 180°-superex-
change [29, 30], we represent our conclusions con-
cerning the type of magnetic ordering in the form of
Table 1. Since the crossover is induced by the compe-
tition between crystal field δ = 10 Dq and Hund
exchange JH, we have formulated the qualitative con-
clusions for the electron configurations in the vicinity
of half-filling of the d shell for weak (δ– ≪ JH) as well
as strong (δ+ ≫ JH) octahedral field relative to the
Hund exchange.

The evolution of the magnetic order is determined
by a sequence of spin crossovers in sectors N± and N0

upon an increase in pressure. If δ( ,  + σ) = 0
and symmetry prohibits the frs and (or) fes quasiparti-
cles (see Fig. 4), the dependence of the superexchange
on  as a result of spin crossover is observed only in
sector N0. In the case of full crossover δ–  δ+, the

ν τ0 0( )S
0lS

ν0
S τ0

S

ν0
S τ0

S

0lS
ν0

S τ0
S

ν0
S τ0

S

τ ν 0( )M
0lM

0lS
�
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Fig. 5. Spin crossovers and magnetic phase P/T diagram
for FeBO3.
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rule relating the ordering type with spins  and 
holds well.

2. Let us consider in greater detail the conclusions
directly related to the P/T phase diagram for FeBO3
[2]. For this purpose, we can use the system of simple
estimates [31, 32], where the energy of terms in sector
N0 can be written in the form

(17)

for spins Sl = 5/2, 3/2, and 1/2, respectively. It follows
hence that spin crossover Sl = 5/2 ↔ 1/2 in the ground
state is possible for δ = 3JH in accordance with a cer-
tain pressure . Here and below, Ec(dn) is the part of
the energy of the term [32], which is independent of
exchange JH and crystal field δ(P).

Analogously, in sector N+, for the d6 configuration,
we have

(18)

for spins  = 2, 1, and 0, respectively. It can be seen
that spin crossover  = 2 ↔ 0 in the ground state is
possible for δ = 2JH in accordance with a certain pres-
sure  < . Analogously, in sector N–, for the d4

configuration, we have

(19)

for spins  = 2, 1, and 0, respectively. It follows hence
that spin crossover  = 2 ↔ 1 in the ground state is
possible for the same values of crystal field δ = 3JH as
for d5. Applying the results compiled in Table 1 to
these calculations, we can establish the sequence in
the variation of the superexchange interaction with
increasing pressure (see Fig. 5):

(i) P < , δ < 2JH, and all ground states on the
level diagram in Fig. 2 are high-spin states. Conse-
quently, frs and fes quasiparticles contribute only to

, and the inequality  ≫  holds (AMF
order).

(ii) A spin crossover of virtual states d6 and 2JH <
δ < 3JH has occurred. The spin at the magnetic ion has
not changed, and previous AFM ordering exists due to
the prohibition of the existence of fes quasiparticles in
the pressure range  < P <  with the energy level
diagram shown in Fig. 4.

ν0
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S
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(iii) P >  and δ > 3JH; the spin crossover for both
occupied and virtual states with energy level diagram
from Fig. 3 has occurred. In accordance with the rule
for the main contribution, the FM ordering takes
place. In this case, frs and fes quasiparticles contribute
only to ; i.e.,  ≫ .

We can also estimate the ratio of critical tempera-
tures for the applied pressure close to critical value 
in Fig. 5. Indeed, it follows from the mean-field esti-
mate of the form TN ~ JzS(S + 1)/3 [33, 34], where the
exchange constant is taken from expression (15), that
this relation has the form

(20)

Therefore, for ions in the d5 configuration in an
octahedral field, the type of magnetic ordering
changes upon an increase in pressure from the AFM to
FM ordering.

It should also be noted that the phase diagram in
Fig. 5 differs from the diagram constructed using a
phenomenological approach [2], in which the super-
exchange constant is independent of spin at the mag-
netic ion. In contrast to this diagram, we have the FM
ordering at high pressures with critical temperature
TC ≈ 0.2TN.

The existence of magnetic ordering at P > 
( ≈ 50 GPa) on the experimental phase diagram

2CP

FMˆ
sH FMˆ

sH AFMˆ
sH

2CP

≥
≤
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2
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constructed from the Mössbauer measurements is
confirmed [2], and the relation between the critical
temperatures is in conformity with estimate (20).
However, the type of magnetic ordering at high pres-
sures remains unclear as yet.
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