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Abstract—The frequency dependence of the effective complex permittivity and effective complex permeabil-
ity of a heterostructure based on a dielectric medium containing metallic nanoparticles of spherical shape is
calculated by an original method. In contrast to the Bruggeman [21] and the Maxwell Garnett [17]
approaches, which use the quasi-static approximation in calculations, a nonuniform distribution of electro-
magnetic fields inside metallic particles is calculated, which allows the analysis of the electromagnetic param-
eters of the heterostructure not only as a function of frequency but also as a function of the nanoparticle size.
It is shown that the plasmon resonant frequency decreases with increasing both the size and the concentration
of particles in the heterostructure. It is also shown that a dielectric medium containing nonmagnetic metallic
nanoparticles exhibits diamagnetic properties. In this case, the position of the maximum on the frequency
dependence of the imaginary part of the magnetic susceptibility coincides with the relaxation frequency of
charge carriers. The calculated spectra of the real and imaginary components of the permittivity of the het-
erostructure with a size of metallic particles less than 10 nm are in good agreement with Bruggeman calcula-
tions; however, the agreement with Maxwell Garnett calculations is observed only at nanoparticle concentra-
tions lower than 10–6.
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1. INTRODUCTION
Modern technologies allow not only the fabrica-

tion of metallic nanoparticles of spherical shape with a
size of from a few to hundreds of nanometers but also
to produce, on the basis of these nanoparticles, aque-
ous suspensions of various concentrations, which are
used, in particular, in medicine [1–3]. Metallic
nanoparticles are also used to enhance the electro-
magnetic field near long molecular chains of dyes,
which gives rise to local bistability in the vicinity of a
particle [4]. It is well known that metallic nanoparti-
cles exhibit plasmon resonances with frequencies in
the optical range [5, 6]. That is why heterostructures
based on a dielectric medium containing metallic
nanoparticles, including aqueous suspensions, are
colored, the color depending on the size of nanoparti-
cles [7]. Since plasmon resonances in particles should
manifest themselves in the frequency dependence of
the electromagnetic parameters of heterostructures,
the problem of calculating the effective permittivity
and permeability of these structures is of great topical
interest.

It is well known that, under an incident plane elec-
tromagnetic wave, forced electromagnetic oscillations

in any inhomogeneous body of spherical shape repre-
sent a superposition of electric and magnetic multi-
pole oscillations of orders from the first to infinity.
The components of the electric and magnetic fields of
such oscillations are described by spherical functions
[8–10]. It is also known that the resonances of electric
and magnetic multipole oscillations in dielectric
spheres are observed at frequencies at which the size of
a sphere is commensurate to the wavelength of the
electromagnetic wave in the dielectric material. How-
ever, for multipole electric oscillations in metallic
nanoparticles, which are often called plasmon oscilla-
tions, there are observed resonant excitations (plas-
mons) at frequencies at which the wavelength λm in the
material is much greater than the particle radius a [6].
Plasmons of different multipolarity affect the charac-
ter of electromagnetic wave scattering by metallic
nanoparticles embedded in a dielectric matrix [11].

The resonant frequencies ωn of multipole electric
oscillations are given by the equations

(1)
These equations are obtained from the condition of
vanishing of the denominators of the electric field
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amplitudes [8–10] as a → 0. Here εd is the relative per-
mittivity of the surrounding medium, and εm(ω) is the
relative complex permittivity of the nanoparticle
material, which is expressed by the following formula
within a modified Drude model [12]:

(2)

where ε∞ is the optical permittivity of the metal, ωp is
the frequency of plasma oscillations in the metal, and
γ is the relaxation frequency of charge carriers. It was
assumed when deriving this formula that harmonic
oscillations are described by the factor exp(–iωt). For-
mulas (1) and (2) imply that the resonant frequencies
ωn and the quality factors Qn of multipole electric
oscillations are expressed by the following formulas for
2πa ≪ λm:

(3)

(4)

Plasmon oscillations with n = 1, i.e., electric dipole
oscillations, have the greatest amplitude. The ampli-
tudes of other (quadrupole, octupole, etc.) plasmon
oscillations rapidly decrease both with increasing their
order n and with decreasing particle radius a.

Note that forced magnetic multipole oscillations in
spherical metallic nanoparticles have no resonances in
the optical range because the real part of the denomi-
nators of their amplitudes does not vanish for a < λm
[13]. However, in the presence of a dc magnetic field,
a magnetic dipole resonance is observed together with
the electric dipole resonance [14].

It is known from experiments [5, 7, 8] that the fre-
quency ω1 of plasmon oscillations of a metallic
nanoparticle starts to slowly decrease with increasing
particle radius a; but this occurs only when the radius
a exceeds a certain value on the order of 5 nm. In [5],
the authors attributed this phenomenon to the pres-
ence of several damping mechanisms of plasmons,
using the quasi-static approximation. In another
paper [15], the dependence of the resonant frequency
of plasmon oscillations on the size of a metallic
nanoparticle was attributed to quantum size-depen-
dent effects, also in the quasi-static approximation.
However, as shown in [6], the dependence of the res-
onant frequencies of multipole plasmon oscillations
on the particles size can be obtained by the electrody-
namic calculation of the electromagnetic field distri-
bution inside a particle; i.e., one can give up using the
quasi-static approximation, in which it is assumed that
the local high-frequency properties of the nanoparti-
cle material are uniform over the whole volume of the

∞
ω

ε ω = ε −
ω + ωγ

2

2( ) ,p
m

i

( )−
∞

ω γω = −
+ ε + ε

2 2

1 .
2(1 )

p
n

dn

−

−
∞

ω γ
= −

+ ε + ε

2 2

1
1.
4(1 )

p
n

d

Q
n

JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
particle and coincide with the local properties of the
bulk material.

Most authors also apply the electric dipole quasi-
static approximation to calculate the effective complex
permittivity εeff of a dielectric medium containing
metallic nanoparticles. Therefore, the formulas
obtained by these authors do not contain the radius a
of metallic nanoparticles and, hence, do not describe
the effect of the nanoparticle size on the frequency
dispersion of εeff near the plasmon resonant frequency
ω1. Among these formulas are the Maxwell–Wagner
formula [16]

(5)

and the Maxwell Garnett formula [12, 17–20], identi-
cal to it, which is especially frequently cited by
researchers, as well as the Bruggeman formula [20, 21]

(6)

Here, cm stands for the volume concentration of
metallic nanoparticles in the dielectric medium.

Formula (5) is obtained in the approximation of
low concentration cm of metallic nanoparticles in a
heterostructure, when the interaction between parti-
cles can be neglected. In formula (6), the interaction
between nanoparticles is taken into account only in
the mean-field approximation. The values of εeff cal-
culated by these two formulas coincide only for very
low concentrations (cm < 1 × 10–6); however, these val-
ues strongly differ already for cm = 1 × 10–5. It follows
from both formulas that the resonant frequency ω1 of
dipole plasmon oscillations is expressed by formula (3)
with n = 1.

In [22], the authors compared the existing variants
of the refinement of Maxwell Garnett’s theory to take
into account the effect of the nanoparticle size on
εeff(ω). In one of the variants [13], it was suggested that
the static electric polarizability of a nanoparticle
should be replaced by the electrodynamic polarizabil-
ity, which is described by formulas of the Mie theory
[8–10]. A similar approach was used in [23] when
deriving a formula for calculating the effective perme-
ability μeff of a heterostructure.

In [24], to take into account the dependence of the
effective permeability on the particle size, the authors
used the formalism of integral equations and Green’s
functions. However, such a formalism assumes that
the electric field inside a nanoparticle is uniform,
which is a rough approximation, although it is also
used in [25, 26].

Thus, the known formulas for calculating the effec-
tive complex permittivity, which allow one to take into
account the dependence of εeff on the radius a of
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metallic nanoparticles in a heterostructure, have been
obtained on the basis of the Maxwell Garnett approach.
However, a considerable discrepancy between the
results of calculation of εeff by the quasi-static formulas
of Maxwell Garnett and Bruggeman even at low con-
centration of nanoparticles in a heterostructure (cm =
1 × 10–5) shows that too rough approximations have
been made when deriving these formulas.

The investigations carried out in the present work
have been motivated by the necessity to develop a
model and perform a calculation of a heterostructure
consisting of a dielectric matrix with metallic
nanoparticles for a more accurate description of the
dielectric properties of the object compared with the
Maxwell Garnett and Bruggeman models. The ampli-
tudes of electromagnetic fields in the model are
assumed to be nonuniform in the volume of a particle,
which is absolutely correct from the physical view-
point under conditions of plasmon excitations in
metallic particles. In other words, particles of infini-
tesimally small sizes are replaced by particles with real
dimensions. The interaction between particles is taken
into account within the Bruggeman approach. As a
result, we obtain formulas for calculating the effective
complex permittivity, as well as the effective permea-
bility of a heterostructure. This allows us to analyze
the electromagnetic parameters of the medium as a
function of frequency, the size of nanoparticles, and
their concentration in the heterostructure. The cor-
rectness of the approach is proved, in particular, by a
significant reduction in the frequency of a plasmon
resonance with increasing size of metallic particles,
which was observed experimentally in aqueous sus-
pensions of silver nanoparticles [5, 7].

2. COMPARISON OF THE MAXWELL 
GARNETT AND BRUGGEMAN APPROACHES 

IN CALCULATING THE EFFECTIVE 
PARAMETERS OF HETEROSTRUCTURES
The Maxwell Garnet approach is based on the

approximate formula

(7)

where ε0 is the absolute permittivity of vacuum, εeff is
the relative effective permittivity of a heterostructure
with nanoparticles, εd is the relative permittivity of the
heterostructure matrix, and P is the dielectric polar-
ization of metallic nanoparticles under an electromag-
netic field with electric field amplitude E. This
approach implicitly assumes that formula (7) follows
from the well-known formula

which is used to describe the dielectric properties of
only continuous homogeneous media, in which no
multipole, except for dipole, oscillations can be
excited. This means that this approach basically does

ε = ε +
εeff

0
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not allow the description of higher order multipole
excitations in metallic particles, which are well
observed experimentally.

Moreover, a serious f law in the Maxwell Garnett
approach is that the dipole moments of real spherical
metallic particles of radius a are replaced in calcula-
tion by equivalent moments of dipoles placed at the
centers of the particles reduced to a point size (a = 0).
Under such replacement, the real electric field in a
nanoparticle has a singularity. However, this singular-
ity of the field is not taken into account, and it is
assumed that the field inside a particle is the same as
in the surrounding matrix. As a result, the depolariza-
tion field inside a particle is ruled out, and, therefore,
the contribution of metallic particles to the effective
permittivity of the heterostructure is overestimated.

The Bruggeman approach is based on a rigorous
formula that reflects the continuity of the electric
induction flux:

(8)

where ΔΦ is the jump of the electric induction flux on
the integration surface; En(r) is the component of the
microscopic electric field normal to the integration
surface; εr(r) is the local relative permittivity of the
heterostructure that takes the values εm inside a chosen
metallic nanoparticle, εd inside a chosen dielectric
particle, and εeff outside the chosen particle; and E0 is
the macroscopic electric field of the wave that is
orthogonal to the integration surface. This formula is
obtained by integrating the Maxwell equation

(9)

over any surface orthogonal to the microscopic field
E0. It is obvious that this surface is the averaging sur-
face of the microscopic field. Since the heterostruc-
ture is assumed to be macroscopically homogeneous,
the location of the averaging surface for the micro-
scopic field can be chosen arbitrarily. Obviously, the
concept of effective permittivity εeff makes sense only
when the transverse dimensions of the surface are
greater than the transverse size of a nanoparticle but
much less than the wavelength in the heterostructure.

Note that, in the Bruggeman approach, only one
nanoparticle is considered explicitly; however, its
interaction with other nanoparticles is still taken into
account, but only in the mean-field approximation in
the heterostructure, which is characterized by the
parameter εeff.

Thus, in calculating the effective complex permit-
tivity of a dielectric medium with metallic nanoparti-
cles, the Bruggeman approach is more rigorous than
the Maxwell Garnett approach.

ΔΦ ≡ ε − ε =∫∫ ∫∫eff 0( ) ( ) 0,r nE ds E dsr r

ε =div( ) 0rE
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3. CALCULATION OF EFFECTIVE 
ELECTROMAGNETIC PARAMETERS

OF A DIELECTRIC MEDIUM
WITH METALLIC NANOPARTICLES

We will assume that the heterostructure is a
medium consisting of dielectric and metallic nanob-
alls. We represent the integral jump in the electric
induction flux ΔΦ on the integration surface, which is
calculated by formula (8), as a sum of jumps from sin-
gle nanoparticles in the averaged medium:

(10)
where nm and nd are the numbers of metallic and
dielectric nanoparticles, respectively, in the integra-
tion area and ΔΦm and ΔΦd are the contributions of
these separate particles in the homogeneous medium
with εeff and μeff to the integral jump.

We start the calculation with the jump of ΔΦm. To
this end, we consider the propagation of a plane elec-
tromagnetic wave in a homogeneous medium contain-
ing a single spherical metallic nanoparticle. Suppose
that the macroscopic field components of the wave are
expressed by the formulas

(11)

where the amplitudes of the electric and magnetic
fields are related by the formula E0 = ZeffH0 and the
wave number keff and the characteristic impedance Zeff
are defined by the formulas

(12)

Let us single out a single particle in the hetero-
structure and place the origin of coordinates at its cen-
ter. Consider a microscopic electromagnetic field

inside and near this nanoparticle. Outside the particle,
the field is a superposition of the field of the incident
wave given by formulas (11) and the field of the
reflected wave. Inside the particle, this field is charac-
terized by the field of the transmitted wave. As is
known [9], the field components of the reflected wave
are expressed by

(13)

where the vector functions (r, θ, ϕ), (r, θ, ϕ),
(r, θ, ϕ), and (r, θ, ϕ) are defined in the spher-

ical system of coordinates by the formulas

(14)

and the coefficients  and , which are the ampli-
tudes of magnetic and electric multipole excitations of
the nth order, respectively, are defined by the formulas

(15)

Here jn(x) and (x) are spherical Bessel functions
whose order n coincides with the order of the multi-
pole excitation, (x) is the associated Legendre
function of the first kind, μm and μeff are relative per-
meability of the metal of the nanoparticle and the rel-
ative effective permeability of the heterostructure,
respectively, and the wave number for the metal of the

nanoparticle is defined by the formula

(16)

The prime over the square bracket indicates differenti-
ation with respect to kma or keffa, depending on the
content of the bracket.
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The field components of the wave transmitted into
the nanoparticle are expressed as

(17)

where Zm is the characteristic impedance of the metal-
lic medium of the nanoparticle,

(18)

the vector functions (r, θ, ϕ), (r, θ, ϕ), (r,
θ, ϕ), and (r, θ, ϕ) are defined by the formulas

(19)

and the amplitudes are given by

(20)

Consider in greater detail the electromagnetic field
in two orthogonal planes that pass through the center
of the nanoparticle and are orthogonal to the vectors
E0 and H0 of the incident wave. Note that the only unit
vector iϕ of the spherical system of coordinates is
orthogonal to these planes. From formulas (13) and
(17) we obtain orthogonal field components in Carte-
sian coordinates:

(21)

and

(22)

According to formulas (8) and (10), the jump ΔΦm
is expressed by the following formula in spherical
coordinates:

(23)

where R is the radius of the domain in the plane x = 0
over which the microscopic field is averaged.
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Before substituting formulas (21) and (22) into
Eq. (23) and integrating it, we first integrate the com-
ponents  and  only with respect to the angle θ;
after that, the contribution of some part of multipole
excitations in the integrals vanishes, and the expres-
sions obtained are simplified:

(24)

(25)

We can see that the sums in these integrals contain the
contributions of electric multipole excitations only of
odd orders, i.e., the electric dipole excitations (n = 1),
electric octupole excitation (n = 3), etc.

Since the amplitudes of multipole excitations 
and  rapidly decay with increasing order n, to sim-
plify further calculations, we will take into account
only dipole excitations. We will also assume that the
size of the domain of radius R over which the micro-
scopic field is averaged is much less than the wave-
length, i.e., |keffR| ≪ 1. This inequality is a natural con-
dition that justifies the use of the effective electromag-
netic parameters of the heterostructure when
describing dynamic processes in it. It allows one to
keep only the leading terms in the coefficients  and

 and in the function [keffr (keffr)]'. We will describe
the microscopic field inside the metallic nanoparticle
without the quasi-static approximation, i.e., we will
impose no additional inequality on |kma| except for the
natural inequality a < R.

After substituting the simplified expressions (24)
and (25), formula (23) is rewritten as

(26)

where the function J(x) is defined by the formula

(27)

In a similar way we can calculate the contribution of a
single dielectric nanoparticle of arbitrarily small radius
b to the jump ΔΦd. This contribution is expressed by a
similar formula
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Substituting expressions (26), (28), and (10) into
Eq. (8), we obtain the sought equation for calculating
the effective permittivity of the heterostructure:

(29)

where the coefficients of the relative volume concen-
tration of metal and dielectric are given by the formu-
las cm = nma3/R3 and cd = ndb3/R3 and are related by the
condition cm + cd = 1. These formulas take into
account that, for |x| ≪ 1, the function J(x) is a constant
equal to one.

As a result, from expression (29) we obtain an
equation that is quadratic in the sought quantity εeff
and therefore has two solutions:

(30)

where

Note that, for |kma| ≪ 1, formula (30) exactly coincides
with the well-known Bruggeman formula (6) if we
consider only the solution with plus sign.

In the monograph [12], as well as in [27], the
authors suggest leaving only the plus sign at the square
root when choosing a solution to the Bruggeman
equation. However, since the permittivity εm of metal-
lic particles is complex, this choice of the solution for
the effective permittivity εeff is not always correct.

Indeed, as is known, the positive sign of the imagi-
nary part of εeff indicates the presence of dielectric or
ohmic loss in the medium, which determines the
attenuation of the electromagnetic wave, while the
negative sign contradicts physics: it implies the ampli-
fication of the electromagnetic wave, i.e., the genera-
tion of energy in the structure. Therefore, the sign at
the square root should be chosen so that the imaginary
part of εeff always remains positive. The correct choice
of the sign for the solution to Eq. (29) is guaranteed
automatically if we rewrite formula (30) as

(31)

It is important that the sign of Reεeff may be any.

Performing similar calculations for the magnetic
fields Hr and Ht defined by formulas (13) and (17), we
can calculate the effective permeability of a dielectric
medium containing metallic nanoparticles. In this
case, it is easy to show that only magnetic multipole
oscillations of odd order contribute to μeff. However,
for simplicity, we will take into account only magnetic
dipole oscillations. As a result, we obtain a formula for

ε − ε ε − ε+ =
ε + ε ε + ε

eff eff

eff eff

( ) 0,
( ) 2 2

m m d
m d

m m d

J k ac c
J k a

ε ε± + ε εε =
2

eff
8 ( ),

4
m d mH H J k a

ε = − ε − − ε(2 3 ) (1 3 ) ( ).m d m m mH c c J k a

ε ε+ − − ε εε =
2

eff
8 ( ).

4
m d mH i H J k a
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Fig. 1. (Color online) Frequency dependence of the
(a) real and (b) imaginary parts of the effective permittivity
of the aqueous suspension of silver nanoparticles with con-
centration cm = 1 × 10–3 calculated by formula (31) for
a = 10  (1), 20 (2), 30 (3), and 40 nm (4); (5) calculation by
the Bruggeman formula, and (6) calculation by the Max-
well Garnett formula. 
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calculating the effective relative permeability of a
dielectric medium with metallic nanoparticles:

(32)

where

(33)

For μm = μd and |kma| ≪ 1, formula (32) is simplified to

(34)

Note that the effective permeability μeff of the hetero-
structure is different from unity even for μm = μd = 1 if
kma ≠ 0, which was pointed out earlier in [28].

The calculation performed shows that electric mul-
tipole oscillations of any order in nanoparticles do not
contribute to the effective permeability of the hetero-
structure, just as magnetic multipole oscillations of
any order do not contribute to the effective permittiv-
ity of the medium.

4. RESULTS OF INVESTIGATIONS
AND THEIR ANALYSIS

We pointed out that the difference between the for-
mulas obtained in the present study and the Maxwell
Garnett and Bruggeman formulas consists in that our
formulas show the dependence of the effective electro-
magnetic parameters of a heterostructure on the size
of nanoparticles contained in the matrix. It is also
important to note that, for a nanoparticle radius of a <
5 nm and a concentration of cm < 10–6, the frequency
dependences of the components of the effective com-
plex permittivity εeff = ε' + iε'' constructed by the Max-
well Garnett and Bruggeman formulas and our formu-
las are almost indistinguishable. However, for a con-
centration of cm > 10–5, the functions ε'(f) and ε''(f)
constructed by the Maxwell Garnett formula signifi-
cantly differ from the corresponding functions con-
structed by the Bruggeman and our formulas.

Figure 1 demonstrates the frequency dependences
of the effective complex permittivity components of an
aqueous suspension of silver particles with concentra-
tion of cm = 10–3, calculated by formula (31) for several
values of the particle radius, as well as the frequency
dependence calculated by the Maxwell Garnett (5)
and Bruggeman (6) formulas. In these calculations,
the permittivity εm of metallic particles is determined
by formula (2). In this case, the values of the parame-
ters entering this formula are borrowed from [6]: the
plasma frequency ωp/2π = 1600 THz, the relaxation
frequency of charge carriers γ/2π = 20 THz, and the
optical permittivity of the metal ε∞ = 1. According to
the data from [29], the permittivity of water (the
dielectric matrix of the heterostructure under investi-

μ μ+ − − μ μ
μ =

2

eff
8 ( )

,
4

m d mH i H J k a

μ = − μ − − μ(2 3 ) (1 3 ) ( ).m d m m mH c c J k a

⎛ ⎞ωμ = μ + ε⎜ ⎟
⎝ ⎠

2
2

eff 21 .
10

m
d m

c a
c
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gation) is εd = 1.788. All these parameters are used in
our further investigations.

The functions in Fig. 1 are plotted in a narrow fre-
quency range near the resonant frequency f1 of dipole
(n = 1) oscillations of particles. One can see that the
resonance curves calculated by the Maxwell Garnett
and Bruggeman formulas differ significantly. In par-
ticular, the maxima of the imaginary components  of
permittivities, which characterize the absorption in
the heterostructure, and the widths Δf1 of the reso-

ε1''
D THEORETICAL PHYSICS  Vol. 127  No. 4  2018
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Fig. 2. (Color online) Frequency dependences of the (a)
real and (b) imaginary parts of the effective relative mag-
netic susceptibility of the aqueous suspension of silver
nanoparticles with concentration cm = 1 × 10–3 calculated
by formula (32) for particle radius a = 10 (1), 20 (2), 30 (3),
and 40 nm (4). 
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nance lines measured at half-maximum level differ by
a factor of more than two, although the resonant fre-
quencies f1 coincide. The diagrams in Fig. 1 con-
structed by our formula (31), in contrast to the Max-
well Garnett and Bruggeman formulas, show a signif-
icant decrease in the plasma resonant frequency f1
with increasing size of metallic nanoparticles a >
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
10 nm. However, for a < 5 nm, the resonance curves
calculated by formula (31) are almost indistinguish-
able from the analogous curves calculated by the
Bruggeman formula (6).

It is obvious that if a heterostructure does not con-
tain magnetic particles, its effective permeability μeff is
close to unity. Therefore, it is more convenient to
describe the magnetic properties of the aqueous sus-
pension of silver by the effective relative magnetic sus-
ceptibility χeff = μeff – 1. Figure 2 plots the diagrams of
χeff = χ' + iχ'' calculated by formula (32) in a wide
range of frequencies for several sizes of silver nanopar-
ticles with a concentration of cm = 1 × 10–3 in the sus-
pension. Here it is assumed that μm = μd = 1.

Note that the real part of the magnetic susceptibil-
ity χ'(f) of the heterostructure does not show a mag-
netic dipole resonance in the frequency range consid-
ered, because the frequency of this resonance, in con-
trast to that of the electric dipole resonance, is much
higher than the frequency range. However, the func-
tion χ''(f) exhibits a pronounced maximum in the far
infrared region, whose frequency fmax, according to
investigations, is virtually independent of the size of
particles in the suspension when their radius a <
30 nm. The inset in Fig. 2 demonstrates a fragment of
the region of maximum of χ''(f) in which it is clearly
seen that fmax ≈ 20 THz; however, one should note that
the maximum frequency monotonically decreases
with increasing size of nanoparticles.

To explain the nature of the nonresonant maxi-
mum on the frequency dependence of the imaginary
component of the magnetic susceptibility of the sus-
pension, we substitute the complex permittivity εm(ω)
of the nanoparticle material (see formula (2)) into for-
mula (34), rightly assuming that the particle size in the
chosen frequency range is much less than the wave-
length, |kma| ≪ 1. Then we single out the imaginary
part in the expression obtained:

(35)

We can see that the maximum of the imaginary part of
the effective magnetic susceptibility is exactly at the
relaxation frequency ωmax = γ of charge carriers. This
fact shows that the relaxation frequency of charge car-
riers in the heterostructure can be determined experi-
mentally. To this end, one should only measure the
frequency of maximum attenuation of electromag-
netic waves, which obviously coincides with the maxi-
mum frequency of the function χ''(f).

Figure 2 also shows that the real part of χ' is always
negative. This means that heterostructures containing
nonmagnetic metallic particles in a dielectric matrix
exhibit the properties of diamagnetics with effective
magnetic susceptibility on the order of 10–5 for the
concentration and size of nanoparticles considered.
However, as the radius a of nanoparticles and their

ωγ ωχ =
ω + γ

2 2
2

2 2 2'' .
10

pmc a
c
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Fig. 3. (Color online) Frequency dependence of the (a)
real and (b) imaginary parts of the effective permittivity of
the aqueous suspension of silver nanoparticles with cm =
1 × 10–2, calculated by formula (31) for a = 20  (1), 40  (2),
and 60 nm (3); (4) calculation by the Bruggeman formulas,
and (5) calculation by the Maxwell Garnett formula.
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volume concentration cm in the heterostructure
increase, the effective magnetic susceptibility χeff can
increase in absolute value by orders of magnitude. For
example, for a = 100 nm and cm = 0.1, the imaginary
component of the susceptibility measured at the relax-
ation frequency of charge carriers (γ/2π = 20 THz)
increases to χ'' = 2.2 × 10–2, and the real component
at its minimum frequency fmin = 153 THz increases to
χ' = –5.4 × 10–2. Note that, in the static limit, χeff van-
ishes, which is clearly seen in Fig. 2.

Figure 3 presents the frequency dependences of the
effective complex permittivity εeff calculated for a con-
centration of silver particles in an aqueous suspension
of cm = 1 × 10–2 for several sizes of nanoparticles
(curves 1–3). The comparison of the diagrams in
Figs. 1 and 3 shows that a ten times increase in the
concentration cm leads to an order of magnitude
increase in the maximum of the imaginary component
of the effective permittivity  calculated by the Max-
well Garnett formula. However, a similar quantity cal-
culated by the Bruggeman formula increases only by a
factor of 3.5. In this case, the difference between these
two maximum values of  increases from a factor of
two (for cm = 1 × 10–3) to seven (for cm = 1 × 10–2).

Figure 4 demonstrates the resonant frequency f1, as
well as the maximum (resonant) value of the imagi-
nary component of the effective permittivity , as a
function of the radius a of silver nanoparticles, which
are computed by formula (31) for several concentra-
tions cm (curves 1–3). In this figure, the straight
curves 4 and 5 represent the values of the correspond-
ing parameters calculated by the Bruggeman formulas
only for two values of concentration in order not to
overload the figure, and the straight curves 6 and 7
represent the values calculated by the Maxwell Gar-
nett formulas, which are derived under the assumption
of infinitely small particles.

We can see that the resonant frequencies calculated
by the Bruggeman formula and by formula (31) well
coincide for any particle concentrations in the suspen-
sion, but only for very small particle sizes. The reso-
nant frequency calculated by the Maxwell Garnett for-
mula agrees with these calculations also for very small
nanoparticle sizes, but for very low concentrations cm
in the suspension. As should be expected, the resonant
frequency f1 calculated by formula (31) decreases not
only with increasing radius a but also with increasing
concentration of particles in the suspension. In this
case, the resonant value  of the imaginary part of the
permittivity weakly increases with increasing radius a
but rapidly increases with increasing concentration of
particles in the suspension. For a nanoparticle con-
centration of cm = 0.1 in the suspension, the maximum
value of the permittivity calculated by the Maxwell
Garnett formula is too large,  = 23.86; therefore, it
is not shown in Fig. 4b.

ε1''

ε1''

ε1''

ε1''

ε1''
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The overstated value of the effective permittivity,
which is obtained when calculating by the Maxwell
Garnett formula and increases with increasing con-
centration of particles in the heterostructure, is
explained as follows. First, when calculating the
D THEORETICAL PHYSICS  Vol. 127  No. 4  2018
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Fig. 4. (Color online) (a) Resonant frequency f1 and
(b) resonant value of the imaginary part of the effective
permittivity  as a function of the radius of silver
nanoparticles, calculated by formula (31) for cm =
(1) 0.001, (2) 0.01, (3) 0.1, as well as by the Bruggeman for-
mula for cm = (4) 0.001 and (5) 0.1 and by the Maxwell
Garnett formula for (6, 7) cm = 0.001. 
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Fig. 5. (Color online) Frequency dependences of the imag-
inary part of the effective permittivity of the aqueous sus-
pension of silver nanoparticles, calculated by the Maxwell
Garnett formula  for (1) cm = 1 × 10–5–1 × 10–3 and by the
Bruggerman formula for cm = (2) 1 × 10–5, (3)  1 × 10–4,
and (4) 1 × 10–3. 
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dielectric polarization P of metallic nanoparticles (see
formula (7)), the quasi-static Maxwell Garnett
approach uses a model in which a real particle of given
size possessing a dipole moment is replaced by a point
particle with the same dipole moment. In this case,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PH
the electric field inside the particle is assumed to be
the same as the field in the surrounding dielectric
matrix, i.e., the depolarization field inside the particle
is neglected. Second, the Maxwell Garnet approach
does not take into account the interaction of particles.

Obviously, such rough approximations can be jus-
tified only for very low concentrations of particles in
the heterostructure. Investigations have shown that,
already for cm > 10–6, such approximations give an
appreciable error, which rapidly increases with
increasing cm.

This fact is confirmed by the frequency depen-
dence diagrams ε''(f) constructed in Fig. 5 for several
concentrations cm by the Maxwell Garnett formula
(curve 1) and by the Bruggeman formula (curves 2–4).
For clarity, all the curves are normalized by the corre-
sponding concentration cm. Note that the diagrams
constructed by the Maxwell Garnett formula for con-
centrations of cm = 1 × 10–5, 1 × 10–4, and 1 × 10–3 are
shown by the same curve 1 because they are virtually
indistinguishable.

In the quasi-static Bruggeman approach, the field
inside a particle is assumed to be uniform under the
assumption that the particle size is much less than the
wavelength; however, the depolarization field is taken
into account. Obviously, such an approximation also
YSICS  Vol. 127  No. 4  2018
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Fig. 6. (Color online) Quality factor of the electric dipole
plasmon resonance in the aqueous suspension of silver
nanoparticles as a function of their radius, calculated in
this work for cm = (1) 0.0001, (2) 0.001, and (3) 0.01, as well
as by the Bruggerman formula for cm = (4) 0.0001 and
(5) 0.01 and by the Maxwell Garnett formula for cm =
(6) 0.0001 and (7) 0.01. 
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requires that the particle size should be small. As
already pointed out, the advantage of the Bruggeman
model is that it takes into account the interaction
between a singled-out particle and other nanoparticles
of the heterostructure in the mean-field approxima-
tion. The interaction of particles results in the strong
broadening of the resonance curve ε''(f) with increas-
ing concentration cm in the heterostructure (see
Fig. 5). An important characteristic of any resonance
is its quality factor, which can be calculated by the
conventional formula Q1 = f1/Δf1.

The solid lines 1–3 in Fig. 6 represent the quality
factor Q1 of the electric dipole plasmon resonance cal-
culated by our formula as a function of the radius a of
silver particles in aqueous suspensions with various
concentrations of nanoparticles. One can see that the
quality factor slowly decreases with increasing particle
radius; however, it decreases much faster with increas-
ing concentration of nanoparticles in the suspension.
For two values of nanoparticle concentration in the
suspension, Fig. 6 also shows the values of Q1 obtained
by the Bruggeman formula (lines 4 and 5) and by the
Maxwell Garnett formula (lines 6 and 7). One can see
that, for small particle sizes, the quality factor of the
electric dipole plasmon resonance according to Brug-
geman well coincides with our calculation. However,
the quality factor Q1 obtained by the Maxwell Garnett
formula, first, is significantly overstated and, second,
JOURNAL OF EXPERIMENTAL AN
is almost independent of the concentration of
nanoparticles in the suspension.

5. CONCLUSIONS

The presented electrodynamic calculation of the
frequency dependence of the effective complex per-
mittivity and the effective complex permeability of a
heterostructure consisting of a dielectric matrix con-
taining metallic nanoparticles of spherical shape takes
into account the size of nanoparticles. In contrast to
the Bruggeman and Maxwell Garnett approaches,
which use the quasi-static approximation in which the
particles size is assumed to be much less than the
wavelength in the metal, we have calculated the non-
uniform distribution of electromagnetic fields inside
metallic nanoparticles. We have established that elec-
tric multipole oscillations of any order in nanoparti-
cles do not contribute to the effective permeability of
the heterostructure, just as magnetic multipole oscil-
lations do not contribute to the effective permittivity of
the medium. In this case, only electric multipole exci-
tations of odd orders, i.e., dipole, octupole, etc., exci-
tations can contribute to the effective permittivity εeff,
just as only magnetic multipole excitations of odd
orders can contribute to the effective permeability μeff.

We have shown that the frequency of the electric
dipole plasmon resonance decreases both with
increasing size of particles and with increasing their
concentration in the heterostructure. These facts are
confirmed by experimental investigations of aqueous
suspensions of metallic nanoparticles [5, 7]. We have
also shown that the dielectric medium containing
nonmagnetic metallic nanoparticles exhibits diamag-
netic properties, which suggests that experimental
investigations should be carried out in this direction.
An important result of the study is the established fact
that the frequency of the maximum on the frequency
dependence of the imaginary part of the magnetic sus-
ceptibility coincides with the relaxation frequency of
charge carriers. This fact makes it possible the experi-
mental measurement of the relaxation frequency by
the frequency of maximum absorption of electromag-
netic radiation by the heterostructure under the exci-
tation of magnetic dipole oscillations in it.

The calculated spectra of the real and imaginary
components of the permittivity of the heterostructure
with a size of metallic particles less than 10 nm well
agrees with the Bruggeman calculations; however, the
agreement with the Maxwell Garnett calculations is
observed only for very low concentrations of nanopar-
ticles less than 10–6. This is attributed to too rough
approximations used in the Maxwell Garnett
approach; in particular, this approach does not take
into account the interaction between the particles of
the heterostructure, which is taken into account in the
Bruggeman approach in the mean-field approxima-
tion. Moreover, the Maxwell Garnett approach does
D THEORETICAL PHYSICS  Vol. 127  No. 4  2018
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not take into account the depolarization field, because
a particle of finite size is replaced by a point dipole in
this approach. Nevertheless, many authors use the
Maxwell Garnett approach [15, 30] and his formula in
their investigations even for high concentrations of
particles in a heterostructure up to cm = 0.2 [31].
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