ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2018, Vol. 127, No. 6, pp. 1067–1073. © Pleiades Publishing, Inc., 2018. Original Russian Text © A.M. Vorotynov, V.V. Rudenko, S.G. Ovchinnikov, M.S. Molokeev, 2018, published in Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, 2018, Vol. 154, No. 6, pp. 1160–1167.

> ORDER, DISORDER, AND PHASE TRANSITION ______ IN CONDENSED SYSTEM

Electron Paramagnetic Resonance of Cr^{3+} Ions in ABO₃ (A = Sc, In, Ga) Diamagnetic Crystals¹

A. M. Vorotynov^{a,*}, V. V. Rudenko^a, S. G. Ovchinnikov^a, and M. S. Molokeev^{a,b}

^a Kirensky Institute of Physics, Federal Research Center "Krasnoyarsk Scientific Center," Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036 Russia

^b Siberian Federal University, Krasnoyarsk, 660041 Russia

* e-mail: sasa@iph.krasn.ru

Received July 2, 2018

Abstract—A magnetic resonance method is applied to the investigation of a number of isostructural diamagnetic compounds ABO₃ (A = Sc, In, and Ga) with small additions of Cr^{3+} ions (S = 3/2) sufficient to observe single-ion and pair spectra. It is shown that the resonance spectra for isolated Cr^{3+} ions can be described to a good accuracy by the ordinary axial spin Hamiltonian for 3*d* ions in octahedral oxygen environment. The parameters of the spin Hamiltonian are determined for single Cr^{3+} ion and $Cr^{3+}-Cr^{3+}$ pair. Lattice distorsions of the parent ABO₃ crystals caused by the Cr^{3+} impurities is discussed.

DOI: 10.1134/S1063776118120245

1. INTRODUCTION

Borates of transition metals with chemical formula ABO_3 (A = Fe, V, Cr, Ti) have attracted attention because of the variety of their physical properties that are manifested in this isostructural series of compounds [1]. However, a number of borates of 3d metals ABO₃, except for FeBO₃, remain poorly studied. For example, from among the whole series of 3d borates, magnetic anisotropy has been experimentally investigated to date only in $FeBO_3$ [2]. In the present study, we apply the electron paramagnetic resonance method to the experimental investigation of the anisotropic properties of Cr³⁺ ions in diamagnetic matrices of isostructural compounds of ABO_3 (A = Sc, In, Ga) borates. In this case, a Cr^{3+} ion was chosen due to the unusual magnetic properties of the isostructural crystal CrBO₃ [3]. For example, in [4] the authors showed that the magnetic properties of the CrBO₃ crystal can be described on the basis of a simple model of a collinear two-sublattice antiferromagnet with magnetic moments along a [111] axis. The authors of [3] suggested, on the basis of static magnetic measurements, that it is more probable that, on the contrary, the antiferromagnetism vector of CrBO₃ lies in a plane close to the base plane.

The present paper is the continuation of the investigations presented by us in [5]. In [5] only single ion spectra for A = In, Sc, and Lu were discussed and was pointed out the presence of a $Cr^{3+}-Cr^{3+}$ pair spectra. In this paper we present the new data of the Electron Spin Resonance (ESR) spectra of single Cr^{3+} ions in diamagnetic matrix GaBO₃ and pair spectra of Cr^{3+} – Cr^{3+} ions were treated and discussed for A = Sc, In, Ga compounds.

2. MATERIALS AND METHODS

ABO₃ (A = Sc, In, Ga) crystals with small (about 5 at % of A) addition of Cr³⁺ ions were grown from the solution-melt with composition Cr₂O₃-M₂O₃-B₂O₃-(70PbO-30PbF₂ wt %). The detailed synthesis technology is described in [6]. In this technology, a Cr³⁺ ions substitute the A ions. We obtained single crystals in the form of thin plates with a size of 2 × 2 mm and thickness of about 0.1 mm with a smooth shining surface of light gray color. ABO₃ (A = Sc, In, Ga) isostructural crystals have a rhombohedral symmetry in space group $R\overline{3}c$, the point group symmetry of the A ion is (-3*m*). Parameters of the unit cell were determined by using X-ray Smart APEX II (Bruker) (Mo K_{α} radiation) installation at room temperature and are presented in Table 1 for Sc, In, Ga.

The C_3 -axis of the crystal is normal to sample plate (the *c*-axis in Fig. 1). The A ions are located in the octahedrons formed by oxygen ions connected with boron ions by a strong covalent bond.

In addition, there is a possibility for nearest Cr^{3+} ions to form a magnetically coupled pairs. The projection of the pair's axes onto basal plane of the crystal is

¹ The article was translated by the authors.

ABO ₃	Effective ion radius <i>r</i> , Å [7]	Unit cell pa	rameters, Å	cla	Distance Å	θ, deg
		а	С	c/u	Distance, A	
Sn	0.745	4.7532(5)	15.2669(2)	3.212	3.7424	47.163
In	0.800	4.806	15.348	3.194	3.7739	47.33
Ga	0.620	4.578(1)	14.183(5)	3.098	3.5459	48.2

Table 1. Unit cell parameters of ABO₃ crystals

Note: The effective ion radius of Cr^{3+} is r = 0.615 Å, θ is angle between pair axis and C_{3} -axis of the crystal

presented in Fig. 2. All pairs are magnetically equivalent. The $Cr^{3+}-Cr^{3+}$ distances and angles between C_3 axis of the crystal and pair axes are shown in Table 1.

The electron paramagnetic resonance measurements were carried out on a Bruker Elexsys E-580 spectrometer operating at *X*-band at temperatures 300 and 77 K.

3. RESULTS

3.1. Single-Ion Spectra

In this chapter we present the experimental results for the single ion ESR spectra of Cr^{3+} ions obtained in ABO₃ (Sc, In, Ga) compounds. So far this paper is the continuation of the investigations presented by us in

Fig. 1. (Color online) Crystal structure of ABO₃.

[5], let us consider more detailed only experimental data for the $GaBO_3$ crystal, that was not discussed previously.

Fig. 2. (Color online) Projection of the axes of Cr^{3+} ions pairs onto basal plane of the crystal. Only Cr^{3+} ions are shown.

Fig. 3. (Color online) Angular dependence of resonance fields of the ESR signals observed in $GaBO_3(ac)$ plane of the crystal. Dots represent experiment and solid curves—calculation (see Table 2).

Fig. 4. (Color online) Calculated schemes of energy levels of a Cr^{3+} ion in GaBO₃; (a) external magnetic field is parallel to the base plane of the crystal, and (b) external magnetic field is parallel to the C_3 axis.

The angular dependence of the resonance fields of the single Cr^{3+} ions transitions observed in the (*ac*) plane are shown in Fig. 3. The resonance spectra for isolated ions of Cr^{3+} can be described by the following axial spin Hamiltonian for 3*d* ions:

$$H = -g_{\parallel}\beta H_z S_z - g_{\perp}\beta (H_x S_x + H_y S_y) + DS_z^2, \quad (1)$$

where *D* is the axial constant of the spin Hamiltonian, g_{\parallel} and g_{\perp} are the values of the *g*-tensor for parallel and perpendicular orientations of the external magnetic field with respect to the C_3 axis of the crystal, β is the Bohr magneton, S_i and H_i are the projections of the spin of a Cr³⁺ ion and the external magnetic field to the C_3 axis of the crystal, and S = 3/2 is the spin of the Cr³⁺ ion. The experimental and theoretical spectra were fitted with the use of the XSophe software [8]. The results are presented in Table 2.

The values of the *g*-tensor obtained are nearly isotropic and correspond to appropriate values for d^3 ions in the octahedral environment [9]. The spin-Hamiltonian constant *D* correlates with those in the earlier investigated compounds Al₂O₃ [10] and ZnGa₂O₄ [11, 12], in which the Cr³⁺ ion is also in an octahedral coordination. The *D* sign for Cr³⁺ ion in GaBO₃ was determined by comparison of the resonance lines intensities of $M_S = 1/2 \leftrightarrow 3/2$ and $M_S = -1/2 \leftrightarrow -3/2$ transitions at 300 and 77 K respectively as in [5].

As an example, Fig. 4 demonstrates the calculated schemes of energy levels of the Cr^{3+} ion in GaBO₃.

3.2. Pair Spectra

In compounds with A = Sc, In, Ga the $Cr^{3+}-Cr^{3+}$ pair spectra were observed. The example of the pair spectra for $ScBO_3$ at room temperature is presented in

Table 2. Parameters of the spin Hamiltonian (1) for an isolated Cr^{3+} ion in the ABO₃ matrix at room temperature

А	g_{\parallel}	g_{\perp}	$D, {\rm cm}^{-1}$
In [5]	1.980(1)	1.982(1)	-0.314(1)
Sc [5]	1.980(1)	1.982(1)	-0.402(2)
Ge (new data)	1.980(1)	1.982(1)	-0.467(1)

Fig. 5. The example of the $Cr^{3+}-Cr^{3+}$ pair spectra for $ScBO_3$ at room temperature in basal plane of the crystal.

Fig. 5. The intense line in the right and left sides corresponds to the single ion transitions.

 $Cr^{3+}-Cr^{3+}$ pair forms by the nearest neighbors with the distances r = 3.7424, 3.774, and 3.5459 Å for A = Sc, In, and Ga compounds respectively (see Table 1). The angle between pair axes and C_3 axis of the crystals is equal approximately $\theta \approx 47^{\circ}$ for all compounds. When two Cr^{3+} ions interact to form a magnetically coupled pair, the spins (s) on each ion combine as vectors to produce a manifold of four spin states each characterized by a total spin quantum number S, which value varies from $(s_1 + s_2)$, $(s_1 + s_2 - 1)$... to 0. Assuming that the energy intervals between these spin states are large compared with the other magnetic interactions, a separate spin Hamiltonian may be written for each spin state. In our case, it was possible to identify resonance spectra for pair multiplets with total spin S = 2 and 3 only. The angle dependencies of the resonance fields of the signals in basal plane of the crystals are shown in Figs. 6-8.

Fitting of the experimental spectra were carried out with XSophe program [8] and the spin Hamiltonian (2).

$$H = -g_{\parallel}\beta H_z S_z - g_{\perp}\beta (H_x S_x + H_y S_y) + D_S S_z^2 + E_S (S_x^2 - S_y^2) + 1/60 [B_4^0 O_4^0 + B_4^2 O_4^2 + B_4^4 O_4^4],$$
(2)

where g_{\parallel} and g_{\perp} are the values of the *g*-tensor for parallel and perpendicular orientations of the external magnetic field with respect to the C_3 axis of the crystal, β is

the Bohr magneton. Spin operators O_4^0 , O_4^2 , and O_4^4 are mentioned in [13]. Third and fourth terms in (2) describe the value of the "fine" structure for the total spin *S* of pair's multiplet and have the form [13]

$$D_S = (3\alpha_S D_e + \beta_S D_c), \quad E_S = (\alpha_S E_e + \beta_S E_c), \quad (3)$$

where D_e , E_e are the dipole-dipole interaction constants (assuming isotropic exchange interaction) in point approximation, D_c , E_c —"single ion" multiplet terms and

$$\alpha_{S} = \frac{1}{2} \frac{S(S+1) + 4s_{i}(s_{i}+1)}{(2S-1)(2S+3)},$$

$$\beta_{S} = \frac{3S(S+1) - 3 - 4s_{i}(s_{i}+1)}{(2S-1)(2S+3)}.$$
(4)

The $N \leftrightarrow J$ symbols in Figs. 6–8 denote transitions between corresponding M_s numbers in pair multiplets. Note, that the real experimental spectrum for each crystal consists from three identical spectra from Figs. 6–8 corresponding to $Cr^{3+}-Cr^{3+}$ pairs rotated by 60 degrees in basal plane (see Fig. 2).

The best fitting spin-Hamiltonian (2) values are presented in Table 3.

4. DISCUSSION

Let us, firstly, discuss the experimental results for $Cr^{3+}-Cr^{3+}$ pairs in ABO₃ crystals. The D_e term can be obtained directly from $D_{S=2}$ value (Eq. (3)) since there is no lattice contribution ($\beta = 0$ for S = 2 (Eq. (4))).

Table 3. Spin-Hamiltonian (2) values (cm⁻¹) for the Cr³⁺–Cr³⁺ pairs in ABO₃ crystals. The numbers in parentheses are the estimated errors in the last decimal place of the reported parameters. $g_{\parallel} = 1.980$ and $g_{\perp} = 1.982$ for all crystals

	<i>S</i> = 2				<i>S</i> = 3				
A	D_S	E_S/D_S	B_4^0	B_4^2	B_4^4	D_S	E_S/D_S	B_4^0	B_4^2
Ga	-0.022(3)	-0.03(3)	-0.18(3)	0.10(3)	0	-0.22(1)	0.028	0.0073	0
Sc	-0.061(1)	-0.097	0.047(1)	-0.05(1)	0.02	-0.197(1)	0.06(1)	0.01	-0.018
In	-0.078(1)	-0.0656	-0.0341	-0.009	-0.01	-0.173(6)	-0.1	-0.005	0.03

Fig. 6. (Color online) Angle dependencies of the resonance fields in basal plane of the crystals for $ScBO_3$ crystal at room temperature. Dots—experiment, solid lines—fitted curves by using of spin Hamiltonian (2) with parameters from Table 3.

Fig. 7. (Color online) Angle dependencies of the resonance fields in basal plane of the crystals for $InBO_3$ crystal at room temperature. Dots—experiment, solid lines—fitted curves by using of spin Hamiltonian (2) with parameters from Table 3.

Fig. 8. (Color online) Angle dependencies of the resonance fields in basal plane of the crystals for $GaBO_3$ crystal at room temperature. Dots—experiment, solid lines—fitted curves by using of spin Hamiltonian (2) with parameters from Table 3.

Fig. 9. Lattice distortion of the crystal caused by the Cr^{3+} – Cr^{3+} pair (see Table 4). Here R_{A-A} is the interionic A^{3+} – A^{3+} distances from Table 1.

For a pair system which exhibits a nearly isotropic *g*tensor the anisotropic zero-field term D_e is almost entirely due to dipole–dipole interaction. If the paramagnetic ions which form the pair are treated as point dipoles, the value of D_e can be calculated from the following expression. $D_e = -g^2\beta^2/R^3$ (where *R* is the interionic separation). From the D_e (for S = 2) values observed for the $Cr^{3+}-Cr^{3+}$ pairs in ABO₃ a distances can be calculated for separation between two Cr^{3+} ions. The results are presented in Table 4. Note, that $Cr^{3+}-Cr^{3+}$ distance in pure CrBO₃ crystal is equal to 3.5535 Å [14].

In Table 4 R_{theor} is the interionic $A^{3+}-A^{3+}$ separation X-ray data from Table 1, $D_e^{\text{theor}} = -g^2\beta^2/R_{\text{theor}}^3$, $D_{S=2}^{\text{theor}} = 3/2D_e^{\text{theor}}$, R_{exp} are the interionic $\text{Cr}^{3+}-\text{Cr}^{3+}$ distance values calculated from $D_{S=2}^{\text{exp}}$. From Table 4 one can see the lattice distortions caused by the impurity $\text{Cr}^{3+}-\text{Cr}^{3+}$ pairs in the parent ABO₃ lattice. Figure 9 presents these distortions vs. interionic separation of the crystals.

Fig. 10. $D_{S=2}$ —closed circles and $D_{S=3}$ —open circles vs. calculated Cr^{3+} — Cr^{3+} pair distance for ABO₃ (A = In, Sc, Ga) crystals. R_{exp} is the real Cr^{3+} — Cr^{3+} distance, determined in Table 4.

One can notice a tendency: the smaller the interionic $A^{3+}-A^{3+}$ distances, the stronger the distortions. Moreover, the sign of distortion is changing at $A^{3+}-A^{3+}$ distance approximately equal to 3.7 Å.

From the Eq. (3) the D_c values can be found also $(D_{S=2}^{\exp} \text{ value was used})$ (see Table 5).

It is seen, that D_c values are close enough to the axial constants D of the spin-Hamiltonian (1) for the single Cr^{3+} ion in ABO₃ crystals except for the GaBO₃. The reasonable origin of this difference for the GaBO₃ crystal may be explained if we take into account the strong lattice distortion observed for $Cr^{3+}-Cr^{3+}$ pair in GaBO₃.

Figure 10 shows the dependencies of the pair spin-Hamiltonian (2) term D_s on $Cr^{3+}-Cr^{3+}$ distance, calculated in Table 4.

Now, let us consider the axial constant D of the single ion spin-Hamiltonian (1). Assuming the model of the point dipole and considering only six nearest oxy-

А	<i>R</i> _{theor} , Å (from Table 1)	$D_e^{\mathrm{theor}},\mathrm{cm}^{-1}$	$D_{S=2}^{\text{theor}},\mathrm{cm}^{-1}$	$D_{S=2}^{\text{theor}}$, cm ⁻¹ (from Table 3)	$R_{\rm exp}$, Å
Ga	3.5459	-0.03807	-0.057105	-0.022	4.8732 ± 0.2
Sc	3.7424	-0.03238	-0.04857	-0.061	3.4688 ± 0.07
In	3.7739	-0.03158	-0.04737	-0.078	3.1959 ± 0.07

Table 4. D_e values for the Cr³⁺-Cr³⁺ pairs in ABO₃ crystals

Fig. 11. *D*—open circles (axial constant of the single ion spin Hamiltonian (1)) and c/a—closed circles (lattice parameters) vs. EFG in ABO₃ (A = Ga, In, Sc, Lu) crystals. The straight line is guide for eyes only for open circles (In, Sc, Lu).

gen ions (forming octahedral environment of Cr^{3+} ion) it is possible roughly to estimate the electric field gradient (EFG) for Cr^{3+} site using the X-ray data (Table 1). Obviously, the EFG value substantially determines the *D* value. Figure 11 presents *D* and *c/a* dependencies on EFG for ABO₃ (A = Ga, In, Sc, Lu) crystals.

The general trend is an increase in EFG as the c/a ratio increases. At the same way, the absolute value of the axial constant D increases with the EFG growing except for Cr^{3+} ion in GaBO₃. This fact may be explained if we assume that the strong lattice distorsion observed for $Cr^{3+}-Cr^{3+}$ pair in GaBO₃ (see Fig. 9 and Table 4) may be implemented for single Cr^{3+} ion in GaBO₃ too. In this case, the EFG value calculated from X-ray data (Table 1) may sufficiently differs from the real one.

Table 5. D_c values for the Cr³⁺-Cr³⁺ pairs in ABO₃ crystals

А	$D_c, {\rm cm}^{-1}$	<i>D</i> , cm ⁻¹ (data from Table 2)
Ga	-0.517	-0.467
Sc	-0.401	-0.402
In	-0.3155	-0.314

5. CONCLUSIONS

Single ion and pair spectra of Cr^{3+} ions in ABO₃ (A = Sc, In, Ga) diamagnetic crystals were explored by using electron paramagnetic resonance technique. Spin-Hamiltonian values for single ions and Cr^{3+} – Cr^{3+} pairs at room temperature were determined. The lattice distortions of the parent ABO₃ (A = Sc, In, Ga), caused by Cr^{3+} impurity were discussed. This work will be prolonged by the pair's resonance line intensities vs. temperature investigation in order to determine the signs and the values of the Cr^{3+} – Cr^{3+} exchange integrals J.

REFERENCES

- N. B. Ivanova, V. V. Rudenko, A. D. Balaev, N. V. Kazak, S. G. Ovchinnikov, I. S. Edel'man, A. S. Fedorov, and P. V. Avramov, J. Exp. Theor. Phys. 94, 299 (2002).
- G. V. Bondarenko, S. G. Ovchinnikov, V. V. Rudenko, V. M. Sosnin, V. I. Tugarinov, and A. M. Vorotynov, J. Magn. Magn. Mater. 335, 90 (2013).
- A. D. Balaev, N. B. Ivanova, N. V. Kazak, S. G. Ovchinnikov, V. V. Rudenko, and V. M. Sosnin, Phys. Solid State 45, 287 (2003).
- 4. T. A. Bither, C. G. Frederick, T. E. Gier, J. F. Weiher, and H. S. Young, Solid State Commun. 8, 109 (1970).
- A. M. Vorotynov, S. G. Ovchinnikov, V. V. Rudenko, and O. V. Vorotynova, J. Exp. Theor. Phys. 122, 734 (2016).
- 6. V. V. Rudenko, Inorg. Mater. 34, 1253 (1998).
- 7. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).
- M. Griffin, A. Muys, C. Noble, D. Wang, C. Eldershaw, K. E. Gates, K. Burrage, and G. R. Hanson, Mol. Phys. Rep. 26, 60 (1999).
- 9. S. A. Altshuler and B. M. Kozyrev, *Electron Paramagnetic Resonance in Compounds of Transition Elements* (Wiley, New York, 1974; Nauka, Moscow, 1972).
- M. J. Berggren, G. F. Imbusch, and P. L. Scott, Phys. Rev. 188, 675 (1969).
- 11. J. C. M. Henning, J. H. den Boeff, and G. G. P. van Gorkom, Phys. Rev. B 7, 1825 (1973).
- 12. G. L. McPherson and Wai-ming Heung, Solid State Commun. **19**, 53 (1976).
- 13. A. Abragam and B. Bleaney, *Electron Paramagnetic Resonance of Transition Ions* (Clarendon, Oxford, 1970).
- 14. T. Bither and H. S. Young, J. Solid State Chem. 6, 502 (1973).