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Abstract. The resonance in a two-dimensional array of square ferromagnetic elements has been experimen-
tally investigated. The magnetization of the elements is shown to be in the vortex state. The resonance
peak splitting in the array with increasing density of the elements has been established. The explanation
of this phenomenon is proposed and eigenfrequencies of the collective modes are theoretically estimated.
Different combinations of polarities and chiralities of the nearest elements in the array are examined.

1 Introduction

Over the years, there has been a keen interest in study-
ing nanosized objects. This is due to the prospects of
their application in ultrahigh density data storage, spin-
tronics, and micro- and nanosurgery. Under certain condi-
tions, the magnetization of micro- and nanosized elements
demonstrates the vortex distribution [1]. The competi-
tion between the exchange and demagnetizing energies
leads to the formation of a region with the strongly inho-
mogeneous magnetization at the vortex core center. The
core magnetic moment is perpendicular to the element
plane. The characteristic core radius can be estimated as
δ ≈

√
A/(4πMS), where A is the exchange constant and

MS is the saturation magnetization. The δ value for most
magnetically soft materials is about ten nanometers.

The dynamic properties of magnetization are theoret-
ically described by the Landau-Lifshitz-Gilbert (LLG)
equation and its modification proposed by Thiele [2].
The method proposed in [2] consists in the following.
The equation of magnetization motion in magnets with
soliton inhomogeneities is rewritten in the collective vari-
ables (coordinate and velocity of the soliton core). Thus,
the LLG equation takes the so-called non-Newtonian
form [3,4]. The core trajectory consists of helical fig-
ures. This was confirmed by the numerical simulation and
attempts of direct observation [5–7]. It is worth noting
that the magnetization of nanospots with the noncircular
(nonelliptical) shape is more complex.

Modern technology makes it possible to synthesize
arrays of ferromagnetic micro- and nanoelements of differ-
ent shapes (circular, square, triangular, etc.). In micron
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and submicron square magnets, a structure from tri-
angular domains separated by 90-degree Neel walls is
implemented. In the close vicinity of the square center,
at a spot of domain wall intersection, the vortex structure
occurs. When the core is shifted from the square center,
demagnetizing fields induce the effective restoring force
and gyroforce. The latter is caused by spin precession in
the effective field of a magnet. The core motion around
the square center is similar to the Larmor precession of
a charged particle around the magnetic induction lines.
The frequency of this rotation is hundreds of MHz. This is
noticeably lower than the frequency of the classical ferro-
magnetic resonance (FMR) with the moving domain walls
involved. Note that in square elements, both regimes of the
magnetization motion were observed experimentally [8].
The large difference between the frequencies suggests that
the domain structure affects insignificantly the gyrotropic
motion of the vortex core.

The state of magnetization in an individual element
is characterized by the two parameters: the core polar-
ity p = ±1, i.e., the core magnetic moment direction
(parallel or antiparallel to the separated direction of the
Z axis) and the core chirality q = ±1, i.e., the direc-
tion of magnetization in a magnetic core (clockwise or
counterclockwise). The methods for controlling (observ-
ing) the magnetization state in submicron magnets have
been fairly well-developed. They include force microscopy
[9–12] The polarity and chirality in the resonance mode
are governed by short current pulses (see, e.g., [13,14]) and
field pulses [15–18]; in the arrays of square elements, the
gradient fields effectively work [19].

The development of high-density data storage devices
requires the density of elements in an array to be maxi-
mum high. In such arrays, the magnetization dynamics is
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Fig. 1. Force microscopy image of the magnetization structure
for a part of the array of square elements.

significantly affected by the interaction of magnetic sub-
systems. This is, as a rule, the magnetostatic interaction;
however, the indirect exchange by conduction electron [20]
and direct exchange (in the presence of magnetic bridges
between neighboring elements [21]) can also take place.
Therefore, in recent years, a great number of experimental
and theoretical studies on the effect of interparticle inter-
action on the static and dynamic magnetic properties of
arrays have been published.

Theoretical calculations are often based on the model
concepts in which the magnetostatic interaction is spec-
ified in the dipole approximation. In particular, in fun-
damental works [22–26], the dispersion laws for 1D and
2D arrays were analytically calculated with regard to the
dipole interaction of core magnetic moments. The authors
of [24,27] established the dispersion laws in the model
of an array of circular elements with the identical chi-
rality and alternating polarity. For arrays with a great
number of microdots and in small sets [28–30], the elimi-
nation of degeneracy of the resonant frequency due to the
magnetostatic interaction was predicted and observed.

In most of the above-mentioned works, the calculations
were performed with disregard of the dissipation and only
for few combinations of polarities and chiralities. This
study was aimed at filling in this gap for the case of an
array of micron square elements.

2 Experimental

An array of square nanodots was formed from a continu-
ous film by the lift-off technique using thermal evaporation
of a 80HXC alloy in high vacuum and deposition onto the
silicon substrate coated with a photoresist. The desired
morphology was formed on the substrate surface using an
AZ Nlof 2035 negative photoresist. The magnetic struc-
ture of ferromagnetic nanospots was studied on a Veeco
MultiMode NanoScope IIIa scanning probe microscope.
Figure 1 shows a characteristic scan of the magnetic
structure obtained using a two-pass technique in the can-
tilever frequency modulation regime. The backward pass
height was z0 = 50 nm. The obtained images allowed us
to conclude that the structure most frequently forming in
squared elements is equilibrium with the closed magnetic
flux and consists of four domains separated by 90-degree
walls. At the square center (at the intersection of diago-
nals), there is a core, as at the center of circular elements.

Fig. 2. Differential absorption curves for the array of square
elements with distances of (a) 9 and (b) 5 µm between centers.

The square element side length is a ≈ 3µm and the
thickness is L ≈ 12 nm.

The resonance behavior of magnetization was exper-
imentally investigated on a FMR spectrometer. The
sample was placed in the antinode of a high-frequency
magnetic field (ω = 415 MHz). The amplitude of the ac
magnetic field applied in the nanodisk plane was 1 Oe.
The main field was applied perpendicular to the waveg-
uide plane. The signal from the sample was amplified by
a selective amplifier at a modulation frequency of 1 kHz
and supplied to a synchronous detector. The main field H
varied from 0 to 5 kOe. The obtained differential curves
are presented in Figure 2.

It can be seen in Figure 2 that at large distances
between elements in the array, the only absorption peak
is observed. In this case, the interplay of elements is neg-
ligible. The observed peak corresponds to the resonant
motion of core vortices in the elements where the com-
bination of polarity and chirality signs is favorable for a
specified direction and value of the main field. At small
distances between elements, the interaction of the latter
leads to the cooperative motion of cores. At certain combi-
nations of the polarity and chirality, different vibrational
modes are excited. As a result, we observe a set of resonant

https://epjb.epj.org/


Eur. Phys. J. B (2018) 91: 90 Page 3 of 8

Fig. 3. Model of a two-dimensional array of square elements.

frequencies. Since there is neither direct contact nor mag-
netic bridges between elements, it would be reasonable to
suggest that the elements interact via magnetostatics.

Since we could not control the chirality during sample
fabrication, the parameter q of elements in the array was
randomly distributed. According to the force microscopy
data, the film is divided into the so-called islands formed
by families of elements with the identical chirality. The
number of magnets in such islands varies in wide ranges.
The same polarity p can be ensured by magnetizing a film
to saturation in the direction perpendicular to the surface
in the resonance mode.

3 Results and discussion

The authors of [25] proposed an exact technique for cal-
culating the energy of interaction between elements. The
technique is based on the Fourier transform of demagne-
tizing factors, which depend on the shape of elements. The
approach described in [25] is highly effective, in particu-
lar, for solving a problem on the interaction of magnetic
moments of the vortex cores. The use of this technique in
the case of square elements with the nonuniform mag-
netization distribution and in-plane magnetic moment
component is complicated. Therefore, to make the esti-
mation with regard to the damping, we use the approach
proposed in [11,31].

We consider a model that allows us to qualitatively
understand the origin of FMR frequency splitting. In the
investigated 2D array, the centers of square ferromagnetic
elements are separated by the same distance d (Fig. 3).

In ac magnetic fields of relatively low frequencies
(≤1 GHz), the core behavior is similar to the gyrotropic
motion of a quasiparticle in the field of effective forces
[32–37]. The Thiele equation has the form

G× v −Dv −∇U = 0. (1)

Here, γ is the gyromagnetic ratio, G is the gyrovector, v is
the magnetic vortex core velocity vector, D is the effective
viscous friction coefficient, and U is the effective potential
energy of the core. The gyrovector can be presented in the
form [13,36,38]: G = πTG0(1 − ph)k, where πT = pq is

the topological charge of the magnetic core [39,40], G0 =
2πMSL/γ, h = Hz/HS , HS ≈ 10 kOe is the saturation
field in the z axis direction, and L is the square thickness.
The z axis is perpendicular to the film surface (its unit
vector is k). We can write the energy U as

U = Up + Udip + UH . (2)

Here, UH is the energy of interaction of the magnetic sub-
system of an element with the external magnetic field and
Up is the potential energy of the core, which increases
with the core shift from the equilibrium position (spot
center) due to the increasing demagnetizing fields. At the
small core shift from the equilibrium position, we can write
Up = κr2/2, where κ = κ0(1− h2) is the effective stiffness
of the quasielastic force acting on the core [13,36,38], and
r is the radius vector of the core center with the begin-
ning at the square center. The question about the explicit
dependence of the parameter D on the parameters of mag-
netic elements is fairly complex. An analytical expression
is difficult to obtain. In this work, we used the estimates
reported in [41–44].

The quantity Udip describes the energy of pair mag-
netostatic interaction between elements of the array. We
propose to separate the interaction between magnetic
moments of the vortex cores, which is relatively weak due
to the small volume of the cores [45], and the interac-
tion between magnetic charges on the side faces of the
squares. The former is independent of the core coordi-
nate and the latter, which can be strong enough, occurs
between the induced magnetic moments due to the core
shift from the magnet center and can be effectively esti-
mated by a magnetic charge technique in the rigid vortex
model [46,47].

The dependence of the interaction value on the dis-
tance between particles in the array was studied in several
works. The authors of [48,49] showed that without exter-
nal field the energy of interaction is proportional to d−6.
The interplay of magnetic subsystems of a pair of ele-
ments induces the effect analogous to the polarization
of gas molecules; therefore, the authors of [48,49] men-
tioned the analogy with the van der Waals forces. As was
shown in [43], in the presence of external magnetic field the
energy of pair interaction obeys the dependence ∼d−3.6.
The depression can be explained taking into account the
relative weakness of the magnetostatic interaction as com-
pared with the Zeeman energy at the fields that can
significantly change the effective parameters G and κ. As
the external field increase, the quality of dipole approxi-
mation in describing the energy of interaction is enhanced.
The authors of [24] proposed a method for the strict calcu-
lation of the dependence of interparticle interaction energy
on d. The authors of [24] showed that in the absence of
external magnetic field the expression for the magneto-
static interaction energy is presented as a series in terms
of uneven degrees 1/d.

Here, we limit the consideration to the dipole interac-
tion with the energy decreasing in accordance with the
law ∼d−3. It is applicable at slight shifts of the core
from the equilibrium position. We present the terms from
equation (2) as functions of the core coordinate. The
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Fig. 4. System of coordinates and schematic of magnetostatic
interaction between square elements. The dot shows the vor-
tex core position and the bold arrow, the magnetic moment
direction. In both disks, the same chirality q = 1 is chosen
(the magnetization direction near the core is clockwise). Thin
arrows at the disk edge show possible core motion directions.

energy of interaction between two elements distant from
each other by n periods in the horizontal direction and m
periods in the vertical direction (Fig. 4) is

Wn,m =
µ0

4π(n2 +m2)3/2d3
×
(
MMn,m

−3
(Mrn,m)(Mn,mrn,m)

(n2 +m2)d2

)
. (3)

Here, rn,m is the radius vector connecting the centers
of the investigated squares. Figure 4 illustrates how the
value and orientation of the magnetic moment M of
an element depends on the core coordinates. The pro-
jections of the magnetic moment of an element onto
the coordinate axes can be written in the form Mx =
−qM sin(φ) = −qMy/R0, My = qM cos(φ) = qMx/R0.
Then, the energy of interaction of the separated element
with the rest matrix is

Udip =
µ0

4π

q0,0M
2

d3R2
0

∑
(n+m)6=0

(
qn,m

y0,0yn,m + x0,0xn,m
(n2 +m2)3/2

− 3qn,m
(n2 +m2)5/2

(−y0,0n+ x0,0m)

×(−yn,mn+ xn,mm)

)
= ε

∑
(n+m)6=0

q0,0qn,m

(n2 +m2)
5/2

(x0,0(xn,m(n2 − 2m2)

+3nmyn,m) + y0,0(yn,m
(
m2 − 2n2

)
+3nmxn,m)). (4)

Here, R0 is the root-mean-square radius of the vortex core
trajectory and ε = µ0M

2/
(
R2

0d
3
)
. Note that the combi-

nations of the signs of chirality q and polarity p determines
the direction of the effective magnetic moment of a disk at
the core shift and direction of rotation of the core around
the square center (clockwise or counterclockwise) [37,50].

The expression for the Zeeman energy of one element
with indices {n,m} is

UH = −Mn,m(H + h0(t)). (5)

Here, H = Hzk = hHSk is the dc external magnetic field
perpendicular to the film plane. The quantity h0(t) =
h0(t)j is the small variable component of the external
field parallel to the Y axis (the unit vector is j). Then,
according to Figure 4, we obtain the energy UH

UH = U0 −Mn,mh0(t) = U0 −
qn,mMh0(t)

R0
xn,m. (6)

The quantity U0 = −Mn,mHz = −MzHz in the steady-
state core motion regime is stable in time and independent
of the core radius vector r.

According to (4) and (6), for equation (1) we obtain
the system of equations (for the sake of briefness, indices
{0, 0} are omitted)

−Gvy −Dvx − κx+ Fdipx
+ fx = 0,

Gvx −Dvy − κy + Fdipy
= 0. (7)

Here, we introduced the designations

Fdipx
= −∂Udip

∂x
= −ε

∑
(n+m)6=0

qqn,m

(
n2 − 2m2

(n2 +m2)5/2
xn,m

+
3nm

(n2 +m2)5/2
yn,m

)
,

Fdipy
= −∂Udip

∂y
= −ε

∑
(n+m)6=0

qqn,m

(
m2 − 2n2

(n2 +m2)5/2
yn,m

+
3nm

(n2 +m2)5/2
xn,m

)
,

fx = −∂UH

∂x
=
qM

R0
h0(t). (8)

For further calculations, we assume the variable compo-
nent of the external field to change in accordance with the
harmonic law h0(t) = η cos(−ωt + ϕ0). We seek for the
solutions of system of equation (7) in the form xn,m =
x0n,m

cos(−ωn,mt + Krn,m), yn,m = y0n,m
sin(−ωn,mt +

Krn,m). Here, K is the wave vector. Note that the frequen-
cies ωn,m of different elements in the steady-state mode
have the same value and their sign is determined by the
parameter πT .

Now, let us consider a particular case of distribution
of the parameters p and q. We assume the array to only
contain elements of two sorts with the parameters {p1, q1}
and {p2, q2} (the model of an island from elements with
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a certain πT distribution). They are positioned symmetri-
cally relative to the X and Y axes. The example of such a
distribution is the chessboard structure, where any pair of
nearest elements has the same combination {p1, p2, q1, q2}.
Assuming the distribution of parameters of the elements
to be symmetric, we significantly simplify the calculation
of sums in equations (8).

Substituting the trial solutions into equations (7) for
the elements of both sorts, we arrive at

G1ωy01 + (iDω + κ)x01 =
q1Mη

R0
eiϕ0 − εx01S

(1)
1

−εx02
q1q2S

(2)
1 ,

G1ωx01
+ (iDω + κ)y01

= −εy01
S

(1)
2 − εy02

p1p2S
(2)
2 ,

G2ωy02 + (iDω + κ)x02 =
q2Mη

R0
eiϕ0 − εx02S

(1)
1

−εx01
q1q2S

(2)
1 ,

G2ωx02
+(iDω + κ)y02

= −εy02
S

(1)
2 −εy01

p1p2S
(2)
2 . (9)

Here, we introduced the following designations for the
sums:

S
(1)
1 =

∑
(n + m) 6= 0
by first type

n2 − 2m2

(n2 +m2)5/2

× cos(Kxnd) cos(Kymd),

S
(2)
1 =

∑
(n + m) 6= 0

by second type

n2 − 2m2

(n2 +m2)5/2

× cos(Kxnd) cos(Kymd),

S
(1)
2 =

∑
(n + m) 6= 0
by first type

m2 − 2n2

(n2 +m2)5/2

× cos(Kxnd) cos(Kymd),

S
(2)
2 =

∑
(n + m) 6= 0

by second type

m2 − 2n2

(n2 +m2)5/2

× cos(Kxnd) cos(Kymd). (10)

The summation should be made according to the sort of

an element. For example, the summation S
(1)
1 should be

made over squares with the parameters p1 and q1.
Using system of equation (9), we determine the complex

amplitudes {x01 , y01 , x02 , y02}. For example, the trajec-
tory of the magnetic vortex core motion for the element
of the first sort is similar to an ellipse with the semi-axes
R0x = |x01 |, R0y = |y01 |, where

x01
=
q1Mη

R0
eiϕ0

[((
iDω + κ+ εS

(1)
2

)2

− ε2S
(2)
2

2
)

×
(
iDω + κ+ εS

(1)
1 − εS(2)

1

)
+G2

2ω
2
(
iDω + κ+ εS

(1)
2

)
+G1G2ω

2εS
(2)
2

]
/Z,

y01
=
p1Mηω

R0
eiϕ0

[(
G2εS

(2)
2 −G1

(
iDω + κ+ εS

(1)
2

))
×
(
iDω + κ+ εS

(1)
1 − εS(2)

1

)
+G1G

2
2ω

2
]
/Z. (11)

Denominator Z is of the form:

Z = −G2
1G

2
2ω

4 +
(
iDω + κ+ εS

(1)
1

)(
iDω + κ+ εS

(1)
2

)
×
(
G2

1 +G2
2

)
ω2 + 2G1G2ω

2ε2S
(2)
1 S

(2)
2

−
((

iDω + κ+ εS
(1)
1

)2

− ε2S
(2)
1

2
)

×
((

iDω + κ+ εS
(1)
2

)2

ε2S
(2)
2

2
)
. (12)

Similarly, we obtained the expressions for x02 and y02 .
It is interesting to discuss some particular cases. In the

absence of interactions between elements, we have ε→ 0.
Then, according to (11), we have for the array of elements
of the first sort

R0x
=
q1Mη

R0κ

√
ω4

0 + Γ 2ω2

(ω2 − ω2
0)2 + 4Γ 2ω2

,

R0y
=
p1Mη

R0κ2

G1ω
2
0ω√

(ω2 − ω2
0)2 + 4Γ 2ω2

. (13)

Here, we use the designations from [4]: ω2
0 = κ2/(G2

1 +
D2) and Γ = Dκ/(G2

1 + D2). In the ideal case, the core
trajectory at Γ → 0 tends to the circumference R0x

≈
R0y

; in the other cases, the trajectory is almost elliptical.
In the general case, the functions R0x

(ω) and R0y
(ω)

have the resonant form. The resonant frequencies are
determined not only by the characteristics of separate
squares (G, κ and Γ ), but also by the rigidity of the mag-
netostatic coupling, which depends on the ε value and
sums (10). Elimination of the degeneracy of frequencies
with different combinations of the polarities and chiral-
ities is explained by the presence of the terms with the
product G1G2 in the uneven degrees in equations (11)
and (12). In addition, the absolute values of parameters
G, κ, and Γ depend on the perpendicular component of
the magnetic field; consequently, its variation leads to the
change in ω0 and shift of the resonance peak.

Thus, the occurrence of several peaks in the experimen-
tal absorption curves P (h) with a decrease in the distance
between array elements can be attributed to the increasing
interplay of elements. In the model of noninteracting mag-
nets, the resonance behavior of magnetization will only be
demonstrated by elements with the same (favorable) core
polarity. Therefore, we would fix the only resonant fre-
quency. At the generator frequency in the range of ω > ω0,
the favorable polarity direction is parallel to the magnetic
field and, at ω < ω0, is antiparallel to it [10]. The chirality
sign only affects the core rotation direction. When there
is the interaction between the magnetic subsystems of ele-
ments, the collective motion of cores in the normal modes
can be implemented. In zero external field, ignoring the
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Fig. 5. Examples of possible combinations of polarities and
chiralities of elements {p1, p2, q1, q2} in the chessboard arrays:
(a) {1, 1, 1, 1}, (b) {1,−1, 1, 1}, (c) {1, 1, 1,−1}, and (d)
{1,−1, 1,−1}. The chiralities of elements are conventionally
denoted by different filling directions. The core polarity direc-
tions are shown with black and white filling of the central
region of squares.

dissipation (D � G), we can easily determine the reso-
nant frequencies from the condition |Z| = 0. As a result,
we obtain

ω2 =
1

G2

(
κ+ εS

(1)
1 ± πT εS(2)

1

)(
κ+ εS

(1)
2 ± πT εS(2)

2

)
.

(14)
This is consistent with the calculations from [24,25].

The chessboard distribution of the topological charge of
elements is most frequently implemented during film fab-
rication [51]. Figure 5 shows four possible combinations of
p and q, which make the main contribution to the absorp-
tion curve. Note that each of the four states shown in
the figure ensures its own vibration frequency, but these
frequencies are degenerate in the long-wavelength limit.

Indeed, the four different frequencies can be obtained
using the following combinations: {p1, p2, q1, q2}:

ω1 : {1, 1, 1, 1}, {1, 1,−1,−1},
ω2 : {1, 1, 1,−1}, {1, 1,−1, 1},
ω3 : {1,−1, 1, 1}, {1,−1,−1,−1}, {−1, 1, 1, 1},
{−1, 1,−1,−1},

ω4 : {1,−1, 1,−1},
{1,−1,−1, 1}{−1, 1, 1,−1}{−1, 1,−1, 1}.

For the absorbed power of a pair of squares with a
certain combination {p1, p2, q1, q2}, we can write

P (h){p1,p2,q1,q2} = Dω2
(
|x01
|2 + |y01

|2 + |x02
|2 + |y02

|2
)
.

(15)

Fig. 6. Resonance curves for the modes that make the
main contribution to the absorbed power curve. In the
calculation, we used the following values of magnetic
characteristics: MS = 770 G, α = 0.01 is the damping param-
eter, ω = 415 MHz, M ≈ MSaL, and R0 ≈ L/2. The designa-
tions of the curves correspond to Figure 5.

Curves (15) are presented in Figure 6.
The real array contains islands with different combi-

nations shown in Figure 5, therefore, we can write the
estimating expression for the total power

P (h) =
∑

a,b,c,d

ρ{p1,p2,q1,q2}P (h){p1,p2,q1,q2}. (16)

Here, ρ{p1,p2,q1,q2} is the quantitative fraction of
pairs of elements with the corresponding combination
{p1, p2, q1, q2} and the summation is made over the states
shown in Figure 5.

The ρ value is used as a fitting parameter. In the
long-wavelength limit (Kx = Ky = 0), the P (h) curves
obtained using equation (16) with regard to equations (11)
and analogous expressions for x02

, y02
are shown in

Figure 7. In the estimation of the quasielastic force coef-
ficient, we used the expression κ = ξµ0M

2
SL

2(1 − h2)/a,
where a is the square side length and ξ is the dimensionless
fitting parameter (about unity) [11]. The ξ value was cho-
sen such as to the curve (16) fitted best the experimental
curve in Figure 7a.

4 Conclusions

The occurrence of several resonance peaks with decreas-
ing distance between elements suggests the magnetostatic
nature of the FMR frequency splitting. At the large dis-
tance between elements of the array, the frequencies of
normal vibrational modes of magnetization weakly differ
from the resonant frequency of the core motion in an indi-
vidual element due to the weakness of interaction between
elements. In this case, the absorption curves are super-
imposed and yield the only visual maximum (frequency
degeneracy), which can be seen in Figures 2a and 7a. As
the distance between elements in the array decreases, the
coupling between magnetic moments of elements becomes

https://epjb.epj.org/


Eur. Phys. J. B (2018) 91: 90 Page 7 of 8

Fig. 7. Integral absorption curves obtained from the experi-
mental data in comparison with calculated absorption power
(16). The results of integration of the experimental curves
(Fig. 2) are shown by square dots and the theoretical curve,
by the solid line.

significant. In this case, the differences between the fre-
quencies of normal modes are so large that the separate
peaks arise in the absorption curves.

The quantitative discrepancy between the calculation
using equation (16) and experimental curve (Fig. 7) can
be attributed to the several factors, specifically, (i) dis-
regarding the magnetostatic interaction between the core
magnetic moments, (ii) noncylindrical symmetry of the
potential, where the core is located as a quasiparticle (such
a shape of the element ensures the in-plane anisotropy
with the easy-axis direction changing with the distance
between elements [52]), (iii) the error caused by the
rigid vortex core model used, and (iv) the importance
of using the quadrupole term in calculating the magne-
tostatic interaction energy for a square-shaped element
[24,53]. Moreover, as was shown in [24], at the significant
core vibration amplitudes, the strict calculation of the
interaction energy should take into account not only the
dipole-dipole, but also dipole-octupole, octupole-octupole,
etc. approximations. It is worth noting that the account
for the above-mentioned factors will make quantitative
corrections without changing the general picture. In a real
array, there are areas not only with chessboard distri-
bution p and q. The areas with other symmetrical and
nonsymmetric distributions are possible [25]. Such areas
have sets of frequencies that do not coincide with (14) and

they may be responsible for the existence of the third peak
in Figure 7. The complex account for these factors will be
discussed in the next studies.

To sum up, note that the strong interplay of elements
can prevent finding a reliable method for controlling the
magnetization state (polarity and chirality) in arrays of
closely packed elements, which is of great importance for
spintronic applications, especially at the external field fre-
quencies similar to the eigenfrequencies. At the same time,
this interplay opens the possibility of simultaneous gov-
erning the state of a whole set of elements united by one
vibrational mode. Anyway, when designing devices based
on large arrays of nanosized elements, the interplay of
their magnetic moments must not be ignored.
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