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Abstract. Within the spin-polaron concept for hole-doped cuprates superconductors the temperature and
doping dependence of the London penetration depth λ is studied. To calculate λ we developed a novel
approach which (i) does not suppose the analytical expression for the quasiparticle spectrum to be known
in advance, and (ii) allows to take into account the strong coupling between a spin localized on the copper
ion and a hole residing on the four nearest oxygen ions rigorously. Within this approach the expression for
supercurrent density ~j is obtained in the long-wavelength limit for external magnetic field vector poten-
tial. It is shown that ~j is mainly due to the spin-polaron quasiparticles rather then bare oxygen holes.
Temperature dependence of λ−2 at various doping is calculated and compared with available experimental
data. It is argued that the inflection point revealed experimentally in the temperature behavior of λ−2

in La1.83Sr0.17CuO4 may be considered as a manifestation of the spin-polaron nature of quasiparticles in
cuprates.

1 Introduction

The explanation for unusual properties of cuprate high-
Tc superconductors (HTSC) is based on the concept of
strong electron correlations [1] (SEC), which in particular
allows one to understand the emergence of significant cou-
pling between charge and spin degrees of freedom in these
materials. It turns out that the spin-polaron approach,
accounting for the strong spin-fermion coupling rigorously
and considering localized spin subsystem in the quan-
tum spin liquid state, proved to be very successful in
describing both the normal (N) and superconducting (SC)
properties of the hole-doped cuprate HTSC. Substantially,
this approach was developed on the basis of two mod-
els, namely, the Kondo-lattice model (see Refs. [2–6]), and
spin-fermion model (SFM) (Refs. [7–10]).

The SFM [11–18] follows from the three-band p−d
model or Emery model [19–23] in the regime of SEC after
integrating out the doubly occupied and empty states
in the two-hole Hilbert space of each copper ion. Thus,
the SFM is the low-energy effective version of the Emery
model and is characterized by homopolar states of copper
ions. In contrast to the more simple and more popular
Hubbard model [24] and t−J model [25], the SFM inherit
from Emery model the most important features of elec-
tronic structure of cuprates. In particular, it preserves the
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spatial separation of copper and oxygen sites and accounts
for two oxygen ions in the unit cell.

The largest effective interactions in the SFM are (1)
p−d exchange interaction between spins of holes on the
nearest copper and oxygen sites and (2) spin-correlated
hoppings, i.e., charge transfer between oxygen ions with
a simultaneous flipping of the copper and oxygen spins.
Mathematically, these strong spin-charge correlations are
accounted for by a multiplicative operator defined as a
product of a spin operator on the copper site and a Fermi
operator on the neighboring oxygen site. Following the
spin-polaron approach, the dynamics of the multiplica-
tive operator should be considered as strictly as possible.
The convenient way to achieve this is based on the
Zwanzig-Mori projection technique [26–33] or the meth-
ods closely related to this technique: the spectral density
approach [34] and composite operator method [35–38].
According to the projection technique, one have to include
the multiplicative operator into the set of basis opera-
tors, write down the equations of motion for the extended
set of basis operators, and to project obtained equa-
tions onto the same basis. Since within this procedure
the multiplicative operator is not decoupled, the short-
range spin-fermion correlations will be taken into account
rigorously.

Another result of this procedure is that the spectral
properties of the system acquire strong dependence on the
spin-spin correlation functions. Various techniques were
elaborated to determine doping dependence of these spin
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correlators provided that the system is in the quantum
spin liquid state [39–45]. The quasiparticles arising within
the discussed approach turn out to have all features of
the spin polarons whose origin is closely related to the
Zhang-Rice singlets [46]. The excitation spectrum and
spectral density of these quasiparticles were the subject
of intensive research at the early stage of development of
the spin-polaron approach [7–10].

Specifically, it was shown that the Fermi surface
in the form of a “hole pocket” in the vicinity of
the (π/2, π/2)-point of the Brillouin zone, observed in
ARPES-experiments [47], is well reproduced. It was found
that the important role of direct oxygen-oxygen hoppings
is to remove the strong anisotropy of the spin-polaron
spectrum around the band minima [48]. In reference [49],
the same conclusion was drawn within the SFM but in dif-
ferent approach. To describe the pseudogap (PG) behavior
in cuprates, the spin-polaron approach was extended
[50,51] by involving the coupling of a local spin polaron
with an antiferromagnetic spin wave with momentum
~Q = (π, π). This approach was also used to investigate
the dispersion of the dielectric function in cuprates [52].
Experimentally measured in La2−xSrxCuO4 doping evo-
lution of the Fermi momentum [53] was also successfully
described within the spin polaron approach [54]. At last,
the effects of finite hole density on the spectral prop-
erties were investigated [55] by taking into account the
spin-fermion correlators.

The spin polaron approach got the second breath when
the authors of references [56–58] managed to describe
the cooper instability in the ensemble of spin-polaron
quasiparticles. First, it was shown that the d-wave super-
conducting dome in the T −x phase diagram is reproduced
and agrees well with the experimental one in both the
maximal critical temperature Tc and doping range where
superconductivity exists. The coupling constant in this
case was shown to be the exchange integral describing
the intensity of exchange interaction between two local-
ized spins. Shortly after that a very important fact was
established. It turns out that the Coulomb interaction
between holes on the nearest oxygen ions does not affect
the d-wave superconductivity in cuprates since the Fourier
transform of this interaction falls out of the correspond-
ing self-consistency equations [59,60]. Another substantial
result obtained within the approach was that the s-wave
superconductivity does not occur in the actual doping
range since equations for s-wave order parameter do not
have nontrivial solutions [61].

In the present paper, the next step is taken towards
further development of the spin-polaron approach. Specif-
ically, the temperature dependence of the London pene-
tration depth λ for cuprate HTSC at various dopings is
calculated and compared with experimental data.

For this purpose, we derived at first the expression
for current density ~j(~q = 0) induced by uniform vector
potential ~A~q= 0 in the ensemble of spin-polaron quasipar-
ticles in the d-wave SC state. Then the inverse square
of λ is found by numerical differentiation of the current
density with respect to the vector potential in the limit
of small ~A~q= 0. This approach differs from the standard
ones [62–64] and those adopted for cuprates [65–71] since

the latter are aimed to obtain the expression directly for
the response function. Unlike the conventional schemes,
our approach (1) does not require the analytical expres-
sion for quasiparticle spectrum to be known in advance;
(2) can be easily generalized to multiband systems; (3) is
not limited to very small values of ~A~q= 0 when calculating
~j(~q = 0). The obtained temperature dependencies of λ−2

are compared to the available experimental data [72–80]
and evidence of the spin-polaron nature of quasiparticles
in cuprates is found.

The paper is organized as follows. In Section 2, the
Hamiltonian of the SFM is formulated. In Section 3 this
Hamiltonian is generalized in such a way as to take into
account the vector potential of magnetic field in the long
wavelength limit. Detailed explanation of our method
for deriving the current density within the spin-polaron
approach is given in Section 4. In Section 5, the exci-
tation spectrum of spin-polaron quasiparticles in the SC
state and in the presence of a vector potential is derived. In
Section 6, the expression for d-wave order parameter is dis-
cussed. Self-consistency equations for the order parameter,
chemical potential, and superconducting current density
are summarized in Section 7. In Section 8, we present
the results of our numerical calculations of the mag-
netic penetration depth temperature dependencies which
are compared with the available experimental data. We
conclude the paper with a brief summary in Section 9.

2 Hamiltonian of the spin-fermion model

It is known that the main features of electronic structure
of the CuO2 plane in the high-Tc cuprate superconductors
are well reproduced by the three band p−d model or the
Emery model [19–21]. The most essential parameters of
the model are (1) the charge transfer gap ∆pd = εp − εd,
where εp(d) is the energy of a hole on the oxygen (cop-
per) p(d)-orbital; (2) the p−d hybridization parameter tpd;
(3) the Coulomb interaction Ud of two holes on the same
copper ion; and (4) the transfer integral tpp, describing
hopping of holes in the oxygen subsystem. Other param-
eters of the Emery model, such as Coulomb interaction
of two holes on the same (Up) and different (Vpp) oxygen
sites, and interaction of holes on oxygen and copper sites
(Vpd) are left out for simplicity in the present study.

If in the CuO2 plane there is exactly one hole per unit
cell then, according to experimental data, the system
is in the Mott-Hubbard insulating state. In the Emery
model this type of the ground state occurs in the regime
of SEC when

Ud > ∆pd � tpd > 0. (1)

In this regime the Emery model may be reduced to the
spin-fermion model [11–18] with the Hamiltonian [8]:

Ĥ = (εp − µ)
∑
l

p+
l pl +

∑
ll′

tll′p
+
l pl′

+
∑
fδδ1

ζδζδ1p
+
f+δ

(
τ

2
+
J

4
S̃f

)
pf+δ1 + Ĥexch. (2)
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Fig. 1. Copper (dx2−y2) and oxygen (px, py) orbitals of
holes in the CuO2 plane considered in the Emery model.
Shaded parts of the orbitals have positive phase, the open
parts of the orbitals correspond to the negative phase. Trans-
fer integral t between different oxygen ions is shown together
with its sign which depends on the phases of the corre-
sponding oxygen p-orbitals. Vector δ takes four values δ =
{(±gx/2, 0), (0,±gy/2)}, connecting copper site with four oxy-
gen sites. Function ζδ determines the hybridization parameter
sign depending on the direction of δ. gx and gy are the lattice
parameters of the CuO2 plane.

Here, the two-component spinor notations are used for
the second quantization operators:

p+
l = (p+

l↑, p
+
l↓), pl =

(
pl↑
pl↓

)
,

where operator p+
lσ(plσ) creates (annihilates) a hole on

the oxygen ion with site index l, spin projection σ (=↑, ↓),
and with the energy εp, which is measured from the
chemical potential µ. The second term in equation (2)
describes hoppings of holes in the oxygen subsystem with
tll′ being the tunnelling integral between oxygen sites
l and l′. The sign of tll′ depends on hopping direction,
i.e., tll′ = +t at l − l′ = (±gx/2,±gy/2) and tll′ = −t at
l − l′ = (±gx/2,∓gy/2), as is indicated in Figure 1. Here
gx and gy are the lattice constants along the x- and y-axes,
respectively.

The third term in the effective low-energy Hamiltonian
(2) appears in the second order of perturbation the-
ory in the p−d hybridization. This term describes both
conventional hole hoppings (with tunnelling integral τ
in round brackets) and spin-correlated hoppings (with
parameter J). In the third sum index f denotes the
copper ion position and vectors δ and δ1 run indepen-
dently four vectors connecting copper site f with four
nearest oxygen sites (see Fig. 1). The matrix spin opera-
tor S̃f is defined as a product of a vector spin operator
~Sf and a vector ~σ = (σx, σy, σz), compiled from Pauli

matrices σα (α = x, y, z):

S̃f = ~Sf~σ =
(
Szf S−f
S+
f −Szf

)
.

Factors ζδ in the third sum of equation (2) take into
account the sign of hybridization parameter tpd depending
on vector δ, i.e., ζδ = ∓1 for δ = {(±gx/2, 0), (0,±gy/2)}.

The connection of parameters τ and J with that of
original Emery model is given by the relations:

τ =
t2pd
∆pd

(
1− ∆pd

Ud −∆pd

)
,

J =
4t2pd
∆pd

(
1 +

∆pd

Ud −∆pd

)
. (3)

In the fourth order of perturbation theory in p−d
hybridization the exchange interaction between spins
on the nearest copper ions arises. The last term in
equation (2) refers to this exchange interaction and has
the form

Ĥexch =
I

2

∑
fδ

~Sf ~Sf+2δ, (4)

where I is the exchange integral. In the present study
the localized spin subsystem is considered in the SU(2)-
invariant spin-liquid state. This means that the long-range
magnetic order is absent: 〈Sαf 〉 = 0 (α = x, y, z), but short-
range spin correlations are preserved. To quantify the
short-range magnetic order, the two-site spin correlation
functions Cj are introduced. These functions are defined
as thermodynamic averages

Cj = 3〈Sαf Sαf+rj 〉, α = x, y, z, (5)

for two spins located at a distance rj where j is a number
of coordination sphere with respect to the site f .

Below, we shall regard the spin correlators Cj as param-
eters with their values as obtained from calculations for
the frustrated Heisenberg spin system on the square lat-
tice within the spherically symmetric approach [44]. The
doping dependence of Cj will be modeled by varying the
frustration intensity [51]. In the low-temperature region
of interest the spin correlators are almost independent
of T .

The Hamiltonian (2) of the SFM is the starting point of
our study. In what follows we adopt the well established
Emery model parameters [81,82] (in eV): tpd = 1.3, ∆pd =
3.6, Ud = 10.5. For the oxygen-oxygen hopping integral we
take t = 0.12 eV which is a reduced value as compared to
the one usually used. For choosing this value of t we have
at least two reasons following from our previous study of
cuprate HTSC in both N-phase [54] and SC-phase [58].
The exchange constant was chosen to be I = 0.118 eV to
conform the Neel temperature in undoped cuprates [82].

Using these Emery model parameters the parame-
ters of SFM are easily found from its definition (3):
τ = 0.225 eV, J = 2.86 eV. It is the large value of
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J (� τ, t, I) that allows us to introduce the concept
of a spin polaron in cuprates within the SFM model.
In the form used here this concept was formulated in
reference [8].

3 Spin-fermion model with accounting for
the vector potential of magnetic field

We intend to obtain the expression for the magnetic
penetration depth λ using the London equation: ~j =
−c/(4πλ2) ~A, relating the superconducting current density
~j and the vector potential ~A in the local approximation.
Hence, the prime task is to calculate the current density in
the ensemble of spin polaron quasiparticles. For this pur-
pose we need to incorporate the magnetic field into the
Hamiltonian of the SFM (2).

In the tight-binding approximation, used for the SFM
formulation, the convenient way to do this is based on
the Peierls substitution. Applying the substitution for the
tunnelling integral tll′ in the Hamiltonian (2) we have:

tll′ ⇒ tll′ exp

{
ie

c~

∫ Rl

R′
l

d~r ~A(~r)

}
, (6)

where Rl is the radius-vector of the lth site, ~ is the
Planck’s constant, e is electron charge, and c the speed
of light. Since eventually we are interested only in the
limit of uniform vector potential (weak magnetic field),
we set ~A(~r) = ~A~q= 0 at the very beginning and, to be spe-
cific, direct the vector ~A~q= 0 along the x-axis. In this case,
according to (6), the transfer integral tll′ acquires a factor

exp
{
ie

c~
Rxll′A

x
q=0

}
, (7)

where Rll′ = Rl −Rl′ . Similarly, the factor

exp
{
ie

c~
(δx − δx1 )Axq=0

}
, (8)

turns out to be attached to each term in the third sum of
the Hamiltonian (2).

The conventional approach [62–71] for derivation of the
current density operator is to expand the exponential fac-
tors (7) and (8) in the vector potential Axq=0, assuming
this to be small. Then, taking into account only the first-
and second-order corrections to the Hamiltonian, and by
varying these corrections with respect to the vector poten-
tial Axq=0, one obtains the paramagnetic and diamagnetic
parts of the superconducting current density operator.

Moving away from the conventional approach, first of
all for the sake of convenience of calculations, we assume
Axq=0 not to be small, and therefore will not expand the
factors (7) and (8). At the same time of course we have to
keep in mind that the vector potential should not exceed
the value above which the Peierls substitution is not valid.

The advantage of keeping exponents (7) and (8) as they
are, becomes clear after Fourier transformation

pf± gx
2 ,σ

= N−1/2
∑
k

eik(Rf± gx
2 )akσ,

pf± gy
2 ,σ

= N−1/2
∑
k

eik(Rf±
gy
2 )bkσ, (9)

where N is the number of unit cells in the CuO2 plane.
Transformation (9) describes transition to the new second
quantization operators akσ and bkσ. These operators cor-
respond to annihilation of a hole with a quasimomentum k
and spin σ in the x and y oxygen sublattices, respectively.

After Fourier transform (9), the Hamiltonian (2) takes
the form

Ĥ =
∑
k

[
ξkxa

+
k ak + ξkyb

+
k bk

+Γk(a+
k bk + b+k ak) + Ju+

k Lk
]

+ Ĥexch, (10)

where

ξkx = εp − µ+ 2τν2
kx, ξky = εp − µ+ 2τν2

ky,

Γk = (2τ − 4t)νkxνky, uk = νkxak + νkybk,

Lk =
∑
q

S̃k−quq, S̃k =
1
N

∑
f

e−ikRf S̃f ,

νkx = sin
(
kx
2
− αx

)
, νky = sin

(
ky
2

)
. (11)

When writing expression (10), two new operators were
introduced: operator uk, which is a superposition of ak
and bk, and operator Lk, accounting for the coupling of a
localized copper spin and a hole on the four nearest oxygen
ions.

A remarkable feature of the resulting Hamiltonian (10)
is that the dimensionless vector potential field

αx =
egx
2c~

Axq=0, (12)

enters the Hamiltonian only as a phase shift in the argu-
ment of the trigonometric function νkx. Obviously, if we
take into account the y-component of the field ~A along
with the x-component, then a corresponding phase shift
would appear in the argument of the function νky as well.

4 Superconducting current density and
projection method

Varying expression (10) for the Hamiltonian of the SFM
with respect to the vector potential Axq=0 and compar-
ing the obtained result with the definition of the current
density operator

δĤ = −1
c

∑
q

ĵx(−q)δAxq , (13)
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we obtain following expression for the supercurrent den-
sity mean value jx(q) = 〈ĵx(q)〉 in the long wavelength
limit:

jx(q = 0) =
egx
~
∑
k

cos
(
kx
2
− αx

)[
2τνkx〈a+

k ak〉

+(2τ − 4t)νky〈a+
k bk〉+ J〈a+

k Lk〉
]
. (14)

It should be noted that, according to aforesaid, the expres-
sion (14) for the superconducting current density is valid
not only at small fields αx.

The thermodynamical averages denoted in (14) by angle
brackets have to be calculated using statistical opera-
tor with the Hamiltonian (10) accounting for the vector
potential Axq=0. Moreover, in computing the averages, the
spin polaron nature of quasiparticles should be taken
into consideration. As was mentioned above, this can be
conveniently done within the spin-polaron approach [8]
developed on the basis of the Zwanzig-Mori projection
technique [26–29,33].

According to this approach the set of basis operators Bj
(j = 1, . . . , n) is introduced, where n determines the mini-
mal number of basis operators sufficient for describing the
spectral and thermodynamical properties of the system
under consideration. Then retarded two-time temperature
Green’s functions (GF) (i, j = 1, . . . , n):

Gij(k, t− t′) ≡ 〈〈Bikσ(t)|B+
jkσ(t′)〉〉

= −iθ(t− t′)〈[Bikσ(t), B+
jkσ(t′)]〉, (15)

are defined. In equation (15), the operators Bjkσ(t) are
in the Heisenberg representation and θ(t) is the Heaviside
step function.

The set of n × n equations of motion for the Fourier
transforms of the GFs (15) has the form:

ω〈〈Bikσ|B+
jkσ〉〉ω = Kij(k)

+〈〈[Bikσ, Ĥ ]|B+
jkσ〉〉ω, (16)

where the terms Kij(k) are determined as averaged
anticommutator

Kij(k) = 〈{Bikσ, B+
jkσ}〉. (17)

In accordance with the projection technique, the GFs
obtained by commuting the operator Bikσ with the
Hamiltonian Ĥ are represented as a linear superposition
of basis GFs (15):

〈〈[Bikσ, Ĥ ]|B+
jkσ〉〉ω =

∑
l

Lil(k)〈〈Blkσ|B+
jkσ〉〉ω. (18)

Here, Lij(k) is an ijth element of the matrix product
D(k)K−1(k), where matrix D(k) is defined by elements

Dij(k) = 〈{[Bikσ, Ĥ ], B+
jkσ}〉, (19)

and the elements of matrix K(k) are given in (17).

Thereafter, the set of equations for the GFs Gij(k, ω) =
〈〈Bikσ|B+

jkσ〉〉ω turns out to be closed and can be solved
in the matrix form:

G(k, ω) = M(k, ω)−1K(k), (20)

where G(k, ω) is the matrix GF and

M(k, ω) = ω −D(k)K−1(k). (21)

The energy spectrum of quasiparticles is determined
by the poles of the GF and can be obtained from the
dispersion equation:

detM(k, ω) = 0. (22)

As was shown in reference [51], to describe correctly the
N-phase spectral properties of cuprates, besides operators
ak and bk, it is necessary to include into the basis set the
third operator Lk (11). It is this operator that allows us
to describe the strong coupling between a localized spin
and a hole on the nearest oxygen ions properly. Thus, the
minimal operator basis should consist of three operators:

B1k = ak↑, B2k = bk↑, B3k = Lk↑. (23)

According to definition (19) in order to derive matrix
element Dij(k) one needs to calculate commutator of the
i′s basis operator with the Hamiltonian Ĥ and then anti-
commute the result with the j′s basis operator. Doing so
one obtains in general rather complicated correlation func-
tions, involving spin and fermion operators, and which
has to be approximated somehow. Hereafter, we adopt
the low-density approximation which means that all nor-
mal (i.e., non-anomalous) correlation functions arising in
calculation Dij(k) and involving fermion operators are
neglected as compared to the purely spin correlators.
This approximation is justified by the low hole doping
which in cuprates of interest does not exceed the value of
x ∼= 0.22 so that all spin-fermion correlators are several
times smaller then the spin-spin correlators.

Thus, calculating the matrix elements (19) of the sym-
metric 3 × 3 matrix D(3)(k) using basis (23) in the
low-density limit we obtain (see Appendix):

D11(k) = ξkx, D22(k) = ξky, D12(k) = Γk,

D13(k) = JνkxKk, D23(k) = JνkyKk,

D33(k) = (εp − µ+ 4τ − 4t)Kk −
9
8
τ +

3
2
t

+(τ − 2t)C2γ2k +
1
2
τC3γ3k −

3
4
J

+JC1(1/4 + 2γ1k)− IC1(γ1k + 4), (24)

where

Kk =
3
4
− C1γ1k (25)
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Fig. 2. Fermi excitations spectrum of the SFM in the N-
phase. Three branches of the spectrum εjk (j = 1, 2, 3) are the
solutions of the dispersion equation (29). The lower band cor-
responds to the spin-polaron states formed due to the strong
spin-fermion coupling. The vector potential for simplicity is
taken to be zero since for any reasonable value of Axq=0 the
curves differ insignificantly in the scale of the bandwidth. The
notations for the symmetry points of the Brillouin zone are
as follows: Γ = (0, 0), M = (π, π), X = (0, π), X ′ = (π, 0) (in
units of lattice spacing).

is one of the elements of the diagonal matrix

K(3)(k) = diag{1, 1,Kk}, (26)

and functions γjk (j = 1, 2, 3) are defined as

γ1k = (cos(kx − 2αx) + cos ky)/2,
γ2k = cos(kx − 2αx) cos ky,
γ3k = (cos(2kx − 4αx) + cos 2ky)/2. (27)

Besides, in calculating matrix elements (24) and (25) there
appeared the spin correlators Cj (j = 1, 2, 3) which were
introduced in (5).

The 3 × 3 matrix M(k, ω) (21), denoted further as
M (3)(k, ω), reads

M (3)(k, ω) =

ω −D11(k) −D12(k) −D13(k)
Kk

−D12(k) ω −D22(k) −D23(k)
Kk

−D13(k) −D23(k) ω − D33(k)
Kk

 .

(28)

Fermi spectrum of the spin-polaron quasiparticles in the
N-phase follows from the dispersion equation

detM (3)(k, ω) = 0, (29)

and corresponds to the lower branch ε1k in Figure 2. For
simplicity the band structure depicted in Figure 2 is cal-
culated at Axq=0 = 0 since at any finite but reasonable

value of the vector potential these dispersion curves differ
insignificantly on the scale of the bandwidth. An impor-
tant feature of the spectrum ε1k is that the band minimum
is located in the vicinity of the (π/2, π/2) point of the
Brillouin zone. It is this minimum that gives rise to a small
hole pockets [8,51,54] observed in ARPES-experiments
[47] at low doping. Another important feature of the spin-
polaron band is that it is splitted down from the upper
bands by a large energy gap order of J . Obviously, the
considerable energy gain of these spin-polaron states is
due to the strong coupling of a localized copper spin and
a hole on the four nearest oxygen ions.

Before discussing superconducting properties of
cuprates within the spin-polaron approach let us first
show that the current density (14) calculated in N-phase
must be zero identically. In conventional approaches the
zero value of the net current in N-phase is provided by
cancellation of the paramagnetic and diamagnetic current
density parts. In the developed here approach we do not
distinguish paramagnetic and diamagnetic parts of the
current density and hence zero value of the net current
must be achieved by another way.

According to the expression (14) to calculate the current
density we have to know three thermodynamical averages:
〈a+
k↑ak↑〉, 〈a

+
k↑bk↑〉, and 〈a+

k↑Lk↑〉. These averages can be
easily found by using the spectral theorem for the corre-
sponding three GFs. Solving the set of equations (20) with
matrices K(3)(k) (26) and M (3)(k, ω) (28), we obtain the
three required GFs in the N-phase:

〈〈ak↑|a+
k↑〉〉ω =

Q11(k, ω)
detM (3)(k, ω)

,

〈〈bk↑|a+
k↑〉〉ω =

−Q12(k, ω)
detM (3)(k, ω)

,

〈〈Lk↑|a+
k↑〉〉ω =

Q13(k, ω)
detM (3)(k, ω)

, (30)

where Qij(k, ω) is a minor to the ijth element of the
matrix M (3)(k, ω) (28):

Q11(k, ω) = (ω −D22(k))(ω −D33(k)/Kk)

− (D23(k))2 /Kk,

Q12(k, ω) = −D12(k)(ω −D33(k)/Kk)
−D13(k)D23(k)/Kk,

Q13(k, ω) = D13(k)(ω −D22(k))
+D12(k)D23(k). (31)

The resulting expression for the current density in the
N-state is

jx(q = 0) =
2egx
~
∑
k

cos
(
kx
2
− αx

)
× f(ε1k/T )

(ε1k − ε2k)(ε1k − ε3k)
[2τνkxQ11(k, ε1k)

−(2τ − 4t)νkyQ12(k, ε1k) + JQ13(k, ε1k)] ,
(32)
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where f(x) = (ex + 1)−1 is a Fermi-Dirac distribution
function and εjk (j = 1, 2, 3) are solutions of the disper-
sion equation (29) which determines three branches of the
Fermi excitation spectrum in the N-phase and in the field
of the vector potential. When writing (32), we also took
into account that in the considered low-density regime the
chemical potential µ is in the lower spin-polaron band, so
that the upper two bands are empty.

It is clear from the expression (32) that dependence of
the integrand on the dimensionless vector potential αx
comes out only as a shift of the x-component of the quasi-
momentum ~k. Since the integration in (32) is over first
Brillouin zone, which also determines the periodicity of
the integrand, it is obvious that shifting the integration
variable kx by the value of αx, we can get rid of αx com-
pletely. After that, the integrand function turns out to be
antisymmetric with respect to the quasimomentum ~k and,
as a consequence, the current density jx(q = 0) vanishes
identically as it should be in the N-phase.

5 Spin-polaron spectrum in the
superconducting phase with accounting
for the vector potential

To study the SC-phase of cuprates, the three-operator
basis (23) is not sufficient. In this case, as shown in
reference [56], the basis (23) should be extended by
additional three operators:

B4k = a+
−k↓, B5k = b+−k↓, B6k = L+

−k↓. (33)

Hence, now we need three 6×6 matrices K(6)(k), D(6)(k),
and M (6)(k, ω) defined by equations (17), (19) and (21),
respectively.

As before, the matrix K(6)(k) is diagonal

K(6)(k) = diag{1, 1,Kk, 1, 1,K−k}. (34)

Note that K−k 6= Kk if αx 6= 0.
The normal components of the energy matrix D

(6)
ij (k)

with indices i, j = 1, 2, 3 were calculated earlier and are
given in (24). The normal components with indices i, j =
4, 5, 6 turn out to be related to that given in (24) by
equations:

D
(6)
i+3,j+3(k) = −D(6)

ij (−k), i, j = 1, 2, 3. (35)

Among the anomalous components of the energy matrix
only two of them, D(6)

36 (k) and D(6)
63 (k) =

(
D

(6)
36 (k)

)∗
, are

not equal to zero. The calculations show (see Appendix)
that for the superconducting d-wave pairing, relevant for
cuprates, the anomalous component can be written as
follows [56]:

D
(6)
36 (k) =

1
N

∑
q

Ik+q [〈Lq↑L−q↓〉 − C1〈uq↑u−q↓〉] , (36)

where

Ik = 2I(cos kx + cos ky) (37)

is a Fourier transform of the exchange integral. Note that,
unlike to what we had before, in the expression (37) there
is no phase shift of kx due to the vector potential αx.

It is convenient to express matrix M (6)(k, ω) in the
block form

M (6)(k, ω) =
(

M (3)(k, ω) F (3)(k, ω)(
F (3)(k, ω)

)∗
M̄ (3)(k, ω)

)
. (38)

The upper left 3 × 3 block M (3)(k, ω) is defined in (28).
The lower right block M̄ (3)(k, ω) is obtained from the
upper left M (3)(k, ω) by replacing elements Dij(k) with
−Dij(−k). The only non-zero element in the anomalous
block F (3)(k, ω) is F (3)

33 (k, ω) and is equal to −D(6)
36 (k).

The Fermi excitation spectrum of cuprates in the
SC-phase is determined by zeros of the determinant
detM (6)(k, ω). This determinant can be expressed via the
third-order determinants:

detM (6)(k, ω) = detM (3)(k, ω) · det M̄ (3)(k, ω)

−Q33(k, ω)Q̄33(k, ω)
|D(6)

36 (k)|2

KkK−k
, (39)

where

Q33(k, ω) = (ω −D11(k))(ω −D22(k))− (D12(k))2

and

Q̄33(k, ω) = (ω +D11(−k))(ω +D22(−k))− (D12(−k))2

are minors of the 33rd element of the matrices M (3)(k, ω)
and M̄ (3)(k, ω), respectively.

In the low-density regime when the chemical potential
µ lies in the lower spin-polaron band, separated from the
upper two bands by a large energy gap ∼ J (see Fig. 2),
the spin-polaron spectrum E1k in the SC-phase and with
accounting for the vector potential Axq=0 can be found
with a high accuracy analytically.

To show this, let us write down the determinant
detM (6)(k, ω) in two equivalent forms:

6∏
j=1

(ω − εjk)−Q33(k, ω)Q̄33(k, ω)
|D(6)

36 (k)|2

KkK−k
, (40)

and

6∏
j=1

(ω − Ejk). (41)

In equation (40) the functions εjk with j = 1, 2, 3 and
εjk with j = 4, 5, 6 are solutions of the third order disper-
sion equations detM (3)(k, ω) = 0, and det M̄ (3)(k, ω) = 0,
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respectively. Between these solutions there are obvious
relations: εj+3,k = −εj,−k (j = 1, 2, 3). Functions Ejk
(j = 1, . . . , 6), emerging in (41), are the solutions for the
sixth order dispersion equation detM (6)(k, ω) = 0 and
thus represent six branches of the Fermi excitations spec-
trum of cuprates in the SC-phase with accounting for the
vector potential Axq=0.

Since the energy spacing between the chemical poten-
tial µ and the upper bands is large, as compared to the
amplitude of the anomalous component D(6)

36 (k), the dis-
persion of the upper two bands is not actually modified
with the onset of superconductivity. This means that with
high accuracy we have Ejk = εjk for j = 2, 3, 5, 6. Hence,
the unknown remain the spectrum E1k and its conjugate
E4k which in fact is equal to −E1,−k.

As far as expressions (40) and (41) are equal to each
other identically, we may equate their coefficients for the
fifth and fourth powers of ω and obtain the set of two
equations

E1k + E4k = ε1k + ε4k,

E1kE4k = ε1kε4k −
|D(6)

36 (k)|2

KkK−k
. (42)

The solutions of this set with respect to E1,k and E4,k are

E1(4)k =
ε1k − ε1,−k

2
± Ek,

Ek =

√(
ε1k + ε1,−k

2

)2

+
|D(6)

36 (k)|2
KkK−k

, (43)

where the equality ε4k = −ε1,−k was used. It is remark-
able that despite the three-band character of the system
the Fermi excitation spectrum of spin polarons in the
SC-phase is expressed only via the ε1k - the N-phase spec-
trum of the same spin-polaron band. The upper branches
of the N-phase spectrum, ε2k and ε3k, do not appear in
equation (43).

It should also be stressed that obtained equation (43)
for the spin-polaron spectrum in the SC-phase is valid in
the presence of the vector potential Axq=0 which so far was
not supposed to be small. However, for small values of αx
we can use expansion: εjk = ε

(0)
jk + δεjk (j = 1, 2, 3), where

ε
(0)
jk is the spectrum εjk at αx = 0, and δεjk is a linear in

αx correction to ε(0)jk . It turns out that correction δε1k is
odd in k. Taking also into account that corrections to the
gap function in (43) are quadratic in αx (see next section)
it follows from (43) that in the linear in αx approximation
the spin-polaron spectra E1k and E4k are shifted by the
same value of δε1k:

E1k = δε1k + E
(0)
k , E4k = δε1k − E(0)

k , (44)

where

E
(0)
k =

√(
ε
(0)
1k

)2

+
|D(6)

36 (k)|2
K2
k

, (45)

and the gap function is taken at αx = 0. It is seen that
for small αx the spectrum of the Bogolyubov quasipar-
ticles is renormalized in the same additive manner as in
the conventional theory of the London penetration depth
[62,63]. At the same time, the particular quasimomen-
tum dependence of the N-phase spectrum ε

(0)
1k (and hence

its field-induced correction δε1k) differs substantially from
the simplest case of quadratic dispersion, and is defined
by the structure of the CuO2 plane and by the strong
spin-fermion interactions.

6 d-wave order parameter

For d-wave superconductivity, which is the case for
cuprates, the order parameter is the anomalous com-
ponent of the energy matrix D

(6)
36 (k), determined in

equation (36). The anomalous averages entering this
equation can be expressed in terms of anomalous GFs:
〈〈Lk↑|L−k↓〉〉ω and 〈〈uk↑|u−k↓〉〉ω. Solving equation (20)
with matrices (34) and (38) we find these GFs:

〈〈Lk↑|L−k↓〉〉ω =
QLL(k, ω)D(6)

36 (k)
detM (6)(k, ω)

,

〈〈uk↑|u−k↓〉〉ω =
Quu(k, ω)D(6)

36 (k)
detM (6)(k, ω)

, (46)

where

QLL(k, ω) = Q33(k, ω)Q̄33(k, ω),
Quu(k, ω) = (νkxQ13(k, ω)− νkyQ23(k, ω))

×
(
ν−k,xQ̄13(k, ω)− ν−k,yQ̄23(k, ω)

)
/KkK−k.

(47)

Since the kernel of the integral equation (36) is separa-
ble it is obvious that the d-wave solution of (36) should
have the form

D
(6)
36 (k) = ∆x cos kx −∆y cos ky, (48)

where in general ∆x is not equal to ∆y. This is because
so far (except for the end of the previous section) we
considered vector potential αx to be not small.

In principle, we can find the amplitudes ∆x and ∆y by
solving a set of two equations, following from (36), (46),
and (48). However, for the sake of simplicity, we will use
the fact that ultimately we are interested in the limit of
small values of αx. Numerical estimates show that in this
regime the changes of amplitudes ∆x and ∆y are pro-
portional to the second power of αx. This means that in
the linear in αx approximation we can make no difference
between ∆x and ∆y and, denoting further both of them
as ∆0, for the d-wave order parameter we obtain

D
(6)
36 (k) = ∆0(cos kx − cos ky). (49)

It is interesting to note that even at αx = 0 the k-
dependence of the gap function on the Fermi contour for
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d-wave order parameter (49) is described not just by the
difference of cosines, but is renormalized by the factor
1/K2

k , as it follows from (45).

7 Self-consistency equations

Given the foregoing, equation (36) for the amplitude ∆0

of the superconducting d-wave order parameter can be
written in the form

1 =
Ĩ

N

∑
k

∑
j=1,4

f(−Ejk/T ) (cos kx − cos ky)2

(Ejk − ε2k)(Ejk − ε3k)

× QLL(k,Ejk)− C1Quu(k,Ejk)
(−1)j+12Ek(Ejk + ε2,−k)(Ejk + ε3,−k)

, (50)

where as before f(x) is the Fermi-Dirac distribution func-
tion. Besides, in order to mimic the effective changes of
the exchange integral I with doping, according to [51] we
replaced the integral I by Ĩ = I(1 − p), where p is the
frustration parameter, varying from 0.15 to 0.275 with
increasing x from 0.03 to 0.22.

Note again that only the lower spin-polaron band with
j = 1 (and its conjugate with j = 4) is modified with
the onset of Cooper instability (equation (43)). The upper
branches of the Fermi excitations spectrum with j = 2 and
3 remain the same as in the N-state and are defined by
the dispersion equation (29).

At a given number x of holes per unit cell equation (50)
should be solved together with the equation for the chem-
ical potential µ: x = 1

N

∑
k

(
〈a+
k ak〉+ 〈b+k bk〉

)
. Two GFs

required to calculate averages 〈a+
k ak〉 and 〈b+k bk〉 come out

as solutions of the matrix equation (20) in the SC phase.
Doing the same way as in derivation (46) we find

〈〈akσ|a+
kσ〉〉ω =

Qaa(k, ω)
detM (6)(k, ω)

,

〈〈bkσ|b+kσ〉〉ω =
Qbb(k, ω)

detM (6)(k, ω)
, (51)

where

Qaa[bb](k, ω) = Q11[22](k, ω) det M̄ (3)(k, ω)

−(ω −D22[11](k))Q̄33(k, ω)

×|D(6)
36 (k)|2 /KkK−k. (52)

After using the spectral theorem for the GFs (51), the
equation for the chemical potential takes the form

x =
2
N

∑
k

∑
j=1,4

f(Ejk/T )
(Ejk − ε2k)(Ejk − ε3k)

× Qaa(k,Ejk) +Qbb(k,Ejk)
(−1)j+12Ek(Ejk + ε2,−k)(Ejk + ε3,−k)

. (53)

Having the solutions of equations (50) and (53) for
∆0 and µ, respectively, the supercurrent density can be
easily found from (14). Two extra GFs 〈〈bkσ|a+

kσ〉〉ω and

〈〈Lkσ|a+
kσ〉〉ω, needed to calculate averages 〈a+

kσbkσ〉 and
〈a+
kσLkσ〉 entering equation (14), can be derived as before

from the matrix equation (20). The answer is

〈〈bkσ|a+
kσ〉〉ω =

Qba(k, ω)
detM (6)(k, ω)

,

〈〈Lkσ|a+
kσ〉〉ω =

QLa(k, ω)
detM (6)(k, ω)

, (54)

where

Qba(k, ω) = −Q12(k, ω) det M̄ (3)(k, ω)

−D12(k)Q̄33(k, ω)|D(6)
36 (k)|2/KkK−k,

QLa(k, ω) = Q13(k, ω) det M̄ (3)(k, ω). (55)

Finally, the expression for the current density is
obtained in the form:

jx(q = 0) =
2egx
~
∑
k

∑
j=1,4

f(Ejk/T ) cos(kx/2− αx)
(Ejk − ε2k)(Ejk − ε3k)

× Ψ(k,Ejk)
(−1)j+12Ek(Ejk + ε2,−k)(Ejk + ε3,−k)

,

(56)

where

Ψ(k, ω) = 2τνkxQaa(k, ω)
−(2τ − 4t)νkyQba(k, ω) + JQLa(k, ω).

(57)

It should be noted once again that when deriving self-
consistency equations (50), (53), and (56) we did not
assume the vector potential Axq=0 to be small. The only
requirement was the smallness of the magnetic field which
is the curl of the vector potential. As a consequence,
the expression (56) for the supercurrent density do not
distinguish the paramagnetic and diamagnetic parts.

In the next section, equations (50), (53), and (56) are
used to analyze temperature and concentration depen-
dence of the magnetic penetration depth in cuprates.

8 London penetration depth: results and
discussion

Now since we are going to calculate magnetic penetration
depth using London equation ~j = −c/(4πλ2) ~A we have to
consider regime of small Axq=0. Then 1/λ2 will be a lin-
ear coefficient in the expansion of the current density (56)
with respect to the vector potential. From the computa-
tional point of view, it is convenient to determine this
coefficient numerically as a ratio jx(q = 0)/αx taken in
the limit of reasonably small αx.

Thus, accounting for the dimensional constants we
have an expression for the inverse square of the in-plane
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Fig. 3. Dependence of the current density jx(q = 0) on the
dimensionless vector potential αx. Parameters of the model
are as follows (in eV): τ = 0.225, J = 2.86, I = 0.118, t =
0.12. The temperature was taken to be equal 10 K and doping
x = 0.15. The dashed line is a tangent line at αx = 0.

magnetic penetration depth λ:

1
λ2

= − eπ

c2~ gygz
· jx(q = 0)

Nαx
, (58)

where gz is a lattice spacing along z-axis, the supercur-
rent density jx(q = 0) is defined by equation (56), and the
magnitude of the dimensionless vector potential αx should
be taken in the range where the current density depends
linearly on αx. The latter condition must be satisfied in
order for the penetration depth λ have been calculated
correctly according to equation (58).

Figure 3 demonstrates the current density calculated
self-consistently as a function of αx. It is seen that
jx(q = 0) behaves linearly on the interval of αx from 0
to 0.004. Below we shall use the value αx = 0.002 as most
optimal.

The temperature dependencies of the inverse square of
the London penetration depth, calculated self-consistently
on the basis of equations (50), (53), (56), and (58), at five
doping levels: x = 0.10, 0.15, 0.20, 0.22, and 0.24, are
presented in Figure 4. The parameters of the model were
intentionally taken equal to those used in our previous
studies of the spectral properties of cuprates [54,55] and
its Tc−x phase diagram [56–61]. Though we did not adjust
the parameters, the obtained value of λ−2(T = 0) turned
out to be within 30% agreement with the experimental
data [72–80].
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Fig. 4. Temperature dependence of the inverse square of the
magnetic field penetration depth at five doping levels. The
magnitudes of doping x are indicated next to corresponding
curves. The model parameters are the same as in Figure 3.

As expected, all the T -dependencies of λ−2 in
Figure 4 demonstrate a monotonic decrease from its max-
imum value at T = 0 to zero value at T = Tc. The
boundary points of these curves, which are the values of
Tc and λ−2(T = 0), can be easily tuned by varying the
model parameters. The critical temperature Tc, as can be
seen from equation (50), is governed by the exchange inte-
gral I which measures the strength the holes bind into the
Cooper pairs. The value of λ−2 at T = 0 is regulated by
the p−d exchange parameter J . This follows from equa-
tions (56–58), and the numerical fact that almost entire
contribution to the current density is only due to the third
term (proportional to J) in equation (57).

Reducing, for instance, superexchange integral down
to I = 0.06 eV the Tc−x phase diagram shrinks con-
siderably as compared to the one calculated for initial
model parameters (Fig. 5). As a result, the obtained
phase diagram (dashed line in Fig. 5) matches to that of
LSCO-superconductors in both the doping interval, lim-
iting the SC dome from x1 = 0.05 up to x2 = 0.26, and
the maximum critical temperature Tmax = 39 K. If we
simultaneously reduce both I and J by approximately
half, then the values of Tc and λ−2(T = 0) relevant for
LSCO (see for example Ref. [75]) are reproduced (Fig. 6).
To avoid confusion it is worth noting that the values of
both I = 0.056 eV and J = 1.42 eV (used to calculate the
curve in Fig. 6) are underestimated as compared to that
generally accepted for cuprates. These values for I and
J were used here just to demonstrate (i) the dependence
of the maximum value of the λ−2(T = 0) on J , (ii) the
dependence of the maximum value of Tc on I; and (iii)
that experimentally estimated values of λ−2(T = 0) and
Tc for LSCO could be reached by tuning the p−d exchange
parameter J and the superexchange integral I.
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Fig. 5. Doping dependence of the critical temperature for two
values of the exchange integral: solid line is calculated for I =
0.118 eV, dashed line corresponds to I = 0.06 eV. The rest of
the model parameters are the same as in Figure 3. The vector
potential Axq=0 = 0.

It can be seen from Figure 4 that in the low temper-
ature region all the curves show linear behavior down
to the lowest considered temperature T = 2 K. Such a
behavior is usually regarded as a manifestation of the
d-wave symmetry of the SC order parameter [73]. For
x corresponding to the overdoped cuprates (x & 0.16)
the functions λ−2(T ) in overall are slightly convex as it
is in the most experiments on cuprate superconductors
[74,75,79].

At doping levels x close to optimal in the tempera-
ture dependence of λ−2 a remarkable feature appears:
the inflection point where the function λ−2(T ) changes
its curvature (see also Fig. 6). At lower temperatures
the shape of λ−2(T ) is concave, wile at elevated tem-
peratures the function becomes convex. In reference [76]
to explain such an unusual behavior of the superfluid
density observed in La1.83Sr0.17CuO4 the existence of
two SC gaps with different d- and s-symmetry was sug-
gested. As it follows from our study, the inflection point
in La1.83Sr0.17CuO4 detected experimentally [76,80] may
not be necessarily related to the presence of two SC
gaps, but instead can be regarded as a manifestation
of the spin-polaron nature of quasiparticles in cuprate
superconductors.

It should also be noted that occurrence of the inflec-
tion point in the temperature dependence of λ−2 is
not restricted by only LSCO superconductors [76,80],
it was also detected in YBa2Cu3O7−δ [74,77] and
Bi2.15Sr1.85CaCu2O8+δ [78].

In the underdoped case, related to doping level x less
than optimal (xopt = 0.16), the concave shape of λ−2(T )
visible on the entire temperature range (the curve with
x = 0.10 in Fig. 4) seems to be inconsistent with the exper-
imental results. This discrepancy is most likely because we
did not take into account the pseudogap behavior exhib-
ited by underdoped cuprates. The PG we believe arises
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Fig. 6. Temperature dependence of the inverse square of the
magnetic penetration depth at x= 0.17. The model parameters
are as follows (in eV): τ = 0.225, J = 1.42, I = 0.056 and
t = 0.12. The magnitudes of J and I were chosen in such a
way as to conform the curve λ−2(T ) with the experimental
one for La1.83Sr0.17CuO4 [76,79,80]. Vertical dash-dotted line
indicates location of the inflection point Ti ≈ 13 K. Dashed
line at T < Ti is extrapolation of the function λ−2(T ) from
the right side of Ti.

due to the spin and charge fluctuations (SCF) that consid-
erably modify the spectral intensity on the Fermi contour.
The present theory is essentially a mean-field theory and
does not take into account the SCF and hence the PG.
No doubt that temperature dependent modifications of
the quasiparticle spectral density due to the PG behavior
will lead to the changes in temperature dependence of the
superfluid density in the underdoped (x < xopt) cuprates.
However since the PG is absent for dopings x > xopt we
are sure that in optimally doped and overdoped cuprates
the results delivered in this paper will remain unchanged.

9 Conclusion

In conclusion we dwell on the main points of the study we
carried out.

First, a novel approach for calculating the magnetic
penetration depth is developed. The main idea of this
approach is to derive an analytical expression for the
current density ~j(~q = 0) rather then for the response
function. This allows us not to expand the current density
in powers of vector potential ~A~q= 0 (taken in the long-
wavelength limit) and hence not to be limited to small
values of ~A~q= 0. The magnetic penetration depth then is
found numerically as the ratio of ~j(~q = 0) to ~A~q= 0 at rea-
sonably chosen small values of the vector potential. Such
an approach turns out to be rather efficient especially
for the multiband system for which k-dependence of the
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quasiparticle spectrum is not known analytically and have
to be computed only numerically. Particulary, within the
proposed approach there is no need to carry out cumber-
some calculations related to extracting the paramagnetic
and diamagnetic parts of the supercurrent density.

The developed approach was used to calculate the tem-
perature and concentration dependence of the magnetic
penetration depth in the hole-doped cuprate supercon-
ductors within the framework of the spin-polaron concept
[8,51]. It is important that the obtained equation (56) for
the supercurrent density takes rigorously into account the
strong coupling (J) between a localized spin on the cop-
per ion and a hole residing on the four nearest oxygen
ions. It turns out that almost entire contribution to the
supercurrent density ~j(~q = 0) is due to the third term in
equation (56) which is proportional to J . This means
that it is hoppings of the spin-polaron quasiparticles
rather than hoppings of bare holes are responsible for the
supercurrent to occur.

Obtained temperature dependencies of λ−2 demon-
strate monotonic decrease. Both the magnitudes of
λ−2(T = 0) and superconducting critical temperature Tc,
at which λ diverges, are well consistent with the experi-
mental results. For overdoped system we obtained convex
shape of the function λ−2(T ) which is observed in most
cuprate superconductors. Moving down to optimal dop-
ings the inflection point in the temperature dependence
of λ−2 appears. We argue that this inflection point, well
known for instance in the slightly overdoped LSCO [76]
and commonly believed to occur due to two SC gaps, can
in fact serve as a manifestation of the spin-polaron nature
of quasiparticles in cuprates.

At low dopings (x < 0.16), the obtained concave shape
of the function λ−2(T ) on the entire temperature range
is, as we think, due to the spin-polaron character of
the quasiparticles as well. Such a behavior seems not to
be in full consistency with available experimental data.
We mainly relate this discrepancy to the, inherent to
underdoped cuprates, pseudogap behavior which we did
not take into account in the present formulation of our
approach. Besides, some other processes, that were not
considered but are going to be, may also improve our
results concerning low doping regime. Among them are
(1) Coulomb interaction between holes both on site and
intersite, and (2) impurity scattering which is assumed to
be responsible for the convex shape of λ−2 as a function
of temperature [72].
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Appendix

In the Appendix we will present particular calculations of
the energy matrix elements: D13(k), D23(k), D33(k), and
D36(k), for which approximations were used.

The equations of motion for two first basis operators
ak↑ and bk↑ are[

ak↑, Ĥ
]

= ξkxak↑ + Γkbk↑ + JνkxLk↑, (A.1)[
bk↑, Ĥ

]
= ξkybk↑ + Γkak↑ + JνkyLk↑. (A.2)

Using equation (A.1) and the definition of matrix elements
(19) we find for the element D13(k) an expression:

D13(k) = (ξkxνkx + Γkνky)
1
N

∑
f

〈S̃↑↑f 〉+ JνkxKk, (A.3)

where

Kk = 〈{Lk↑, L+
k↑}〉. (A.4)

Since the system is in SU(2)-invariant spin-liquid phase
we have 〈S̃↑↑f 〉 ≡ 〈Szf 〉 = 0. Thus, from (A.3) follows the
expression for D13(k) given in (24). Similarly, we find
expression for matrix element D23(k) using equation of
motion (A.2).

Calculating anticommutator in (A.4) we obtain:

Kk =
∑
q

〈
(
S̃k−qS̃q−k

)
↑↑
〉ν2
q

+
∑
qpαβ

〈u+
pβuqα[S̃β↑p−k, S̃

↑α
k−q]〉, (A.5)

where ν2
q = ν2

qx + ν2
qy. The second term in the right-hand

side of (A.5) contains fermi-operators and hence, accord-
ing to the low-density approximation discussed in the
Section 4 can be neglected. Doing Fourier transform in
the first term and taking into account definition of νkx(y)
(see (11)) yields:

Kk =
3
4
− C1

2
(cos(kx − 2αx) + cos(ky)) , (A.6)

where C1 = 〈
(
S̃f S̃f+2δ

)
↑↑
〉 = 〈~Sf ~Sf+2δ〉 in agreement

with the definition of spin correlators (5). Thus, (A.6)
corresponds to (25).

To derive matrix elements D33(k) and D36(k) let us first
write down the equation of motion for Lk↑:
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[
Lk↑, Ĥ

]
=
∑

qα

S̃↑αk−q [(ξkxνkx + Γqνqy)ak↑

+(ξkyνky+Γqνqx)bk↑] +J
∑

qpα

ν2
q

(
S̃k−qS̃q−p

)

↑α

×upα + J
∑

qpk′αβγ

[S̃↑αk−q, S̃
βγ
k′−p]u

+
k′βupγuqα

+
i

N

∑

fmqα

Ifme
−im(k−q)~σ↑α

(
~Sf × ~Sm

)
uqα, (A.7)

where, for convenience, we consider exchange interaction
between arbitrary sites f and m, not restricted by nearest
neighbors approximation as in the main text. Using this
equation we can express the element D33(k) as a sum of
five terms:

D33(k) =
∑

qpαβ

(ξqxνqx+Γqνqy)〈{S̃↑αk−qaqα, u
+
pβS̃

β↑
p−k}〉

+
∑

qpαβ

(ξqyνqy + Γqνqx)〈{S̃↑αk−qbqα, u
+
pβS̃

β↑
p−k}〉

+J
∑

qpp′αβ

ν2
q 〈{
(
S̃k−qS̃q−p

)

↑α
upα, u

+
p′βS̃

β↑
p′−k}〉

+J
∑

qpk′p′αβγβ′

〈{[S̃↑αk−q, S̃
βγ
k′−p]u

+
k′βupγuqα, u

+
p′β′ S̃

β′↑
p′−k}〉

+
i

N

∑

qpfmαβ

Ifme
−im(k−q)

×〈{~σ↑α
(
~Sf × ~Sm

)
uqα, u

+
pβS̃

β↑
p−k}〉. (A.8)

Each of these five terms includes an anticommutator
of the form [S1f1, f2S2], where S1(2) is a Bose-like (spin)
operator and f1(2) is a Fermi-like operator. Since the
anticommutator can be expressed as

{S1f1, f2S2} = f1f2[S1, S2] + {f1, f2}S1S2, (A.9)

each of the five terms in (A.8) can be divided into two com-
ponents. The first component, corresponding to the first
term in (A.9), contains fermi operators and, according to
the adopted low-density approximation, can be neglected.
The second component, corresponding to the second term
in (A.9), after calculating the anticommutator either con-
tains Fermi operators (as the fourth sum in (A.8)) or does
not contain. Keeping only these last terms (with no Fermi
operators) we obtain:

D33(k) = J
∑

qp

ν2
qν

2
p〈
(
S̃k−qS̃q−pS̃p−k

)

↑↑
〉

+
∑

q

(ξqxν
2
qx + ξqyν

2
qy + 2Γqνqxνqy)〈

(
S̃k−qS̃q−k

)

↑↑
〉

+
i

N

∑

qfmα

Ifme
−im(k−q)ν2

q 〈~σ↑α
(
~Sf × ~Sm

)
S̃α↑q−k〉.

(A.10)

Doing the inverse Fourier transformation for the spin
operators we can express the pair spin average in

(A.10) as

〈
(
S̃k−qS̃q−k

)
↑↑
〉 =

1
N
Cq−k, (A.11)

where Ck =
∑
f e
−ifkCf is a Fourier transform of the

spin correlator (5). Similarly, for the triple spin average
in (A.10) we have

〈
(
S̃k−qS̃q−pS̃p−k

)
↑↑
〉 =

1
N2

(Cq−p − Cp−k − Ck−q) ,

(A.12)

where it was taken into account that when all three spins
are at different sites the average is zero due to SU(2)-
invariance.

The condition of SU(2)-invariance and, following from
it identity: 〈S+

f S
−
m − S−f S+

m〉 ≡ 0 (f 6= m), were also used
when calculating the third average in (A.10). The final
result for D33(k) reads

D33(k) =
J

N2

∑
qp

ν2
qν

2
p (Cq−p − Cp−k − Ck−q)

+
1
N

∑
q

(ξqxν2
qx + ξqyν

2
qy + 2Γqνqxνqy)Cq−k

+
1
N

∑
q

Iq

(
1
N

∑
p

Cpν
2
k+p−q − Cq

)
. (A.13)

Performing inverse Fourier transform in equation (A.13)
and adopting the nearest neighbor approximation for
exchange integral Ifm we come to the expression for
D33(k) provided in the formula (24).

The only contribution to the anomalous matrix ele-
ment D36 = 〈{[Lk↑, Ĥ ], L−k↓}〉, for d-wave pairing, is due
to the exchange interaction between localized spins. Tak-
ing into account only this interaction in the equation of
motion (A.7) we obtain

D36(k) =
i

N

∑
qpfmαβ

Ifme
−im(k−q)

×〈{~σ↑α
(
~Sf × ~Sm

)
uqα, S̃

↓β
−k−pupβ}〉. (A.14)

In calculating the anomalous average in the right hand
side of (A.14) the low-density approximation, used above
for normal averages, not necessary. Instead our goal now
is to express the result of anticommutation in the anoma-
lous average via the two basis destruction operators.
Straightforward calculation of (A.14) gives

D36(k) = − 1
N

∑
qpq′

Iq′
[
3〈
(
~S−q′ ~S−q−p+q′

)
uq↓up↑〉

+〈
(
S̃−q′up

)
↓

(
S̃−q−p+q′uq

)
↑
〉

−3〈
(
~S−q′−k−p~Sk−q+q′

)
uq↓up↑〉

+ 〈
(
S̃−q′−k−puq

)
↑

(
S̃k−q+q′up

)
↓
〉
]
. (A.15)
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The first two terms in (A.15) do not contribute to the
d-wave pairing and therefore can be discarded. The last
term due to the SU(2)-invariance (specifically invariance
of the system under rotation by angle π) can be expressed
as

〈
(
S̃−q′−k−puq

)
↑

(
S̃k−q+q′up

)
↓
〉

= 2〈
(
~S−q′−k−p~Sk−q+q′

)
uq↓up↑〉

−〈
(
S̃−q′−k−pup

)
↑

(
S̃k−q+q′uq

)
↓
〉. (A.16)

This identity, after summation over the quasimomenta q
and p, allows to express the anomalous element D36(k) in
terms of the basis operators Lkσ:

D36(k) =
1
N

∑
q′

Iq′〈L−q′−k,↑Lk+q′,↓〉

+
1
N

∑
qpq′

Iq′〈
(
~S−q′−k−p~Sk−q+q′

)
uq↓up↑〉.

(A.17)

Decoupling the second term in equation (A.17) we arrive
at expression (36).
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