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We consider reflection of the Laguerre–Gaussian light beams by a dielectric slab. In view of the unified operator
approach, the higher-order Laguerre–Gaussian beams represent a parametric family with the transverse beam
profile given by an arbitrary generating parameter. Relying on the Fourier expansion in the focal plane of
the beam, we compute the Goos–Hänchen and the Imbert–Fedorov shifts for light beams with non-zero order
and azimuthal index. It is demonstrated that both shifts exhibit resonant behavior as functions of the angle of
incidence due to the interference between the waves reflected from the upper and lower interfaces. The centroid
shifts strongly depend on the order and azimuthal index of the beam. Most interestingly, it is found that the
generating parameter of the higher-order beam families strongly affects the shifts. Thus, reshaping of the incident
wavefront with fixed order and azimuthal index changes the linear Goos–Hänchen shift up to one half of the beam
radius, both negative and positive. © 2018 Optical Society of America

OCIS codes: (240.0240) Optics at surfaces; (260.0260) Physical optics; (290.0290) Scattering.
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1. INTRODUCTION

It is well known that a bounded beam upon reflection and
transmission on a planar interface differs in propagation with
plane waves due to diffraction corrections. This may manifest as
beam shifts with respect to the geometric optics prediction for
reflection or refraction. The dominant shifts are the Goos–
Hänchen (GH) shift in which the beam is displaced parallel
to the plane of incidence [1], and the Imbert–Fedorov (IF) shift
in which the shift is perpendicular [2]. Moreover, it has been
shown that each of these two beam shifts can be separated into a
spatial and an angular shift. The main distinction between
spatial and angular shifts is the enhancement of the latter with
the propagation of the beam [3].

The Laguerre–Gaussian (LG) beam is specified by two in-
dices. The azimuthal index l up to a normalization constant
corresponds to orbital angular momentum (OAM) of the
beam, while the radial index p is the order of the associated
Laguerre polynomial entering the expression for the beam pro-
file. Throughout the paper, we will refer to p as the order of the
LG beam. The effect of OAM on GH and IF shifts was con-
sidered for reflection of the LG beam from an interface [4–17].
These studies revealed the relation of the IF shift to the mag-
nitude OAM and the dual nature of spatial and angular shifts in
optical beam reflection, as well as the coupling of IF and GH

shifts for OAM beams. In the present paper, we extend these
studies to reflection of higher-order LG beams from a dielectric
slab, as sketched in Fig. 1. In what follows, the term “higher-
order” LG beam shall be applied to all beams with radial index
p > 0, to stress that it is the radial dependence of the beam
profile that plays the crucial role in the interference effects.
The presence of two interfaces of the slab brings in a resonant
behavior of the GH and IF shifts, as was demonstrated for
the reflection of Gaussian beams [18–20] and LG beams [21]
by a dielectric slab. The brightest effect of interference of re-
flected and transmitted beams is a reshaping of the beam
profile [21,22].

Following Enderlein and Pampaloni, we define LG beams
via the unified operator approach [23]. In that approach, the
higher-order LG beam modes represent a parametric family
with the transverse beam profile controlled by an arbitrary gen-
erating parameter that allows varying the profile with fixed or-
der and azimuthal index. Structured light plays an important
role in modern science and technology [24]. Only recently,
however, have we witnessed a surge of interest to higher-order
LG beams [25–30], which have applications to interferometry
[31] and harmonics generation [32]. Currently, the higher-
order LG beams can be experimentally generated with a variety
of methods, including the use of spatial light modulators [33],
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fork-holograms [31,34], fork-gratings [35], spiral phase plates
[36], and modal q-plates [37]. Here we address the centroid
shifts of the higher-order LG beams in dependence on the
transverse beam profile as well as the order and azimuthal index
of the beam.

2. LAGUERRE–GAUSSIAN BEAMS

In the framework of the unified operator approach [23], the LG
mode of arbitrary order p and azimuthal index l is derived by
acting with differential operators bL, bL� on the Fourier
representation of the fundamental Gaussian beam:

E�r� �
Z �∞

−∞

dkxdky
�2π�2

bLp�bL��p�l eS , (1)

where

eS � eikxx�ikyx�ikz−i�k2x�k2y �z∕2kA0, (2)

where kx , ky are the wave vector components in the Fourier
plane of the beam x0y, k is the wave number, z is the axial
coordinate of the beam in Fig. 1, and, finally, the Fourier am-
plitude of the fundamental Gaussian mode is given by

A0 � e−w
2
0�k2x�k2y �∕4: (3)

The differential operator in Eq. (1) is defined in the following
manner:

bL � i�kx � iky� �
1

u

�
∂
∂kx

� i
∂
∂kx

�
, (4)

with u as an arbitrary complex valued parameter. Eq. (1) can be
rewritten in a more convenient form:

E�r� �
Z �∞

−∞

dkxdky
�2π�2 Al

p�kx , ky�eikxx�ikyx�ikz−i�k2x�k2y �z∕2k, (5)

where Al
p�kx , ky� is the Fourier amplitude of the LG mode of

arbitrary order and azimuthal index (see Appendix A):

Al
p�kx , ky� � ip�l p!

�
−2

u

�
p
�kx − iky�l

× Llp

�
iu�k2x � k2y �

2

�
e−w

2
0�k2x�k2y �∕4, (6)

where Llp�x� is the associated Laguerre polynomial. In the case
of u � −iw2

0, the latter formula coincides with the Fourier
representation of the regular LG beams [38]. The electric field
amplitude of the paraxial LG beams can be found as [23]

E�r� � �2f �2p�l �−1�p�l p!gp�ω2g�l Llp�gω1ω2�E0�r�, (7)

where

ω1 � x � iy, ω2 � x − iy, (8)

f � 1� i
u

�
iz
k
� w2

0

2

�
, (9)

g � 2u
�w2

0 � 2iz∕k��2u� i�w2
0 � 2iz∕k�� , (10)

and E0�r� is the field profile of the fundamental Gaussian
mode:

E0�r� �
1

π

1

�w2
0 � 2iz∕k� e

ikz−i�k2x�k2y �z∕2k− x2�y2

�w2
0
�2iz∕k�: (11)

In Fig. 2, we plot the profiles of higher-order p � 1, 2 LG
modes for three different values of u. One can see in Fig. 2
that the generating parameter u strongly affects the profile
of the LG modes with the same p and l .

3. BEAM SHIFTS

Let us consider LG beams reflected from a planar structure.
The profile of the reflected beam can be found in the following
form:
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Fig. 1. LG beam reflected and refracted by a dielectric slab with
thickness d and refractive index ns . The coordinate axes are shown
in the plane of incidence. For all coordinate systems, the y axis is
perpendicular to the plane of the plot. Fig. 2. Beam profiles as the real part of Eq. (7) in the Fourier plane.
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Er�rr� �
Z �∞

−∞

dkxdky
�2π�2 Al

p�kx , ky�r�kx , ky�e−ikx xr�ikyyr�iψ r ,

(12)

where r�kx , ky� are the reflection amplitudes specified by each
individual plane wave propagation direction, and ψ r is the
phase acquired by the plane wave on its way from the focal
plane to the reflection interface, and then from the reflection
interface to the observation point. Notice that the phase ψ r is
defined in the coordinates of the reflected beam fxr , yr , zrg,
where the zr axis is aligned with the reflected beam propagation
direction reconstructed by ray tracing. Such a coordinate sys-
tem can be easily set by the mirror reflection of the incident
beam coordinate system basis vectors with respect to the plane
of the interface. In the paraxial approximation, the phase is
written as

ψ r � kzr − �k2x � k2y �zr∕2k � ψ0�kx , ky�, (13)

where ψ0�kx , ky� is the phase acquired by a plane wave on its
wave from the focal plane to the interface. This phase can be
found from the distance z0 between the focal plane and the
interface along the beam axis:

ψ0�kx , ky� � kz0 − �k2x � k2y �z0∕2k: (14)

Now we assume that the definition of the reflection
amplitudes r�kx , ky� is consistent with the new coordinate
frame. The reflectance of the beam is given by

R �
Z �∞

−∞
dxrdyr jEr�r�j2: (15)

Substituting Eqs. (12)–(15) and using the Fourier expansion of
the Dirac delta function

δ�k� � 1

2π

Z �∞

−∞
dkeixk, (16)

we find

R � 1

�2π�2
Z �∞

−∞

Z �∞

−∞
dkxdkyjAr�kx , ky�j2, (17)

where

Ar�kx , ky� � r�kx , ky�Al
p�kx , ky�: (18)

Now assume that the y and yr axes are orthogonal to the
plane of incidence, i.e., to the plane containing the incident
wave vector and the normal to the interface. Then the lateral
shift of the reflected beam is found as

hxri �
1

R

Z �∞

−∞
dxrdyrxr jEr�r�j2: (19)

Integrating by parts and using Eq. (16), we find the following
expression for the lateral shift:

hxri �
−i
R

Z �∞

−∞

dkxdky
�2π�2

×
�∂A�

r �kx , ky�
∂kx

� ikx
z0 � zr

k
A�
r �kx , ky�

�
Ar�kx , ky�:

(20)

One can show that hxri can be split into two summands. The
first one, independent of zr , defines the GH shift:

SGH � 1

R

Z �∞

−∞

dkxdky
�2π�2

×
�
Im

�∂A�
r �kx , ky�
∂kx

Ar�kx , ky�
�
� kxz0

k
jAr�kx , ky�j2

�
:

(21)

At the same time, the second term defines the angular GH
shift:

SGHA � 1

R

Z �∞

−∞

dkxdky
�2π�2

zrkx
k

jAr�kx , ky�j2: (22)

The angular GH shift can be more conveniently described by
the angular deviation from the ray optics prediction for the ray
trajectory:

αGH � arcsin

�
SGHA

zr

�
: (23)

Both linear SIF and angular SIFA IF shifts are defined in the
same manner by replacing xr with yr :

SIF �
−1

R

Z �∞

−∞

dkxdky
�2π�2

×
�
Im

�∂A�
r �kx , ky�
∂ky

Ar�kx , ky�
�
� kyz0

k
jAr�kx , ky�j2

�
,

(24)

and

SIFA � −1

R

Z �∞

−∞

dkxdky
�2π�2

zrky
k

jAr�kx , ky�j2: (25)

4. NUMERICAL RESULTS

As a numerical example, we consider an infinite dielectric slab
of thickness d and refractive index ns embedded into a medium
with refractive index n � 1 (vacuum), as shown in Fig. 1.
Following Okuda and Sasada [39], we do not consider
cross-polarization effects [40,41], choosing the incident beam
with a small paraxial parameter 2π∕kw0 � 0.01. The reflection
coefficient of the s-polarized plane wave through the slab can be
written as [42]

r � rs

�
1 −

exp�2idkZ �t s t̃ s
1 − �rs�2 exp�2idkZ �

�
, (26)

where rs, t s, t̃ s are Fresnel coefficients:

rs �
kZ − kZ
kZ � kZ

, (27)

t s � 2
kZ

kZ � kZ
, (28)

t̃ s � 2
kZ

kZ � kZ
, (29)

with kZ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2X − k2Y

p
, kZ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kns�2 − k2X − k2Y

p
, and

kX , kY as the components of the vacuum wave vector in the
fixed reference frame fX ,Y ,Zg of the slab, as shown in
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Fig. 1. Thus, to be used in Eqs. (18) and (26), they should be
transformed to the incident beam coordinates fx, y, zg. Using
Eqs. (18), (21), (23), and (24) with the reflection coefficient
Eq. (26) and Fourier amplitude Eq. (6), we computed the cent-
roid shifts of s-polarized beams focused on the upper interface
as dependent on the angle of incidence θ, as well as on the order
and azimuthal index of the beam. The beams wavelength was
taken λ0 � 0.6328 μm, with the width of the slab d � 40λ0,
and w0 � 100λ0.

In Fig. 3, we show the reflection coefficients and centroid
shifts of zero-order (p � 0) LG beams with a different azimu-
thal index versus the angle of incidence. The GH and IF shifts
are normalized to the spatial extension of the incident beam in
its waist:

σ2 �
Z �∞

−∞
dxdy�x2 � y2�jE�x, y, z0�j2, (30)

where z0 � 0 is the point of intersection of the beam axis with
the upper interface (see Fig. 1) on which the beam is focused.
As seen in Fig. 3(a), the reflectance of the OAM beams exhibits
a resonant behavior typical for two-interface Fabry–Perot struc-
tures closely following the reflectance of a plane wave, Eq. (26).
One can see that the azimuthal index does not strongly affect
the reflectance. The obvious effect is disappearance of the re-
flectance zeros. However, as shown in Figs. 3(d)–3(f ), the IF
and GH shifts ratio to the beam radius depends on l . The
angular IF shift is zero, since the integrand in Eq. (25) is an
antisymmetric function.

As seen in Fig. 1, in reflection of a LG beam from the
dielectric slab, there is interference of many optical paths with
waves bouncing between the interfaces. One can expect that the
superposed beam has a complicated structure in its Fourier
plane. In Figs. 3(b) and 3(c), we show the reflected beam

profiles for different azimuthal indices at those angles of inci-
dence that correspond to the minima and maxima of reflec-
tance. One can see in Figs. 3(b) and 3(c) that the beam profiles
are strongly distorted at the minima of the reflectance where
the contribution to the Fourier representation critically de-
pends on the propagation direction of a Fourier component.
That qualitatively explains the largest centroid shifts in the
vicinity of the plane wave reflectance zeros. At the same time,
the oscillatory behavior of the centroid shifts in Figs. 3(d)–3(f )
can be understood from the oscillatory behavior of the reflec-
tion coefficient, Eq. (26).

In Fig. 4, we show the centroid shift of higher-order LG
beams. One can see in Figs. 4(a) and 4(b) that the magnitude
of both the GH and IF shifts is strongly affected by the gen-
erating parameter u. In Figs. 4(c)–4(e), we demonstrate the
variation range of the centroid shifts against the angle of inci-
dence with u changing across the whole complex plane. The
dependence of the centroid shifts on the angle of incidence
demonstrates an oscillatory behavior induced by the oscillatory
behavior of Eq. (26). As before, the strongest shifts are observed
in the vicinity of the reflectance minima. Most remarkable,
though, is that the variation of u significantly enhances the
GH shift (up to five times) in comparison to the regular
LG beams. In addition, the sign of the GH shift can be changed
by tuning the generating parameter u. The effect of u on the
centroid shifts can be qualitatively understood in Fig. 2, where
one can see a significant change of the beam profile under
variation of u.

5. CONCLUSION

Earlier, Bliokh et al. [8] predicted vortex-induced GH shift re-
lated to the angular IF shift for reflection of the LG beam from

Fig. 3. (a) Reflectance of the LG beams with different azimuthal index l from a dielectric slab of thickness d � 40λ0 and refractive index n � ffiffiffi
2

p
versus the angle of incidence of the beam. The reflectance of a plane wave (PW) is shown for comparison by a thin black line. (b)-(c) Profiles of
reflected beams at different angles of incidence for LG beams with p � 0 and l � 1, 2, respectively, at the minima and maxima of reflectance R. Real
part of the scattered beam profile, lower inset; intensity, upper inset. (d) GH, (e) angular GH, and (f ) IF shifts for different values of l .
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an interface separating two dielectric media. Similar phenom-
ena take place in reflection from a dielectric slab. As one can
expect, the GH and IF shifts depend on the azimuthal index. It
is clear that the sign of the IF shifts depends on the sign of l .
The presence of two interfaces of the slab brings in a resonant
behavior of the GH and IF shifts. That type of behavior was not
observed in the earlier studies [21], because the beam diver-
gence far exceeded the distance between the resonant peaks
in Eq. (26). Scattering of the incident LG beam from a dielec-
tric slab gives rise to interference between reflected LG beams
(Fig. 1), which, in turn, results in restructuring of reflected
light, as shown in Fig. 3.

Following Enderlein and Pampaloni, we considered LG
beams within the unified operator approach [23]. In that ap-
proach, higher-order LG beams represent a parametric family
with the transverse beam profile given by an arbitrary generat-
ing parameter u, which allows varying the profile of the beam
with fixed order and azimuthal index. As a result, the generating
parameter of higher-order beam families strongly affects the
centroid shifts. Thus, reshaping of the incident wavefront with
fixed order p and azimuthal index l changes the linear GH shift
up to one half of the beam radius, both negative and positive, as
seen in Fig. 4. We speculate that introducing the parametric
family of the higher-order LG beams can bring a new dimen-
sion to engineering interference effects in propagation and
scattering of structured light.

APPENDIX A: FOURIER AMPLITUDE OF LG
BEAMS

After a coordinate change,

k1 � kx � iky, k2 � kx − iky, (A1)

Eq. (1) is written as

E�r� �
Z �∞

−∞

dk1dk1
2�2π�2

�
ik1 �

2

u
∂
∂k2

�
p
�
ik2 �

2

u
∂
∂k1

�
p�l

eS :

(A2)

Now let us write

eS � VG, G � e−iuk1k2∕2, V � eS�iuk1k2∕2, (A3)

then Eq. (A2) is again simplified as

E�r� �
�
2

u

�
2p�l Z �∞

−∞

dk1dk1
2�2π�2 G

∂p

∂pk2
∂p�l

∂p�l k1
V : (A4)

Integrating by parts, we have

E�r� � �−1�l
�
2

u

�
2p�l Z �∞

−∞

dk1dk1
2�2π�2 V

∂p

∂pk2
∂p�l

∂p�l k1
G: (A5)

Next, by recollecting the definition of the associated Laguerre
polynomials,

Llp�r� �
er r−l

p!
dp

drp
�e−r rp�l �, (A6)

we have

E�r� � �−1�pp!
�
2

u

�
2p�l Z �∞

−∞

dk1dk1
2�2π�2

×
�
iu
2

�
p
�
iuk2
2

�
l
Llp

�
iuk1k2

2

�
eS : (A7)

Finally, returning to the initial coordinates kx , ky, we have
Eqs. (5) and (6).

Fig. 4. (a) GH and (b) IF shifts for LG beam with p � 1, l � 1 at the incidence angle θ � 22.125 deg. Range of (d) GH, (e) angular GH, and
(f ) IF shifts against the angle of incidence for l � 1 and different values of the beam order p; p � 1, red-filled area; p � 2, green-filled area; p � 3,
blue-filled area. The GH shift for the regular LG beam with p � 1 is shown in (c) by a yellow line. The reflectance of the beam with p � 1 is shown
in (c) by a dashed black line. The other optogeometric parameters are the same as in Fig. 3.
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