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We consider propagating bound states in the continuum in dielectric gratings. The gratings consist of a slab with
ridges periodically arranged either on top or on both sides of the slab. Based on the Fourier modal approach, we
recover the leaky zones above the line of light to identify the geometries of the gratings supporting Bloch bound
states propagating in the direction perpendicular to the ridges. Most importantly, it is demonstrated that if a
two-sided grating possesses either mirror or glide symmetry, the Bloch bound states are stable to variation of
parameters as long as the above symmetries are preserved. © 2018 Optical Society of America
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1. INTRODUCTION

High contrast dielectric gratings (DGs) have become an impor-
tant instrument in optics with various applications, including
high-Q resonators and focusing reflectors [1–6]. In this paper,
we address the capacity of DGs to host optical bound states in
the continuum (BICs), i.e., localized eigenmodes of Maxwell’s
equations with infinite Q-factor embedded into the continuous
spectrum of the scattering states [7]. In the recent past, the
optical BICs were experimentally observed in all-dielectric set-
ups with periodically varying permittivity [8–14]. Nowadays,
the optical BICs are employed to engineer high-Q resonators
for enhancement of light–matter interactions with applications
to narrow-band transmission filtering [11], lasing [15], and
second-harmonics generation [16].

Depending on the spacial extension of the light-holding
structure, one can identify three classes of BICs. If the structure
is confined in all three dimensions, a perfectly localized optical
mode with infinite Q-factor can be found in spherical dielectric
particles coated with zero-epsilon metamaterial [17,18]. On the
other hand, if the structure is infinitely extended in one spacial
dimension, the above condition on the dielectric permittivity is
lifted, allowing for BICs in periodic arrays of lossless high-index
dielectric elements, such as spheres [19,20] and discs [21].
Notice that in the latter case, light is localized in only two
dimensions.

The third class of BIC supporting systems are planar structures
infinitely extended in two dimensions. They include perforated
slabs [10,22–27], arrays of rods [28–33], arrays of rectangular
bars [11,13,23,25,34–37], and gratings [29,35,38–40]. Here,

we consider Bloch BIC in DGs, i.e., localized modes propagating
above the line of light in the plane of the structure [25,28,41–44].
Such BICs can be contrasted to symmetry-protected standing
waved BICs [11,24,35,40,45] that are symmetrically mismatched
with the outgoing wave allowed in the ambient medium. The
Bloch BICs considered here not only provide access to light locali-
zation and concurrent effects of resonant enhancement and fre-
quency filtering, but also allow for light guiding above the line
of light paving a way for multifunction optical elements that steer
the flow of light harvested from the ambient medium [46].

2. SYSTEM OVERVIEW

The simplest DG supporting BICs is sketched in Fig. 1(a).
It consists of a slab substrate of thickness L made of a dielectric
material with permittivity ϵ1. Dielectric ridges of width w with
permittivity ϵ2 are placed on the top of the slab with period a in
the x direction. The ridges are parallel and infinitely extended
along the y axis. The whole structure is immersed into the am-
bient medium with ϵ0 � 1. In what follows, the thickness of
the topside ridges is designated by h1. In a more generic case
of the two-sided DG shown in Fig. 1(b), the ridges are also
placed on the underside of the slab. The underside ridges
are positioned with the same period a to preserve the periodic-
ity of the structure as a whole. The topside and underside
ridges are shifted with respect to each other by distance δ.
The thickness of the underside ridges is designated by h2.

Due to the system’s translational symmetries, the spectral
parameters of the eigenmodes are linked through the following
dispersion relationship [47]:
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k20 � k2x, n � k2z � k2y , kx,n � β − 2πn∕a, (1)

where k0 is the vacuum wave number, kx,z are the wave num-
bers along the x, y axes, kz is the far-field wave number in the
direction orthogonal to the plane of the structure, β is the Bloch
wave number, and, finally, n � 0, 1,… corresponds to the
diffraction order. Here, we consider transverse magnetic (TM)
modes with ky � 0, i.e., propagating only perpendicular to the
ridges; however, a generalization to bi-directional BICs propa-
gation in both x, y directions is possible [48].

For numerical simulations, we use the rigorous Fourier
modal approach in which the solution for the y component of
the electric vector Ey is written in the following form [49,50]:

Ey�x, z� �
X∞

n�−∞
Sn�z�e−ikx,nx : (2)

The Fourier components Sn�z� are matched on all interfaces
to cast Maxwell’s equations into a set of linear equations trun-
cated in the diffraction order. Since the BICs are source-free
solutions, our numerical implementation is restricted to finding
the poles of the scattering matrix. All simulations are run for

βa < k0a < 2π − βa, (3)

which, according to Eq. (1), means that only one TM scattering
channel is open in the far-zone on both sides of the DG. We
mention in passing that a similar coupled-wave approach was
used in [43] for finding BICs in photonic crystal slabs with one-
dimensional periodicity.

3. RESULTS

The results of our simulation for DGs with w � 0.5a are
collected in Table 1. Our analysis of the numerical results
showed that in regard to BIC holding capacity, two major types
of DGs can be distinguished. In the case of asymmetric gratings,

the system possesses no symmetry involving mirror operation
with respect to x0y plane. This is always the case for the differ-
ent thicknesses of the upside and underside ridges h1 ≠ h2. For
example, the DG shown in Fig. 1(a) clearly falls within this
category. On the contrary, if h1 � h2, and δ � 0, the system
is mirror symmetric around its middle plane. Other types of
symmetric gratings are those possessing a glide symmetry, i.e.,
a composition of a mirror reflection and a half-period transla-
tion along the x axis with δ � 0.5a. In what follows, we discuss
the specific features of BICs in both types of DGs.

A. Asymmetric Gratings

The BICs in asymmetric DGs are BICs 1-6 from Table 1.
Among those, BICs 2,4,6 are Bloch waves with a non-zero
wave vector. The mode profiles of BICs 2,4,6 are shown in
Figs. 2(a)–2(c). At the same time, BICs 1,3,5 are symmetry-
protected standing wave BICs previously known in literature
[35,38] (not shown here for brevity). Generally, the spectrum
of a DG above the line of light is characterized by leaky modes
[46,51], complex eigenfrequency dispersion branches, each of
which can host a BIC in an exceptional point where the eigen-
frequency is real and the Q-factor diverges to infinity. In
Fig. 2(d), we show the real part of the leaky-mode eigenfre-
quencies for three sets of the DG parameters corresponding
to BICs 2,4,6. One can see that, besides a Bloch BIC, every
dispersion branch also hosts a symmetry-protected standing
wave BIC in the Γ-point. These standing wave BICs are BICs
1,3,5 from Table 1. The dispersion of theQ-factors is shown in
Fig. 2(e) to demonstrate its divergence in the points of BICs. It
is worth noting that the dispersion is symmetry with respect to
β → −β. Thus, each dispersion branch hosts two Bloch BICs
propagating in the opposite directions.

One important feature of the asymmetric DG observed in
numerical simulations is that finding a BIC always requires tun-
ing one of the systems’s parameters. For instance, in our case,
the substrate thickness L always had to be adjusted to find leaky
zones with a diverging Q-factor, as seen from Table 1. Given
that the other parameters remain the same and the thickness is
even slightly detuned from the values in Table 1, the BICs
disappear from the system. That feature will be explained later
in the text.

B. Symmetric Gratings

BICs 7,8 are supported by symmetric DGs. In the case of BIC
7, the DG has a mirror symmetry, while in the case of BIC 8,
the DG is glide symmetric. The mode profiles of BICs 7,8 are
shown in Figs. 3(a)–3(b). In contrast to asymmetric DGs, now

Fig. 1. Dielectric gratings: (a) one-sided grating and (b) two-sided
grating.

Table 1. BICs in DG for w � 0.5a

BIC k0a βa δ L∕a h1∕a h2∕a ϵ1 ϵ2

1 4.829 0 0 0.1747 1 0.5 1.5 3
2 4.101 1.472 0 0.1747 1 0.5 1.5 3
3 4.168 0 N/A 0.8838 1 0 15 15
4 4.221 1.311 N/A 0.8838 1 0 15 15
5 4.168 0 0.5 0.5248 1 0.5 1.5 3
6 3.916 1.247 0.5 0.5248 1 0.5 1.5 3
7 3.644 2.001 0 1 0.5 0.5 1.5 3
8 5.094 0.690 0.5 1 0.5 0.5 1.5 3
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finding a BIC does not require a fine-tuning of the system’s
parameters. This finding complies with the results presented
in [41] for double arrays of infinitely thin dielectric rods.
Similar to arrays of dielectric rods [32] and perforated slabs
[23], if a control parameter, such as L, is slightly perturbed,
the BIC persists, having only slightly different frequency k0
and wave vector β.

This feature can be explained in view of the topological
properties of BICs in planar structures, where the BICs are
known to be associated with polarization singularities (vortices)
of the leaky-zone far-field polarization directions [20,23]. Since
the polarization singularity is topologically stable, the variation
of parameters relocates only the position of polarization vortex
in momentum space. Once the DG is symmetric, the leaky

modes also possess identical far-field patterns in upper and
lower half-spaces that can be shifted only with respect to each
other in the case of the glide symmetry. Therefore, under varia-
tion of parameters, the polarization vortex migrates in the same
point in both upper and lower half-spaces, ensuring the stability
of the BIC. This, however, is not the case for asymmetric
DG when the BIC field pattern is also asymmetric. Once
the control parameter is perturbed, the polarization vortices
are relocated in momentum-space in both upside and underside
far-field polarization patterns. Although the polarization vorti-
ces persist, due to the absence of symmetry, their positions do
not have to coincide. Thus, Bloch BICs in asymmetric DGs are
purely accidental in nature, which explains their fragility to
variation of parameters.

Finally, let us illustrate the above arguments with numerical
data. In Fig. 3(c), we show the frequencies of the families of
BICs generated by BIC 7 and 8 under variation of the substrate
thickness L. It is seen from Fig. 3(c) that with an increase of L,
both BICs shift to the line of light k0 � β until they eventually

Fig. 2. BICs in asymmetric DGs. (a)–(c) Mode profiles in the form
of the real part of the electric vector component Ey (p.d.u.) for BICs
2,4,6 from Table 1, respectively. (d) Dispersion of the real part of the
leaky-mode frequency: BIC 2, solid blue; BIC 4, dashed green; BIC 6,
dashed-dotted brown. The white domain is given by Eq. (3). Red
circles show the positions of the BICs. (e) Q-factor dispersion for
the same leaky zones as in (d).

Fig. 3. BICs in symmetric DGs. (a),(b) Mode profiles in the form
of the real part of the electric vector component Ey (p.d.u.) for BICs
7,8 from Table 1, respectively. (c) Position of BIC 7, solid blue, and
BIC 8, dotted brown, under variation of the substrate thickness. The
white domain is given by Eq. (3).
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cross it to become ordinary guided modes below the line of
light protected by total internal reflection. With the decrease
of L, the scenarios are, however, different. The family generated
by BIC 8 terminates at the line k0a � 2π − βa, which is the
boundary of the second radiation continuum. Once that boun-
dary is crossed, the BIC is destroyed by leakage to the second
radiation channel. In contrast to the above case, BIC 7 migrates
to the Γ-point, where all three BICs, i.e., one symmetry pro-
tected and two Bloch waves propagating in the opposite direc-
tions, hosted by the leaky zone coalesce. In this point, the Bloch
BICs vanish, transforming to BICs propagating along the y axis
to which they are continuously connected across the gamma
point (see [20] for more detail).

4. CONCLUSION

We considered Bloch bound states in the continuum in DGs.
Based on the Fourier modal approach, we recovered the leaky
zones above the line of light to identify the geometries of the
gratings supporting Bloch bound states propagating in the di-
rection perpendicular to the ridges. It is shown that the capacity
of DGs to host such bound states depends on the presence/
absence of symmetry with respect to the central plane of the
grating. It is demonstrated that if a two-sided grating possesses
either mirror or glide symmetry, the Bloch bound states are
stable to variation of parameters, as long as the above sym-
metries are preserved. That makes the bound states robust
against possible fabrication inaccuracies and at the same time
allowing for a certain freedom in choosing the geometric
parameters of the gratings. We speculate that our finding might
be useful in design of multifunction optical elements that steer
the flow of light harvested from the ambient medium.

Funding. Ministry of Education and Science of the
Russian Federation (Minobrnauka) (State Contract No
3.1845.2017/4.6).
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