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We consider an optical response induced by bound states in the continuum (BICs) in arrays of dielectric spheres.
By combining the quasi-mode expansion technique with coupled mode theory (CMT), we put forward a theory of
the optical response by high-Q resonance surrounding BICs in momentum space. The central results are
analytical expressions for the CMT parameters, which can be easily calculated from the eigenfrequencies and
eigenvectors of the interaction matrix of the scattering systems. The results obtained are verified in comparison
against exact numerical solutions to demonstrate that the CMT approximation is capable of reproducing Fano
features in the spectral vicinity of the BIC. Based on the quasi-mode expansion technique, we derived the asymp-
totic scaling law for the CMT parameters in the vicinity of the Γ -point. It is rigorously demonstrated that the
linewidth in the CMT approximation exhibits different asymptotic behavior depending on the symmetry of the
BIC. © 2018 Optical Society of America

https://doi.org/10.1364/JOSAB.35.002443

1. INTRODUCTION

The phenomenon of light localization is of paramount impor-
tance in modern science and technology [1]. One of the physi-
cal phenomena leading to the localization of light is optical
bound states in the continuum (BICs) [2]. BICs are localized
eigenmodes of Maxwell’s equation embedded into the continu-
ous spectrum of the scattering states, i.e., source-free solutions
that do not radiate into the far-zone, albeit outgoing waves with
the same frequency and wave vector are allowed in the
surrounding medium. In view of time reversal symmetry, this
implies that an ideal BIC is invisible from the far-zone because
it is also decoupled from any incident wave impinging onto the
BIC supporting structure. At first glance, this renders BICs
totally useless for practical purposes. However, if the scattering
problem is granted an extra dimension by introducing a control
parameter, one can immediately see that the traces of BICs
emerge in the scattering spectrum as narrow Fano features once
the control parameter is detuned from the BIC-point [3–7].
The collapsing Fano feature is generally seen as a precursor
of BIC not only in optics but in the fields of acoustics [8]
and quantum mechanics [9]. The emergence of Fano resonance
is associated with critical light enhancement [10,11], which
paves the way toward important applications for light–matter
interaction, including lasing [12–14], harmonics generation
[15,16], and bio-sensing [17].

Among various setups, BICs are known to exist in periodic
dielectric structures [18–29]. In that case, any eigenmode of

Maxwell’s equations is characterized by its Bloch wavenumber
β with respect to a certain axis of periodicity. Thus, the perio-
dicity by itself quite naturally offers the wavenumber as a con-
trol parameter for optical response. Two classes of eigenmodes
are generally discriminated in periodic structures. The eigenm-
odes with frequency below the line of light ω � cβ are always
localized due to the total internal reflection. In contrast, the
eigenmodes with frequency above the line of light are normally
leaky, i.e., radiate to the outer space [30]. In that context, BIC
can be seen as exceptional points of the leaky zones in which the
far-field radiation from the leaky mode vanishes due to intricate
destructive interference between waves radiated from the infin-
ite number of the elementary cells of the periodic structure.
The BICs are observed from the dispersion of the leaky-zone
Q-factor as the points where the Q-factor diverges to infinity.
This implies that, spectrally, any BIC is surrounded by a family
by high-Q leaky modes [31,32] with the Q-factor infinitely
increasing as β is tuned to the BIC-point.

In this paper, we propose a theory of optical response from
such high-Q leaky modes surrounding BICs in linear periodic
arrays of dielectric spheres [23]. To construct the theory of the
resonant response, two approaches are merged together. The
first is a rigorous quasi-mode expansion technique that relies
on the bi-orthogonal basis of the interaction matrix of the scat-
tering system [33–38]. The second approach is coupled mode
theory (CMT) [39–41], which proved itself as an efficient tool
for approximating the resonant response of optical systems.
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In what follows, we shall establish a link between the two
approaches to provide a clear physical picture in terms of
the leaky mode coupling coefficients leading to simple expres-
sions for amplitudes of the scattered waves. We shall reveal the
asymptotic behavior of the coupling coefficients in the spectral
vicinity of BIC and numerically demonstrate the validity of the
proposed approach.

2. SCATTERING THEORY

The system under consideration is an array of dielectric spheres
with permittivity ϵ � 15 in air, as shown in Fig. 1. The electro-
magnetic (EM) field can be found from time-stationary
Maxwell’s equations:

∇ × E � ik0H, ∇ ×H � −ik0ϵ�r�E, (1)

whereH and E are the magnetic and electric vectors, ϵ�r� is the
dielectric permittivity, and k0 is the vacuum wavenumber, k0 �
ω∕c with ω is the frequency and c is the speed of light. Note
that, throughout this paper, we adopted Gaussian units to
comply with the previous publications on the subject
[23,42]. In what follows, we set c � 1 to measure the fre-
quency in the units of distance. The solution for the EM field
scattered by the array could be found by using the method de-
veloped by Linton, Zalipaev, and Thompson [42]. According
to [42], both E andH outside the spheres are written as a series
over spherical vector harmonics Nm

l �r�,Mm
l �r� in the following

forms:

E�r� �
X∞
j�−∞

eiajβ
X∞
l�m�

�aml Mm
l �rj� � bml Nm

l �rj��,

H�r� � −i
ffiffiffi
ϵ

p X∞
j�−∞

eiajβ
X∞
l�m�

�aml Nm
l �rj� � bml Mm

l �rj��, (2)

where j is the number of the sphere in the array, a is the distance
between the centers of the spheres, rj is coordinate vector in the
jth sphere reference frame, and m� � max�1,m�. When the
scattering problem is addressed, the EM field is found by
solving a set of linear equations [23],bLp � q, (3)

where p is the vector of the expansion coefficients of the
scattered EM field,

p � faml , bml g, (4)

where q is the vector of the expansion coefficients of the
incident wave,

q � fcml , dm
l g, (5)

and bL is the interaction matrix of the scattering system. We
spare the reader of the exact, rather cumbersome, expression
for bL because it is already given in [23] (and implicitly in
the original paper [42]).

Given that matrix bL is a known quantity, we yet have to
define vector q. The expression for q depends on the configu-
ration of the incident EM field. The most obvious choice for
probing the resonant response is a monochromatic plane wave.
The plane wave is specified by its polarization; a transverse
electric (TE) wave has its electric vector orthogonal to the array
axis, while, for a transverse magnetic (TM) wave, it is the mag-
netic vector that is orthogonal to the axis of the array.
Importantly, the BICs in arrays of dielectric spheres always have
quantized orbital angular momentum (OAM) m [23], which
reflects the rotational symmetry of the system. Because
OAM is preserved by scattering of the cylindrical waves, the
scattering problem for a plane wave can be solved independ-
ently for each m. In what follows, we shall only consider scat-
tering in subspace with OAM equal to that of the BIC, having
in mind that the response to a plane wave could be found re-
lying on the expansion of a plane wave into cylindrical Bessel
functions [43]. As demonstrated in [23], the sharp resonant
feature in the spectral vicinity of a BIC is clearly visible in
the total scattering cross-section because subspaces with
OAM different from that of the BIC provide only a smooth
nonresonant background contribution. For each m, the
incident TM (TE) wave is defined as

E �m�
z �H �m�

z � � 1ffiffiffiffiffiffiffiffiffiffi
C�k�

p exp�imϕ� ikzz�Jm�k⊥ρ�, (6)

with

k2⊥ � k20 − k
2
z , (7)

where fρ,ϕ, zg are the cylindrical coordinates, kz is the z com-
ponent of the wave vector, and C�k� is normalization constant
to be specified later on in the text.

Similar to Eq. (2), the mode shape of the incoming wave
could be expanded into vector spherical harmonics:

E�inc��r� �
X∞
j�−∞

eiajkz
X∞
l�m�

�cml Mm
l �rj� � dm

l N
m
l �rj��,

H�inc��r� � −i
ffiffiffi
ϵ

p X∞
j�−∞

eiajkz
X∞
l�m�

�cml Nm
l �rj� � dm

l M
m
l �rj��: (8)

According to [43], the expansion coefficient of the TE-
polarized incident wave can be written as

cml � imk0ffiffiffiffiffiffiffiffiffiffi
C�k�

p
k⊥

F l ,mπl ,m�θ�,

dm
l � −imk0ffiffiffiffiffiffiffiffiffiffi

C�k�
p

k⊥
F l ,mτl ,m�θ�, (9)

where θ is the angle between the wave vector k and the array
axis z, cos�θ� � kz∕k0:

Fig. 1. Array of dielectric spheres of radius R periodically arranged
along the z axis with period a.
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πl ,m�θ� � −
∂
∂θ

Pm
l �cos�θ��,

τl ,m�θ� �
m

sin�θ� P
m
l �cos�θ��, (10)

with Pm
l as the associated Legendre polynomials, and

F l ,m � �−1�mil
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π�2l � 1��l − m�!

�l � m�!

s
: (11)

At the same time for the TM-polarized waves, we have

cml � im�1k0ffiffiffiffiffiffiffiffiffiffi
C�k�

p
k⊥

F l ,mτl ,m�θ�,

dm
l � −

im�1k0ffiffiffiffiffiffiffiffiffiffi
C�k�

p
k⊥

F l ,mπl ,m�θ�: (12)

For further analysis, we will use the quasi-modal expansion [35]
based on the biorthogonal basis of the left yn and right xn
eigenvectors of matrix bL:bLxn � λnxn, bL†yn � λ�nyn: (13)

It should be noted that bL and, consequently, λs, xs, ys are de-
pendent on both β and k0 [23]. The biorthogonal eigenvectors
obey the following normalization condition:

y†nxn 0 � x†nyn 0 � δn,n 0 : (14)

For further convenience, the right eigenvector can be explicitly
written as a vector of expansion coefficients over spherical
harmonics in Eq. (2):

y � faml , bml g, (15)

where, for simplicity, we omitted subscript n. Substituting the
coefficients aml , b

m
l to Eq. (2) instead of aml , b

m
l one can produce

the profile of the optical quasi-mode.
Taking into account Eqs. (13) and (14), the inverse of bL is

given by bL−1 �
X
n

1

λn
xny†n: (16)

Applying Eq. (16), we can write the solution of the scattering
problem in Eq. (3) under illumination by the incident wave in
Eq. (6) in the following form:

p�p� �
X
n

w�p�
n

λn
xn, (17)

with

w�p�
n � y†nq

�p�, (18)

where p � e, h is used for TM or TE waves, respectively. The
entries of vector q�p� � fcml , dm

l g are defined by Eqs. (9) and
(12) depending on polarization. Further on, the quantity wn
introduced in Eq. (18) will be referred to as the quasi-mode
coupling strength. The quasi-mode coupling strength can be
expressed through expansion coefficients aml , b

m
l as

w�h� � imk0ffiffiffiffiffiffiffiffiffiffi
C�k�

p
k⊥

X
l

F l ,m�πl ,m�aml �� − τl ,m�bml ���,

w�e� � im�1k0ffiffiffiffiffiffiffiffiffiffi
C�k�

p
k⊥

X
l

F l ,m�τl ,m�aml �� − πl ,m�bml ���, (19)

where we again omitted subscript n for simplicity.

3. BOUND STATES IN THE CONTINUUM

The linear arrays of dielectric spheres possess rotational sym-
metry about the axis of periodicity and, thus, preserve the
orbital angular momentum (OAM) of light. As a consequence,
the system supports BICs with quantized OAM, including
twisted BICs with nonzero OAM [44,45]. For simplicity
and brevity of presentation in this paper, we restrict ourselves
with the case of zero OAMm � 0 [23]. We shall also remain in
the domain where only the zeroth diffraction order is allowed in
the far-field radiation:

kza < k0d < 2π − kza: (20)

This allows us to equate the Bloch wavenumber with the
z-component of the incident wave vector, kz � β. Under
condition in Eq. (20), the system supports only two far-field scat-
tering channels, one TM- and one TE-polarized. BICs are
source-free solutions of Eq. (3) that exist even without the array
being illuminated from the far zone to yield a simple condition:

det�bL�k0, β�� � 0: (21)

The above condition means that, in the BIC-point, there is an
eigenvector y0 with zero eigenvalue:bL†y0 � 0, (22)

which obviously corresponds to the BIC mode shape.
Technically, the BICs can be found by searching for the zeros
of det�bL�k0, β�� in k0, β-space. It is, however, more numerically
efficient to only find the eigenvalue of bL with the least absolute
value. With respect to β, the BICs can be split into two classes
[23], in-Γ standing wave BICs with β � 0 and off-Γ travelling
wave (Bloch) BICs with β ≠ 0. In this paper, we shall be
concerned with in-Γ BICs, although the application of the
proposed theory to off-Γ BICs is straightforward.

As mentioned in the introduction, the BICs are an excep-
tional point of the leaky zone in which the Q-factor diverges to
infinity. Each leaky zone is characterized by dispersion of the
complex eigenfrequency

Ω � ω0 − iγ, (23)

where ω0 and γ are the position and the width of the resonance,
respectively. The Q-factor is defined as

Q � ω0

2γ
, (24)

with γ obviously vanishing in the point of a BIC. The com-
plex eigenfrequencies can be found by analytic extension of
Eq. (21) to the complex plane as a function of k0. In Fig. 2,
we show results of numerical simulations for both TE- and TM-
polarized waves withm � 0. Importantly, in the casem � 0, the
waves of TE- and TM-polarizations are not coupled by matrixbL [23]. Thus, all waves are pure TE- or TM-polarized, and only
a single decay channel is allowed for each polarization. In
Figs. 2(a) and 2(b), we show the mode profiles of TE BICs.
Note that, in Fig. 2(a), Hz is antisymmetric with respect to the
axis of the array. That is an example of so-called symmetry-
protected BICs, which are symmetrically mismatched with
the TE scattering channel. In contrast with the previous case,
the BIC from Fig. 2(b) is not symmetry protected. The mode
profile of a TM symmetry-protected BIC is shown in Fig. 2(c).
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In Figs. 2(d) and 2(e), we show the dispersion of ω0 and γ,
respectively, for TE leaky modes. Note that, on approach to the
Γ-point for the nonsymmetry protected BIC, γ vanishes faster
than for the symmetry-protected ones. As found in [46], this
reflects in different asymptotics of the Q-factor for symmetry-
protected and nonsymmetry-protected BICs at the Γ-point, the
difference to be explained in Section 5.

4. COUPLED MODE THEORY

To understand the features of the resonant response in the
spectral vicinity of a BIC in infinite arrays, we resort to coupled
mode theory (CMT) [39,40]. CMT is a rather generic
phenomenological approach relying on the modal representa-
tion of the EM field in the scattering domain. Each mode is
viewed as an environment coupled oscillator with complex
eigenfrequency [Eq. (23)]. One condition essential for CMT
is the energy conservation. To account for the energy conserva-
tion, the system’s modes must be energy normalized. Moreover,
the mode shapes of the scattering channels must be normalized
to supply (retrieve) a unit energy flux into (from) the scattering
domain. To explicitly define the channels, we consider the total
EM field far from the scattering domain. Following [47], we de-
compose the far field into incoming and outgoing waves:

E �tot�
z �H �tot�

z � � eimϕ�ikz zffiffiffiffiffiffiffiffiffiffi
C�k�

p �a���
e,�h�H

�2�
m �k⊥ρ� � a�−�e,�h�H

�1�
m �k⊥ρ��,

(25)

where H �1,2�
m �x� are the Hankel functions, a���

e,h is the amplitude
of the incoming wave, and a�−�e,h is the amplitude of the outgoing
wave. The vectors of the incoming a��� � fa���

e , a���
h g and the

outgoing a�−� � fa�−�e , a�−�h g amplitudes are linked through the
Ŝ-matrix

a�−� � bSa���: (26)

The Ŝ-matrix defined in Eq. (26) has the following property:bST � bσzbSbσz , (27)

where bσz is the third Pauli matrix. Equation (27) can be easily
proved using Ŝ-matrix unitarity, taking into account that that the
magnetic field is a quasi-vector, which flips its sign under the
time-reversal operation. At this point, we remind the reader that,
for m � 0, the polarization conversion is forbidden and, hence,bS is diagonal. On the other hand, because the incident wave in
Eq. (6) is defined through the Bessel rather than the Hankel
functions, we can write

E �tot�
z �H �tot�

z � � eimϕ�ikz zffiffiffiffiffiffiffiffiffiffi
C�k�

p �a���
e,�h�2Jm�k⊥ρ� � ae,�h�H

�1�
m �k⊥ρ��,

(28)

where ae,h are unknown coefficients to be found by solving the
scattering problem. The far-field solution can be expressed
through matrix bT as

a � bT a���, (29)

where a � fae , ahg. For the further convenience, we desig-
nate the elements of bT as follows:

bT �
�
te,e 0
0 th,h

�
: (30)

Following [47], with the use of the identity
2Jm�x� � H �1�

m �x� �H �2�
m �x�, one finds from Eqs. (25) and

(28) that bT � bS − b⊮: (31)
Notice that, unlike bS, matrix bT is generally nonunitary.

The goal of this paper is to construct a CMT for matrix bS.
The mode shape of the TM- (TE) scattering channel is implic-
itly defined by Eq. (25) as

E �inc,out�
z �H �inc,out�

z � � 1ffiffiffiffiffiffiffiffiffiffi
C�k�

p H �1,2�
m �k⊥ρ�eimϕ�ikz z , (32)

where (inc, out) stand for the incoming wave and outgoing
wave, respectively. By requiring that each scattering channel
supplies a unit energy flux per period of the array, we can find
the normalization constant in Eq. (32) as

C�k� � 2k0
k2⊥

: (33)

Technically, the above result is obtained by finding the total
Poynting of the channel function in Eq. (32) through the
cylindrical surface enveloping the elementary cell of the array.
Under the above condition, the response of a single resonant
mode to impinging waves is described by the following equa-
tions [47]:

b � κT a���

i�ω0 − ω� � γ
, (34)

Fig. 2. BICs in the dielectric array from Fig. 1 with ϵ � 15. (a) The
z component of magnetic field,Hz for the symmetry-protected TE BIC
with ak0 � 3.8141 and R � 0.3000a. (b) Hz for the nonsymmetry-
protected TE BIC with ak0 � 2.9375 and R � 0.480079a. (c) The
z component of electric field, Ez , for symmetry-protected TM BIC
with ak0 � 3.6021 and R � 0.4000a. (d) Dispersion of the real part
of the eigenfrequency, ω0, for the TE leaky modes hosting the BICs;
solid blue indicates the leaky mode with a symmetry-protected BIC;
dashed red indicates the leaky mode hosting the nonsymmetry-
protected BIC. The white area is the domain where two scattering chan-
nels are open [Eq. (20)]. The positions of the in-Γ BICs are marked by
crosses. (e) Dispersion of the imaginary part of the eigenfrequency, γ,
for the TE leaky modes in the vicinity of the Γ-point; solid blue indi-
cates the leaky mode with the symmetry-protected BIC; dashed red in-
dicates leaky mode with the nonsymmetry-protected BIC. Green circles
show the results obtained with Eq. (50).
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a�−� � bCa��� � bd, (35)

where b is the amplitude of the resonant mode, bC is the scatter-
ing matrix of direct (nonresonant) transmission path, and
vectors κ, d describe the coupling between the resonant mode
and the incoming and outgoing waves, respectively. Most im-
portantly, the quantities γ, d, and bC introduced in Eqs. (34) and
(35) are not independent. The relationships among γ, d, and bC
can be established by performing the time-reversal operation
[39,40,47]. To apply the time-reversal arguments, one has
to take into account that, under the time reversal, the channel
functions in Eq. (32) change the sign of both β and m. This has
been rigorously done in [47,48]. In our case, however, the sys-
tem possesses both rotational symmetry and symmetry with
respect to the mirror reflection in the x0y–plane. Thus, we
can conclude that γ, d, and bC are immune to the time reversal.
Then, following the standard procedure from [39], one findsbCbσzd� � −d, (36)

d†d � 2γ, (37)

κ � bσzd: (38)

Note that the above expression only differs from the standard
two-channel CMT [39] by emergence of σ̂z , which simply re-
flects the behavior of the channel functions in Eq. (32) under
the time reversal. The final expression for the scattering matrix
reads

bS � bC� ddT

i�ω0 − ω� � γ
bσz : (39)

Now using Eqs. (31) and (39), one can write the solution under
illumination by the Bessel waves:

a �
�
− b⊮� bC� ddT

i�ω0 − ω� � γ
bσz�a���: (40)

To establish a link between Eq. (17) and the CMT solution in
Eq. (40), we consider the resonant contribution to Eq. (17),
i.e., the singular term with vanishing λn in the denominator.
In what follows, we omit the subscript n, keeping in mind that
only the resonant contribution is considered. The resonant
term reads

f � wT a���

λ
x, (41)

where w � fw�e�,w�h�g. Let us now write a series expansion in
ω in the vicinity of the leaky mode resonant eigenfrequency ω0

with a fixed β near the normal incidence:

w � w0 � w1�ω − ω0�,
λ � λ0 � λ1�ω − ω0�,
x � x0 � x1�ω − ω0�, (42)

where

w0,1 � fw�e�
0,1,w

�h�
0,1g: (43)

Note that all quantities introduced in Eq. (42) are dependent
on β. Expanding Eq. (41) up to the first order in ω − ω0,
we have

f � �gT0 a����x0 � �gT1 a����x1, (44)

with

g0 �
�
w0 −

λ0
λ1
w1

�
λ0 � λ1�ω − ω0�

� 1

λ1
w1, (45)

g1 �
− λ0
λ1
w0

λ0 � λ1�ω − ω0�
� 1

λ1
w0: (46)

Before comparing Eq. (44) against Eq. (34), we have to
renormalize the resonant mode to support a unit energy per
period of the array,

x0 � x0∕
ffiffiffiffiffiffi
C0

p
, (47)

where C0 is the normalization constant. Because the optical
quasi-mode x0 is unit-normalized, the outgoing field can be
produced with the CMT coupling vector d:

a �
ffiffiffiffiffiffi
C0

p
�dgT0 �a���: (48)

Equating the resonant term in Eq. (40) to that in Eq. (48), we
obtain the following equations:

−i
ffiffiffiffiffiffi
C0

p �
w0 −

λ0
λ1

w1

�
� λ1bσzd,ffiffiffiffiffiffi

C0

p
γ

�
w0 −

λ0
λ1

w1

�
� λ0bσzd: (49)

One can immediately see from the above equations that

γ � −i
λ0
λ1

: (50)

The coefficient λ1 is a nonvanishing quantity; hence, λ0 and γ
exhibit the same asymptotics in the vicinity of the BIC. Note
that the resonant term in Eq. (46) can be dropped because it
vanishes with λ0. Equation (50) can be used for finding the
resonant width of the high-Q leaky zone without the use of
analytic extension to the complex plane. One can see from
Fig. 2(e) that Eq. (50) demonstrates good agreement with
the true resonant width found from the analytic extension
in the vicinity of the Γ-point. For example, if aβ � 0.5 for
the leaky mode with the symmetry protected BIC, we have
aΩ � 3.80950 − i0.00231, while the analytic extension yields
aΩ � 3.80947 − i0.002299. Remarkably, by definition
[Eq. (42)], it is not guaranteed that γ found from Eq. (50)
is a real positive quantity. It appears to be a challenging task
to prove that Eq. (50) is generally real positive. Our numerical
results, however, indicate that it is always real positive in con-
sistence with definition Eq. (23). Moreover, it is found that
λ0 is always real negative, while λ1 is imaginary positive. In
Fig. 3(a), we show the dependence of λ on ω in the spectral
vicinity of the symmetry protected BIC from Fig. 2(a). Next,
we further analyze Eq. (49) depending on the polarization of
the scattering channels for m � 0.

A. TE Modes

Using Eq. (37), vector d for TE modes can be written as

d �
�

0
γh

�
, 2γ � jγhj2: (51)
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One can see from Eqs. (50) and (51) that λ0 vanishes faster,
then γh, and we can drop the second term in the round brackets
in Eq. (49). For the CMT coupling coefficient, we have

γh � i
ffiffiffiffiffiffi
C0

p

λ1
w�h�
0 , (52)

which dictates the same asymptotic behavior of γh and w
�0�
h . By

applying Eq. (38), we also have

C0 � 2γ

				 λ1

w�h�
0

				2: (53)

Thus, we can express all features of the resonant response
through only three parameters λ0, λ1, and w0. Taking into
account the λ1 is real positive, we can write

γh �
ffiffiffiffiffi
2γ

p
arg�w�h�

0 �: (54)

Unfortunately, Eq. (54) cannot be unambiguously applied for
finding γh because the biorthogonal eigenvectors in Eq. (14)
and, consequently, the quasi-mode coupling strength w�h�

are defined up to an arbitrary phase factor. To avoid the prob-
lem with the arbitrary phase factor, we apply an alternative
approach for calculating γh based on finding the far-field struc-
ture of quasi-mode x. Details of the approach are described in
Appendix A. The final result reads

γh �
	k⊥
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jλ1jak30

s
w�h�
0 : (55)

Note that Eq. (55) allows us to determine γh up to its sign.
This, however, does not affect the reflection coefficient defined
by Eq. (40). In Figs. 3(b) and 3(c), we show the resonant width
γ � jγhj2∕2 found from Eq. (55) for the leaky zones with the
nonsymmetry-protected and symmetry-protected TE BICs,
respectively, in comparison against Eq. (50) to demonstrate
the agreement between the two approaches in the vicinity of
the Γ-point. At large jβj, however, γ found from Eq. (55)
deviates from the true resonant width. That imposes a limit
on the CMT approach.

Because the polarization conversion is forbidden for m � 0,
the scattered EM field is described by a single entry th,h of ma-
trix bT , Eq. (30). The only relevant element of the scattering
matrix of the direct process can be found from Eq. (36) as

fbCgh,h � γ2h∕jγhj2: (56)

By using Eq. (40), the final solution for th,h can be written as

th,h � −1 − ei2χ
ω − ω0 − iγ
ω − ω0 � iγ

, (57)

where χ is the phase of the CMT coupling coefficient γh,
χ � arg�γh�. The dependence of χ on β is shown in the inset
to Fig. 3(b). In Figs. 4(a) and 4(b), we show the CMT spectrum
Eq. (57) of the reflection coefficient th,h near the Γ-point for the
leaky zone with the symmetry-protected BIC in Fig. 1(a) in
comparison with the exact numerical solution obtained from
Eq. (3). Two values of β are chosen for numerical simulations
to demonstrate that the accuracy of the CMT solution drops
away off the Γ-point. However, one can see from Figs. 4(a) and
4(b) that, even at the distance of one-fourth of the Brillouin
zone, the CMT approach is capable of reproducing the
Fano feature in the reflection spectrum.

Fig. 3. (a) Resonant eigenvalue λ in the spectral vicinity aβ � 0.5
of the symmetry protected BIC from Fig. 2(a); dashed blue line in-
dicates jλj; solid green line indicates Rfλg; dashed–dotted red line in-
dicates Ifλg; the position of the resonance is shown by a green cross.
(b) Resonant width γ found from Eq. (50) for the leaky zone with the
nonsymmetry-protected BIC 2 (b) indicated by a solid blue line, and
as γ � jγhj2∕2 from Eq. (55). Inset shows the dependence of the phase
of the CMT coupling coefficient χ on β. (c), (d) The same as in (b) for
TE and TM symmetry-protected BIC from Figs. 2(a) and 2(c),
respectively.

Fig. 4. Optical response induced by the TE BICs from Fig. 1. Blue
dashed line indicates exact numerical solution by Eq. (3); red circles
indicate CMT approximation. (a) Symmetry-protected BIC, aβ �
0.7424; (b) symmetry-protected BIC, aβ � 1.5000; (c) nonsymmetry-
protected BIC, aβ � 0.1837; (d) nonsymmetry-protected BIC,
aβ � 0.3878.
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Similar simulations were undertaken for the nonsymmetry-
protected BIC in Fig. 1(b). The results are shown in Figs. 4(a)
and 4(b). Again, one can see good agreement between the
CMT and exact solutions far off the Γ-point. Although, in
the present case, the accuracy drops faster than for the
symmetry-protected BIC.

B. TM Modes

CMT for TM modes can be easily constructed along the same
line as in the previous subsection. For vector d, we have

d �
�
γe
0

�
, 2γ � jγej2, (58)

while the coupling coefficient is found as (see Appendix A)

γe �
	k⊥
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jλ1jak30

s
w�e�
0 : (59)

The relevant entry of the scattering matrix of the direct process
reads bCe,e � −γ2e ∕jγej2: (60)

In Fig. 3(d), we plot the resonant width found from Eq. (60) in
comparison against Eq. (50) to demonstrate that the two
approaches converge at the Γ-point. The spectrum of the re-
flection coefficient te,e for a symmetry-protected TM BIC from
Fig. 2(c) is shown in Fig. 5 in comparison with the CMT pre-
dictions. As before, we see good agreement between the CMT
and exact numerical solutions.

5. ASYMPTOTIC BEHAVIOR OF THE CMT
COUPLING COEFFICIENTS

The expansion coefficients aml , b
m
l for any quasi-mode have the

following property as functions of the Bloch wavenumber β:

aml �−β� � �−1�l�saml �β�,
bml �−β� � �−1�l�1�sbml �β�, (61)

where s � 0, 1. This property reflects the symmetry of the sys-
tem defined by simultaneous change of the sign of β and mirror
reflection in the plane perpendicular to the array axis z. In this
section, we consider the asymptotic behavior of the CMT
coefficients against β in the spectral vicinity of a BIC, i.e.,
at near normal incidence, having in mind Eq. (61).

A. Symmetry-Protected BIC with m � 0

Such in-Γ BICs can be either TE- or TM-polarized. Here, we
consider TE-polarized standing wave BIC. This BIC is hosted
by a TE-polarized leaky zone with the corresponding left
eigenvector written as

y � fa0l �β�, 0g: (62)

As far as the solution is symmetrically mismatched with the TE
scattering channel, we have s � 0 in Eq. (61). This means that
all odd expansion coefficients are zero in the Γ-point [23],
am2k�1�0� � 0. Applying Eq. (19) and noting that τn,0 � 0
according to Eq. (10), we have

w�h��β� �
X
k

F 0
2kπ

0
2k�θ�a02k�β� �

X
k

F 0
2k�1π

0
2k�1�θ�a02k�1�β�

(63)

w�e��β� � 0: (64)

By recollecting that cos�θ� � β∕k0 and using Eq. (10), one can
show that

τl ,m�−β� � �−1�l�mτl ,m�β�, πl ,m�−β� � �−1�l�m�1πl ,m�β�:
(65)

Next, referring to Eq. (61) with s � 0, we immediately see that
both summands in Eq. (63) are odd with β. Hence, the leading
term expansion at the Γ-point is given by

w�h��β� ∝ β: (66)

Finally, according to Eqs. (51) and (52), the CMT coupling
coefficient and resonant width have the following asymptotics:

γh ∝ β, Γ ∝ β2: (67)

It is worth mentioning that the same arguments lead to the
identical results for the symmetry-protected TM modes. The
dependance of the quasi-mode coupling strength against β is
shown in Fig. 6 along with the best fit with a linear function.

B. Nonsymmetry-Protected BIC with m � 0

In that case, the TE-polarized standing wave BIC is hosted
by the leaky zone with s � 1 in Eq. (61), and now all even

Fig. 5. Optical response induced by symmetry-protected TM BIC
from Fig. 2(c). Blue dashed line indicates exact numerical solution by
Eq. (3); red circles indicate CMT approximation. Left panel,
aβ � 0.2041; right panel, aβ � 0.7959.

Fig. 6. Left panel: Quasi-mode coupling strength wh for the TE
leaky modes from Fig. 2(d). Red circles indicate the mode with asym-
metry-protected BIC; red stars indicate the mode with a nonsymme-
try-protected BIC. Solid blue and dashed green line show the best fit
with linear and parabolic functions, respectively. Right panel: Red
circles show the quasi-mode coupling strength we for the leaky mode
with symmetry-protected TM BIC from Fig. 2(c). The solid blue line
is the best fit with a linear function.
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expansion coefficients are zero in the Γ-point [23], am2k�β� � 0.
Consequently, both summands in Eq. (63) are even with β. In
general, at the Γ-point, we have

w�h��β� ∝ Const� β2, (68)

w�e��β� � 0: (69)

Note that w�h��0� may be a nonvanishing quantity, and the
leaky zone does not necessarily have a BIC in the Γ-point,
which explains the difficulty in finding nonsymmetry-
protected BICs in contrast with symmetry-protected ones.
That always requires tuning the material parameters of a system
to eliminate the constant term in Eq. (68). However, such a
BIC is the most appealing to be employed for enhancement
of light–matter interaction due to higher-order asymptotics
of the CMT parameters

γh ∝ β2, Γ ∝ β4: (70)

In Fig. 6, we also show the asymptotic behavior of we in the
vicinity of the Γ-point, which is well fit to a parabola.

6. CONCLUSION

We considered the optical response induced by bound states in
the continuum in arrays of dielectric spheres. By combining a
quasi-mode expansion technique with coupled mode theory
(CMT), we put forward a theory of the optical response by
high-Q resonance surrounding BICs in momentum space.
The central results are analytical expressions for the CMT
parameters, which can be easily calculated from the eigenfre-
quencies and eigenvectors of the interaction matrix of the
scattering systems. Once the CMT coupling coefficients are
known, the optical response can be easily calculated through
simple formulas. The results obtained are verified in compari-
son against exact numerical solutions to demonstrate that the
CMT approximation is capable of reproducing Fano features in
the spectral vicinity of the BIC. We expect that the proposed
approach is not limited to arrays of a dielectric sphere. The
complicated machinery related to cylindrical and spherical wave
expansions is necessitated by our choice of the computational
method. However, if the scattering problem is cast in the form
of a set of linear equations similar to Eq. (3) by means of, say,
finite difference or finite element methods, the quasi-mode ex-
pansion technique becomes equally applicable for any periodic
structure supporting bound states in the continuum. Thus, we
speculate that our results may be useful for engineering the
resonant response in systems with diverging Q-factors.

Thus far, the asymptotic behavior of the critical light
enhancement induced by BICs has been rigorously studied
only in perforated slabs [3] and arrays of dielectric rods
[31,32]. In this paper, we focus on linear arrays of dielectric
spheres. Based on the quasi-mode expansion technique, we de-
rived the asymptotic scaling law for the CMT parameters in
the vicinity of the Γ-point. It is rigorously demonstrated that
the linewidth in the CMT approximation exhibits different
asymptotic behavior depending on the symmetry of the
BIC. In particular, it is proved that, for symmetry-protected
BIC, the Q-factor diverges as β2 in the vicinity of the Γ-point.
At the same time, for the BICs unprotected by symmetry, the

Q-factor diverges as β4. This suggests application of the non-
symmetry-protected BICs to achieve a stronger resonant effect
for enhancement of light–matter interaction. We mention in
passing that our findings totally comply with earlier observa-
tions [31,32,49].

In this paper, the analysis was limited to the case of zero
angular momentum, i.e., to the situation when the waves of
TE- and TM-polarization are decoupled. It would be interest-
ing, though, to extend the results to the BIC with nonzero
OAM [45], in which case the leaky mode is hybridized, and
matrix bT is no longer diagonal. This brings up certain difficul-
ties in constructing CMT because the matrix of the direct pro-
cess is no longer uniquely defined by the quasi-mode coupling
strengths. Moreover, an extra difficulty arises in defining the
phase of the CMT coupling constant because Eq. (85) is
not applicable in subspaces with nonzero orbital angular
momentum. The first principle derivation of CMT from the
quasi-modal expansion for waves with nonzero OAM is our
goal for future studies.

APPENDIX A

The solution for EM field for TE-quasi mode x with m � 0
can be written as

E �
X
j

eijaβ
X∞
l�m�

ã0l M
0
l �rj�, (A1)

where ã0l are the expansion coefficients for the right eigen-
vector x:

x � fã0l g: (A2)

On the other hand, spherical vector harmonics M0
l �rj� can be

expressed through a scalar function ψ0
l �rj� as [50]

M0
l �rj� � ∇ × �rjψ0

l �rj��, (A3)

where

ψ0
l �rj� �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�l � 1�

p h�1�l �k0rj�Y 0
l �θ,ϕ�, (A4)

with h�1�l �x� as the spherical Hankel function, and

Y m
l �θ,ϕ� � �−1�m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2l � 1��l − m�!
4π�l � m�!

s
eimϕPm

l �cos�θ��: (A5)

Combining Eqs. (A1) and (A3) for the azimuthal component of
the electric field Eϕ�r�, we have

Eϕ�r� � −e−iϕ
X
j

eijaβ
X∞
l�1

ã0l h
�1�
l �k0rj�Y 1

l �θ,ϕ�, (A6)

where we used

∂P0
l �cos�θ��
∂θ

� −P1
l �cos�θ��: (A7)

According to [51], the series in Eq. (A6) can be rewritten as an
expansion into cylindrical functions,

Eϕ�r� � −
X∞
n�−∞

MneiβnzK 1

�
k0ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
βn
k0

�
2

− 1

s �
, (A8)

where K 1�x� is a modified Bessel function
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βn � β� 2π

a
n, (A9)

and

Mn �
2i
k0a

X∞
l�1

i−l ã0l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2l � 1�
4πl�l � 1�

s
P1
l

�
βn
k0

�
: (A10)

In the next step, we recall that, under condition Eq. (20), only
the zeroth diffraction order n � 0 is present in the far-field ra-
diation. In the far field, all waves can be written in the form of
expansion into cylindrical functions. For such cylindrical
waves, the electric Eϕ�r� is linked to the axial component of
the magnetic field Hz�r� through the following equation:

Eϕ�r� � −
ik0
k2⊥

∂Hz�r�
∂ρ

: (A11)

By using

K 1�−ix� � −
π

2
H �1�

1 �x� (A12)

and

H �1�
1 �x� � −

∂H �1�
0 �x�
∂x

, (A13)

we obtain the far-zone EM field pattern generated by the
optical quasi-mode:

Hz�r� � −
iπ
2

k⊥
k0

M 0eiβzH
�1�
0 �k⊥ρ�: (A14)

The eigenvectors y and x are defined up to an arbitrary phase
factor. Because the interaction matrix possesses the property
fL̂gl ,l 0 � �−1�l�l 0 fL̂gl 0, l , one can show that vector y,

fygl � �−1�l fx�gl , (A15)

is a left eigenvector of bL. In what follows, we set

yn � yn, (A16)

which allows us to eliminate the disambiquety of the phase def-
inition [49]. Using the definition of the expansion coefficient
for vector q, in Eq. (9) we find

M 0 �
2i

ffiffiffiffiffiffiffiffiffiffi
C�k�

p
k⊥

k20a
1

4π
q†x: (A17)

Applying Eq. (A15) according to [49], one can show that
q†x � y†q, which, together with Eq. (19), yields

M 0 �
2i

ffiffiffiffiffiffiffiffiffiffi
C�k�

p
k⊥

k20a
1

4π
w�h�: (A18)

Physically, Eq. (A14) is the far-field pattern of the quasi-mode
specified by vector x; therefore, the far-field solution produced
by the term Eq. (41) with vanishing λ in the denominator can
be written as

H �out�
z �r� � k2⊥

ffiffiffiffiffiffiffiffiffiffi
C�k�

p
4ak30

�w�h��2
λ

H �1�
0 �k⊥ρ�eiβza���

h : (A19)

Using the series expansion in Eq. (42), we find the resonant
contribution into the outgoing far field radiation is

H �res�
z �r� � k2⊥

ffiffiffiffiffiffiffiffiffiffi
C�k�

p
i4λ1ak30

�w�h�
0 �2

i�ω0 − ω� � γ
H �1�

0 �k⊥ρ�eiβza���
h :

(A20)

We mention in passing that the discrepancy seen in Figs. 3(c)
and 3(d) is caused by approximation in the series expansion
[Eq. (42)]. On the other hand, according to Eqs. (40) and
(51), the CMT solution for the resonant term reads

H �res�
z �r� � −γ2h

1ffiffiffiffiffiffiffiffiffiffi
C�k�

p 1

i�ω0 − ω� � γ
H �1�

0 �k⊥ρ�eiβza���
h :

(A21)

Comparing Eq. (A20) against Eq. (A21), we find

γ2h � −
k2⊥C�k�
i4λ1ak30

�w�h�
0 �2: (A22)

According to Eq. (19), the quantity w�h�
0 is introduced withffiffiffiffiffiffiffiffiffiffi

C�k�
p

in the denominator. One can see that the final result
is independent of C�k�, which can be removed from Eq. (A22).
By using

w�h�
0 � w�h�

0

ffiffiffiffiffiffiffiffiffiffi
C�k�

p
, (A23)

that yields

γ2h � −
k2⊥

i4λ1ak30
�w�h�

0 �2: (A24)

Finally, by recollecting that λ1 is imaginary positive for γh, we
have Eq. (55). Essentially, the same derivation can be equally
applied to the TM modes with m � 0 leading to Eq. (59) with

w�e�
0 � w�e�

0

ffiffiffiffiffiffiffiffiffiffi
C�k�

p
: (A25)
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