УДК 537.9

Analysis of Superconductor Magnetization Hysteresis

Denis M. Gokhfeld*

Kirensky Institute of Physics Federal Research Center KSC SB RAS Akademgorodok, 50/38, Krasnoyarsk, 660036 Russia

Received 05.12.2016, received in revised form 10.12.2017, accepted 20.03.2018

The critical state model and the extended critical state model are described to analyse a magnetization hysteresis and to find superconductor parameters. We discuss how geometric sizes and form influence on magnetization hysteresis, critical current and trapped flux.

Keywords: pinning, Abrikosov vortices, critical state, critical current density, trapped flux. DOI: 10.17516/1997-1397-2018-11-2-219-221.

An essential criterion of superconductivity in studied samples is sharp drop of the resistance at some temperature. Other essential criterion is a great diamagnetic response during the magnetization measurements. Temperature and magnetic field dependencies of the magnetization give the detailed characterization of the superconducting phase in single-crystal and polycrystalline samples.

The critical state model [1] and its many modifications describe entering and trapping of magnetic flux in a II-type superconductor. The extended critical state model [2–4] accounts contributions to the magnetization loop from the surface and the internal volume of a superconducting sample. The extended model allows to parametrize the magnetization hysteresis with asymmetry relative to the M=0 axis.

1. Determination of superconducting parameters from magnetic measurements

The critical current density j_c is most important parameter for superconductor applications. The diamagnetic response is determined by j_c . The critical state model [1] results in the Bean formula $j_c = 3\Delta M/2R$, such that one can estimate j_c from the magnetic measurement. In the Bean formula ΔM is the hysteresis width, R is the radius of the current circulation.

Main stages of magnetization hysteresis analysis are given below.

- 1. The content of a superconducting phase should be estimated firstly. The virgin magnetization changes as M(H) = -xH for $H < H_{c1}$, here x is the content of a superconducting phase. The demagnetization factor can distort the value of x. Additional diamagnetic [5] / paramagnetic [6, 7] phases in a sample tilt the magnetization hysteresis clockwise / anticlockwise. Coexistence of superconducting and ferromagnetic phases in a sample gives a composite hysteresis [8]. For hysteresis of the superconducting phase the dependence of M on H approaches to 0 as H increases to the upper critical field H_{c2} .
- 2. Some special fields are remarkable on a hysteresis and can be estimated directly (Fig. 1). The lower critical field H_{c1} is the point in which the virgin M(H) dependence begins to deflect from the linear line. The virgin M(H) dependence becomes to coincide with the envelop magnetization loop at $H = H_p$, the full penetration field. The M(H) dependence becomes reversible at H higher than the irreversibility field H_{irr} . The superconductivity and the corresponding

^{*}gokhfeld@iph.krasn.ru

[©] Siberian Federal University. All rights reserved

diamagnetic response disappear at H higher than the upper critical field H_{c2} . The trapped magnetic flux B_{tr} in a sample equals to $\mu_0 \Delta M$ at H = 0.

- 3. The depth of the magnetic field penetration λ_0 can be estimated from the reversible part of magnetization hysteresis. The London model [9] results in formula for the equilibrium magnetization $M = -\phi_0/(32\pi^2\lambda_0^2)ln(\eta H_{c2}/H)$, where ϕ_0 is the magnetic flux quantum, η is a constant about 1.
- 4. The hysteresis width is defined by the product of j_c and R such that the current circulation scale should be found for estimations of j_c from magnetic measurements. There is a problem here because the size of current circulation R can differ from the sample radius. It may be the effective grain radius for polycrystalline samples or a size of grain clusters. The hysteresis asymmetry relative to the M=0 axis allows to estimate R because this asymmetry depends on R but it is independent of j_c . The asymmetry is defined by the ratio of l_s/R , where l_s is the depth of the surface layer with equilibrium magnetization [2, 3]. Abrikosov vortices are not pinned in this surface layer. The value of l_s is not larger than λ_0 . Noticeable asymmetry of hysteresis is observed for $l_s/R > 0.1$ such that one can estimate $R < 10\lambda$ for asymmetric magnetization hysteresis. For analyzed polycrystalline superconductors the magnetization loops are good fitted by the extended critical state model with R equal to the average grain radius obtained from SEM.
- 5. The $j_c(H)$ dependencies are easy plotted from the magnetization loops by using the Bean formula. These j_c values obtained are the critical current density averaged on the cross-section perpendicular to the external magnetic field H. Then the field dependence of the pinning force $F_p(H) = \mu_0 H j_c(H)$ is plotted that allows to find the maximal pinning field and H_{irr} also. If the second peak (fishtail, peak effect) is noticeable on a magnetization hysteresis and on field dependencies of j_c and F_p than the peak position and its temperature evolution contain information about the vortex lattice transition or the phase separation in superconductor [5].

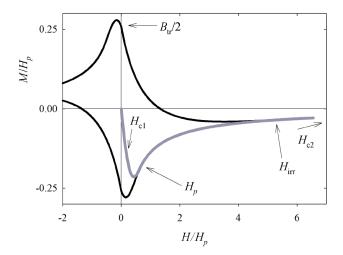


Fig. 1. Characteristic fields on magnetization hysteresis of superconductor. The H_{c2} field is more larger than a maximal external field

As the extended critical state model describes, the averaged critical current density j_c depends on the size and the form of the sample. Due to the surface layer the averaged critical current $j_c = j_{cb}(1 - l_s(H)/R)^n$, here j_{cb} is the critical current density of a macroscopic sample with sizes more larger than λ_0 , n is the parameter defined by the sample form, n = 3 for the long cylindric sample and n = 2 for the long plate parallel to H (Fig. 1).

Review article [3] has some additional references on application of the extended critical state model to analysis of magnetization loops of different superconductors.

Conclusion

Magnetization hysteresis analysis gives some parameters of superconductors: the lower H_{c1} and upper H_{c2} critical fields, the full penetration field H_p , the irreversibility field H_{irr} , the trapped flux B_{tr} , the equilibrium layer depth l_s , the critical current density j_c . When sizes of a sample/grains are comparable with the magnetic field penetration depth λ_0 , the magnetization hysteresis is asymmetric and the extended critical state model should be applied to describe this. The averaged critical current density decreases with the sample/grain sizes due to equilibrium magnetization of the surface layer. Also the sample/grain sizes and their form influence on the magnetization hysteresis form, particularly on the pinning force maximum field.

The work is supported by Russian Foundation for Basic Research (grant 16-42-240445).

References

- [1] C.P.Bean, Magnetization of hard superconductors, Phys. Rev. Lett., 8(1962), 250.
- [2] D.M.Gokhfeld et al., Magnetization asymmetry of type-II superconductors in high magnetic fields, *J. Appl. Phys.*, **109**(2011), 033904.
- [3] D.M.Gokhfeld, An extended critical state model: Asymmetric magnetization loops and field dependence of the critical current of superconductors, *Phys. Solid State*, **56** (2014), 2298.
- [4] D.M.Gokhfeld, Critical current density and trapped field in HTS with asymmetric magnetization loops, *J. Phys.: Conference Series*, **695**(2016), 012008.
- [5] D.A.Balaev et al., Increase in the Magnetization Loop Width in the Ba_{0.6}K_{0.4}BiO₃ Superconductor: Possible Manifestation of Phase Separation, J. Exp. Theor. Phys., 118(2014), 104.
- [6] E.Altin, D.M.Gokhfeld, F.Kurt, M.E.Yakinci, Physical, electrical, transport and magnetic properties of Nd(Ba,Nd)_{2.1}Cu₃O₇ system, J. Mater. Sci.: Mater. Electron., 24(2013), 5075.
- [7] E.Altin et al., Vortex pinning and magnetic peak effect in $Eu(Eu,Ba)_{2.125}Cu_3O_x$, J. Mater. Sci.: Mater. Electron., **25**(2014), 1466.
- [8] E.Altin et al., Hysteresis loops of MgB_2 + Co composite tapes, J. Mater. Sci.: Mater. Electron., **24**(2013), 1341.
- [9] Z.Hao, J.R.Clem, Phys. Rev. Lett., 67(1991), 2371.

Анализ петель намагниченности сверхпроводников

Денис М. Гохфельд

Институт физики им. Л. В. Киренского СО РАН Академгородок, 50/38, Красноярск, 660036

Описано использование модели критического состояния и расширенной модели критического состояния для определения параметров сверхпроводников из измеренных петель намагниченности. Обсуждается влияние геометрических размеров и формы образцов на вид петель намагниченности, критический ток и замороженное магнитное поле.

Ключевые слова: пиннинг, вихри Абрикосова, критическое состояние, плотность критического тока, захваченное поле.