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Abstract—The effect Rashba spin-orbit coupling has on transmission coefficient through a symmetric system
with fermion path nonanalyticity points is illustrated using the example of a regular polygon-shaped chain. It
is shown that the current passage through a device is blocked at the critical spin-orbit coupling values deter-
mined by the system’s geometry. At the near-critical spin-orbit coupling values, electron transport is possible
only in a narrow range of energies.
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The possible existence of points with path nonana-
lyticity and thus a stepwise change in the direction of
the Rashba field is most often ignored in studying the
effects Rashba fields have on the properties of low-
dimensional systems [1]. The properties of edge states
are investigated using models that are infinite in one
direction [2, 3]. It is important to clarify if the conclu-
sions of this analysis can be extended to the systems
with finite sizes and path nonanalyticity points. Note
that, e.g., Lee et al. [4] emphasized the importance of
studying a square-shaped system; however, there is

still a paucity of detailed studies on the effect angles
have on the properties of spin-polarized states. The
question of the effect the Rashba spin-orbit coupling
constant nonuniformity has on the properties of a sys-
tem was raised in [5], but the Rashba field was in this
case assumed to be constant.

Electrons in a chain with the shape of a regular
polygon (Fig. 1) having N sites on each Ns sides and
total number of sites Ns(N − 1) are described by the
Hamiltonian

(1)

Here, the first two terms correspond to hoppings
between nearest neighbors with parameter tD > 0, and
the next two correspond to the Rashba spin-orbit cou-
pling associated with an electric potential gradient
directed perpendicular to the polygon’s plane. The
numbering in j = 1, … , Ns corresponds to the polygon
side numbers (clockwise); n = 1, … , N − 1 numbers

the sites on each side; αD is the Rashba spin-orbit cou-
pling constant;  denotes the Pauli matrices; 
corresponds to the electron spin projection onto axis z;
and  is the unit vector along the direction of the
Rashba field. The one-electron states in the chain
forming a regular polygon are described by the expres-
sions [6]
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Here, the k0 value is reciprocal to characteristic spin-
orbit coupling length LSO; i.e., the distance at which
the electron spin rotates around the direction of the
Rashba field by angle π, and is determined in the tight
binding approximation as

(3)

where L is the length of the polygon’s side.
We use the Landauer–Büttiker formalism to calcu-

late the transmission coefficient through a device with
connected one-dimensional contacts. The transport
properties of the system are then determined by the
wave function, which is the solution to the
Schrödinger equation for Hamiltonian [7]

Here, terms  are the Hamiltonians of contacts;
 describes electron tunneling between the contact

and device;  is diagonalized Hamiltonian (1) of the
polygon-shaped chain;  is the operator of anni-
hilation on a device site connected directly to the con-
tacts;  is the operator of annihilation of one-elec-
tron states (2) in the device;  is the shift of the elec-
tron energy in the device, relative to the energy in
contacts; and energy E is counted from the seed energy
in the device.

The wave function is sought in the form of expan-
sion in the orthogonal basis of the entire system:

(4)

where the electron wave function in the contacts cor-
responds to the incoming, reflected, and transmitted
waves, respectively, and  determines the incoming
electron spin polarization.

Writing the Schrödinger equation and multiplying
it by each of the orthogonal basis functions in (4), we
obtain the nonuniform system of equations

(5)

Reflection and transmission coefficients are in this
case determined as

(6)

Below, we consider a polygon with an even number
of sides and symmetrically connected contacts
(Fig. 1). The typical form of the dependence of trans-
mission coefficient through a regular polygon-shaped

chain on the incoming electron energy is presented in
Fig. 2. The spin-orbit coupling eliminates the fourfold
energy degeneracy and results in (Ns(N − 1)/2 − 1)
Fano antiresonances between the forming pairs of
states caused by the interference of electron wave
functions during motion along two channels.

An important effect caused by Rashba spin-orbit
coupling is that of total reflection from a two-channel
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Fig. 2. Transmission coefficient for a regular polygon-
shaped chain. tL = tR = −1; tD = 0.5; tLD = tRD = −0.5;
Ns = 6; and N = 5. Top, a chain without spin-orbit cou-
pling; bottom, αD = 0.08. The black dots show the energies
of one-electron eigenstates in the chain.
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Fig. 1. Geometry and numbering of sites of a regular poly-
gon-shaped chain with symmetrically placed contacts.
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symmetric device at the critical spin-orbit coupling
constant values. This effect is illustrated in Fig. 3,
which shows the dependence of the transmission coef-
ficient at a specified incoming electron energy on
value , i.e., the ratio between the polygon side length
and characteristic spin-orbit coupling length. The
energy parameters of the device change such that the
chain conduction band width remains invariable.

A key factor in describing this effect is the expres-
sion for the ratio between the expansion coefficients
of wave function (2) on the sides connected to the
contacts:

(7)

It can be seen that this ratio depends only on the
evenness of the orbital number and is independent of
quantum numbers s and m. If the states with the same
quantum number s and different evenness of the
orbital number correspond to the same energy Emls,
Eqs. (5) can in this case be reduced to the form

(8)

where the states with set of quantum numbers (mls)
and (m′l ′s) have the same energy Emls and summation
with the prime marks is assumed to be done over the
pairs of such states. The transmission coefficient in
this case is reduced to zero over the range of energies.
The value of spin-orbit coupling at which the above
condition is met is determined by the equation

(9)

where p is an integer. It can be seen that in the range of
, there are (Ns − 2) values that correspond

to the case when no current is transmitted through the
device (Fig. 3).
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Fig. 3. Dependence of the transmission coefficient for a
regular polygon-shaped chain on χ at a fixed chain con-
duction band width. tL = tR = −1; tLD = tRD = −0.5; Ns = 6;
N = 5; incoming electron energy E = −0.7. The zero trans-
mission coefficient in the plot corresponds to the total
reflection of electrons from the device.
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Fig. 4. Transmission coefficient of a regular polygon-
shaped chain near the critical spin-orbit coupling constant
value. tL = tR = −1; tD = 0.5; tLD = tRD = −0.5; αD = 0.12;
Ns = 6; and N = 5. The black dots show the energies of
one-electron states in the chain.
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When the spin-orbit coupling constant is close to
the critical value, the above considerations remain
valid throughout the range of energies, except for the
vicinities of the eigenenergies of excitations in a chain.
This leads to a situation where only electrons with
energies in the narrow ranges near the intrinsic one-
electron excitations will be transmitted through the
device (Fig. 4). The transmission coefficient in this
case changes rapidly upon varying the spin-orbit cou-
pling value, which can be controlled by applying an
electric field [8]. This allows the proposed class of sys-
tems to be used in microelectronic devices.

CONCLUSIONS
It was shown by the example of a regular polygon-

shaped chain that Rashba spin-orbit coupling in com-
bination with fermion path nonanalyticity points leads
to size Fano antiresonance in symmetric two-channel
systems. At the critical spin-orbit coupling constants
BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES
determined by the geometry of a device, the interfer-
ence of electron wave functions upon propagation
along two channels results in the total reflection of
electrons from it. The slight variation in the spin-orbit
coupling constant caused by the change in the electric
potential gradient near these critical values results in
the narrow-band transmission of electrons by a sys-
tem. The transmission coefficient in this case changes
considerably upon minor variations in the Rashba
spin-orbit coupling constant.
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