
ISSN 1062-8738, Bulletin of the Russian Academy of Sciences: Physics, 2018, Vol. 82, No. 5, pp. 588–590. © Allerton Press, Inc., 2018.
Original Russian Text © V.V. Val’kov, A.O. Zlotnikov, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Seriya Fizicheskaya, 2018, Vol. 82, No. 5.
Topological Phase of Coexisting Superconductivity
and 120-Degree Magnetic Order on a Triangular Lattice

V. V. Val’kova, * and A. O. Zlotnikova

aKirensky Institute of Physics, Krasnoyarsk Scientific Center, Russian Academy of Sciences, Siberian Branch, 
Krasnoyarsk, 660036 Russia
*e-mail: vvv@iph.krasn.ru

Abstract—Using the t–J–V model, self-consistent calculations of the superconducting order parameter
described by a linear combination of  and  chiral invariants are performed in the phase of
coexistence with 120-degree magnetic ordering. Sublattice magnetization is determined in the spin-wave
approximation for the case of half-filling. A nontrivial topology of the coexistence phase is demonstrated, tes-
tifying to the possibility of obtaining edge states and Majorana modes.
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INTRODUCTION
It is well known that a topologically nontrivial

phase with the formation of edge states can be
obtained in a superconductor with chiral symmetry of
the order parameter [1]. In a triangular lattice with

 chiral symmetry of the superconducting
phase, the topological transition from the trivial to
nontrivial phase coexists with the quantum topologi-
cal concentration transition between two phases with
nontrivial topology [2]. As was shown in [3], the con-
ditions for obtaining edge Majorana states can be ful-
filled when there is noncollinear magnetic order with
a stripe structure in the chiral superconducting phase.
This is of special importance, since the mechanism of
inducing Majorana modes in topological supercon-
ductors, which is associated with noncollinear magne-
tism, evokes great interest [4, 5].

It is assumed that the phase of the coexistence of
superconductivity and noncollinear magnetism forms
in ternary rare-earth borides and chalcogenides, rare-
earth intermetallic compounds, and sodium cobal-
tites, the layers of which form a triangular lattice. We
therefore studied the effect magnetic structure has on
Cooper instability for an ensemble of Hubbard fermi-
ons on a triangular lattice [6]. We showed that the chi-
ral symmetry of the superconducting order parameter

is broken during the formation of a magnetic stripe
structure. If the magnetic structure corresponds to
noncollinear 120° ordering, a uniform phase of coex-
isting chiral superconductivity and magnetic order
(the SC + 120° phase) can form. The conditions for
obtaining Majorana modes for the SC + 120° phase
were later established using a quadratic Hamiltonian,
the topological invariants were calculated, and the
topological phase diagram was determined [7, 8].

The question of SC + 120° phase topology with
regard to the strong electron correlations typical of the
investigated materials remains unanswered. Topologi-
cal invariant , expressed via Green’s functions for 2D
systems with coupling, was proposed in [9]. In this
work, we use the t–J–V model to find superconducting
pairing amplitudes using self-consistency equations for
120° magnetic order. We calculate the topological 
invariant in the SC + 120° phase and demonstrate the
nontrivial topology of the ground state.

MODEL

The Hamiltonian of the t–J1–J2–V model when
considering the upper Hubbard subband in the atomic
representation has the form

(1)

where ε is the seed energy of electrons, μ is the chemical
potential, U is the one-site Coulomb repulsion parame-

ter, tfm is the amplitude of electron hoppings, and Jfm is
the exchange coupling value. The last term in the Hamil-
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tonian describes the Coulomb interaction between elec-
trons on the nearest sites with parameter V, and  is the
operator of the number of electrons on the site.

In [10], we found Green’s matrix Matsubara func-
tion for the SC + 120° phase:

(2)

where ; ;  is the Fou-
rier image of the hopping integral;  is the supercon-

ducting order parameter;  = ;  =
; M is the magnetic order parameter; and

 is the Fourier image of the exchange integral for
magnetic structure vector .

Allowing for the exchange interaction between the
nearest and next-to-nearest neighbors and the inter-
stitial Coulomb interaction, we can write the super-
conducting order parameter in the SC + 120° phase as
a linear superposition of the chiral invariants with the

 and  types of symmetry:

(3)
The energy spectrum in the SC + 120° phase has

the form

(4)

(5)

MAGNETIZATION AT HALF-FILLING

It should be noted that obtained spectrum (4) can
assume complex values, depending on the parameters.
This is because the effective exchange fields in the
noncollinear magnetic phase  and  are alternat-
ing-sign quasi-momentum functions with regard to
the non-Fermi character of Hubbard operator rear-
rangements. The presence of imaginary features in the
spectrum is in this case due to the magnetic order
parameter in particular.

Let us calculate the magnetization at half-filling. The
average spin operator for sublattice magnetizations lying
in the plane perpendicular to the quantization axis is
determined as  = .
As was shown in [11], this choice of the quantization
axis greatly simplifies calculations.

We first determine the Fourier image of Green’s func-
tion  in the spin-wave (loopless)
approximation for the exchange coupling corrections:

(6)

where  is
the spin-wave excitation spectrum. With half-filling, the
spin-fluctuation corrections from the term describing
Hubbard fermion hoppings are completely suppressed. To

satisfy condition , which is valid at half-filling,
magnetization M must satsify the equation

(7)

This expression allows us to calculate the tempera-
ture dependence of the magnetic order parameter for
different types of lattice, which is specified by function

, and the magnetic structure determined by vector 
on the condition that the average magnetic moment
projection onto one of the axes is always zero. In par-
ticular, we can easily obtain from (7) the well-known
results of the so-called Tyablikov approximation for a
ferromagnet with  and an antiferromagnet
with  on a simple cubic lattice.

Below, we consider a 2D triangular lattice with 120°
ordering, for which we have  in the
zero temperature limit. We assume the stability of
magnetic ordering at finite temperatures is determined
by the weak exchange between the quasi-two-dimen-
sional structure planes. We then have M (0) = 0.298.

SELF-CONSISTENT CALCULATIONS 
OF THE SUPERCONDUCTING AMPLITUDES

Let us consider a case where the SC + 120° phase is
obtained near half-filling. We assume the f luctuation
corrections weakly affect the magnetic order in this
range of concentrations. In addition, we consider hop-
pings to the second and third coordination spheres of
the triangular lattice.

Self-consistency equations for the superconduct-
ing order parameter amplitudes were derived in [10].
Figure 1 shows concentration dependences of anoma-
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Fig. 1. Dependence of amplitudes Δ22 (solid line), Δ21
(dashed line), and Δ11 (dashed-and-dotted line) of the
superconducting order parameter on the electron density
in the zero temperature limit.
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lous amplitudes in the zero temperature limit at
M(0) = 0.298. It was shown that the elementary exci-
tation spectrum in the SC+120° phase is in this case
always real. The rest parameters were chosen to be J1 =
0.5 t1; J2 = 0.06 t1; V = 0.96 t1, t2 = −0.2 t1, and t3 =
−0.18 t1, where t1 is the parameter of hopping between
nearest neighbors. The maximum temperature of crit-
ical superconductivity is reached at a concentration of
n = 1.107 and is Tc = 0.00188t1.

TOPOLOGICAL INVARIANT 
FOR THE SC + 120° PHASE

In systems with coupling, nontrivial phases are
determined by the Green function’s topology [9]. The
expression for the topological invariant of the ground
state is then

(8)

where  is the Levi–Civita symbol and G is Green’s
matrix function (2).

Upon the quantum transition to the SC + 120°
phase as the concentration rises, the topological
invariant changes from N3 = 0 to N3 = 3, which testi-
fies to the transition from the topologically trivial
phase (with 120° ordering) to the topologically non-
trivial (SC + 120°) phase. Yet another topological
transition to the SC + 120° phase with an invariant of
N3 = 2 occurs later, near a concentration of n = 1.118.

It is worth noting that topological invariant N3 = 2
is typical of the chiral superconducting phase on a tri-
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angular lattice [2]. Allowing for the magnetic order in
this range of concentrations thus does not qualitatively
change the features of edge state formation in a system.
On the other hand, the concentration range with N3 =
3 is obtained exclusively due to the 120° spin ordering.
It was assumed that in regions with odd N3 values, spe-
cial edge states with zero excitation energy (i.e., Majo-
rana bound states) can form [8, 12].

CONCLUSIONS
We determined the electron densities at which the

phase of coexisting chiral superconductivity and
120-degree magnetic ordering can form in the t–J–V
model on a triangular lattice. We determined the sub-
lattice magnetization in the spin-wave approximation.
Using this approximation, we calculated the topologi-
cal invariant expressed via Green’s functions. We
demonstrated the existence of a nontrivial topology of
the ground state in the coexistence phase when strong
electron correlations are allowed for.
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