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Lattice distortions and/or intercalation as ways to induce magnetism in α-FeSi2: a
theoretical study.
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The possibilities to induce magnetism in the non-magnetic bulk α − FeSi2 by means of lattice
distortions or intercalation with metal or non-metal ions of light elements is investigated theoretically
by combined ab initio and model methods. We find that the distortions indeed can induce the
formation of magnetic moment on iron atoms in certain local environments; however, the required
strength of the distortions often is too large to be achieved in experiments. For this reason we
suggest using “chemical pressure” that is, intercalating the α − FeSi2 films by light elements. We
find that some of such variants have promising characteristic.

I. INTRODUCTION.

The modern semiconductor industry is mainly
based on the silicon [1]. The spintronics development
demands for new magnetic materials compatible with
silicon. These facts motivate for a search of the transi-
tion metal silicides which are either magnetic or close
to the magnetic instability. The ability of iron to form
a vast variety of magnetic compounds with silicon
both in the bulk and in the epitaxially stabilized forms
makes them especially attractive. These compounds
are already used in micro- and optoelectronics, an also
in photovoltaics [2]-[6]. Iron disilicide α−FeSi2 is un-
stable and non-magnetic in the bulk form. For these
reasons it was not in the first lines on the list of can-
didates for applications. The situation has changed
after publications [7–9] where it was shown that the
film and nanoparticles of α − FeSi2 can be epitaxi-
ally stabilized. Moreover, it becomes magnetic. These
experimental achievements have good perspective for
the integration of the FeSi-based magnetic devices into
silicon technology. However, a sensible choice of the
optimal technology has to be based on a detailed un-
derstanding of the physics of the magnetic moment
formation in these compounds, which is not achieved
yet. One of the factors leading to the appearance of
magnetism in these compounds can be lattice distor-
tions. Particularly, for α−FeSi2 the experimental data
[7–9] and theoretical analysis [10] show that they are
essential ingredients for the formation of magnetism
both in films [7] and nano-particles [8, 9].

The reason why certain lattice distortions can favor
the magnetism formation is seen from the second or-
der of perturbation theory. Itinerant magnetism arises
due to peaks in the density of electron states. These
peaks originate either from the presence of narrow
bands, or from flat areas on the Fermi surface. If
a band has a large bandwidth and does not contain
narrow enough peaks in DOS in the vicinity of Fermi
energy, a Stoner-like criterium for magnetism is not
fulfilled and magnetic moment (MM) is not formed.
Therefore, any mechanism which favors a decrease of
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width of an effective d-band, will favor also magnetism
formation. If a d-electron may hop to a neighbor-
ing atom (nAt), and the atomic levels ε0

Fe−Fe and
ε0
nAt−nAt are separated, then its band is renormalized
roughly as follows:

ε∗Fe−Fe(k) = εFe−Fe(k) +
|tFe−nAt(k)|2

εFe−Fe(k)− εnAt−nAt(k)
.

Then an increase of the distance between Fe atom and
nAt decreases the hopping matrix element tFe−nAt(k)
and, therefore, the effective width of the d -band de-
creases too and makes the fulfillment of the Stoner’s
criterium easier.

Earlier discussions were focussed on the effect of
in-plane distortions caused by the misfit strains [10].
However, according to recent experimental data [11]
besides the in-plane distortions, out-of-plane distor-
tions also can arise in α − FeSi2 nanoparticles. The
observed magnetic moments are quite small [7, 11]
∼ 0.2µB . Theoretical analysis of the magnetism for-
mation in iron silicides [10] shows that the small lat-
tice distortions which arise during the film fabrication
may cause small moments. One can expect that the
increase of these distortions may lead to an increase
of the magnetic moments. Since the crystal structure
of iron disilicide α − FeSi2 has a cavity formed by Si
planes, one way to increase these distortions is inter-
calation of α− FeSi2 with light atoms.

The present work is devoted to further theoretical
analysis of the mechanisms of magnetism formation in
the disilicide of iron α − FeSi2. We inspect the pos-
sibilities to induce magnetism by means of “chemical
pressure” via intercalation the α − FeSi2 by different
light elements. We use ab initio (VASP, DFT-GGA,
see Sec. II) approach along with a hybrid approach
that combines ab initio and model calculations, devel-
oped in Refs. [10, 12]. Then we map the DFT-GGA
results onto the multiorbital model, suggested in Ref.
[12]. The mapping is based on the idea to exploit the
Hohenberg-Kohn theorem, equalizing the charge den-
sities, one generated by the Kohn-Sham equations and
obtained from the Hartree-Fock equations for a model
Hamiltonian. Due to success of the Kohn-Sham ap-
proach in description of real materials we treat the cor-
responding charge density as a “genuine” one and find
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the parameters of the model Hamiltonian from mini-
mization of difference beween the Kohn-Sham and the
model Hartree-Fock charge densities.

The analysis of the model allows for detailed under-
standing of the role played by different parameters of
the model in the physics of magnetism formation.

The paper organised as follows. In Sec. II, we pro-
vide the details of the ab initio and the model calcula-
tions. The effect of the lattice distortions in α−FeSi2
on magnetic moment formation in both approaches is
described in Sec. III A. The Sec. III B presents the re-
sults of the calculations for α−FeSi2 with intercalated
atoms. Section IV contains the conclusions.

II. CALCULATION DETAILS.

A. Ab initio part

All presented here ab initio calculations have been
performed using the Vienna ab initio simulation pack-
age (VASP) [13] with projector augmented wave
(PAW) pseudopotentials [14]. The valence electron
configuration 3d64s2 is taken for the Fe atoms and
the 3s23p2 one for the Si atoms. The calculations
are based on density functional theory (DFT) in
the generalized gradient approximation (GGA), where
the exchange-correlation functional is chosen within

the Perdew-Burke-Ernzerhoff (PBE) parametrization
[15]. Throughout all calculations, the plane-wave cut-
off energy was 500 eV, and the Gauss broadening with
a smearing of 0.05 eV was used. The Brillouin-zone
integration was performed on a 15×15×8 Monkhorst-
Pack grid [16] of special points. The optimized lattice
parameters and atomic coordinates were obtained by
minimizing the total energy.

B. Model part

In [12] we suggested to combine the ab initio and
model calculations by means of the following scheme.
First, we perform ab initio calculations of electronic
and magnetic properties within the framework of
DFT-GGA. Then we map the DFT-GGA results onto
the multiorbital model suggested in Ref. [12]. The
details of model calculations are described in Ref.
[12]. Here we give only the Hamiltonian and the gen-
eral parameters of the model. We use the set of the
Kanamori interactions [17] between the d-electrons of
Fe (five d-orbitals per spin). The crystal structure
contains neighboring Fe ions, for this reason the direct
interatomic d−d-exchange and d−d-hopping have to
be included. The Si p-electrons (three p-orbitals per
spin) are modeled by atomic levels and interatomic
hoppings. Both subsystems are connected via d − p-
hoppings. Thus, the Hamiltonian of the model is:

H = HFe +HFe−Fe
J′ +HSi

0 +Hhop, (1)

where

HFe = HFe
0 +HFe

K

HFe
0 =

∑
εFe0 n̂dnmσ.

The Kanamori’s part of the Hamiltonian is

HFe
K =

U

2

∑
n̂dnmσn̂

d
nmσ̄ +

(
U ′ − 1

2
J

)∑
n̂dnmn̂

d
nm′ (1− δmm′) − 1

2
J
∑

ŝdnmŝdnm′ . (2)

The Hamiltonian of the interatomic exchange and hopping parts is

HFe−Fe
J′ = −1

2
J ′
∑

ŝdnmŝdn′m′ ;

Hhop =
∑

Tmm
′

n,n′ p†nmσpn′m′σ +
∑

tmm
′

n,n′ d†nmσdn′m′σ +
∑[

(t′)
mm′

n,n′ d
†
nmσpn′m′σ +H.c.

]
; (3)

where

n̂dnmσ ≡ d†nmσdnmσ; n̂dnm = n̂dnm↑ + n̂dnm↓; ŝdnm ≡ sαγd
†
nmαdnmγ ; n̂pnmσ ≡ p†nmσpnmσ. (4)

Here p† (p) are the creation (annihilation) operators
of p-electrons of Si and d† and d stand for d-electrons
of Fe ions; n is the complex lattice index (site, basis);

m labels the orbitals; the indices σ, α, γ are spin pro-
jections; s are Pauli matrices; U, U ′ and J are the
intra-atomic Kanamori parameters; J ′ is the param-



3

eter of the intersite exchange between the nearest Fe
atoms. At last, Tmm

′

n,n′ , tmm
′

n,n′ (t′)
mm′

n,n′ are hopping inte-
grals between Si - Si, Fe -Fe and Fe - Si atomic pairs,
correspondingly.

The dependencies of hopping integrals on k were
obtained from the Slater and Koster atomic orbital
scheme [18] in the two-center approximation using a
basis set consisting of five 3d orbitals for each spin
on each Fe atom and three 3p orbital for each spin
on each Si atom. Then, within the two-center ap-
proximation, the hopping integrals are expressed in
terms of the Slater – Koster parameters tσ ≡ (ddσ),
tπ ≡ (ddπ) and tδ ≡ (ddδ) for Fe - Fe hopping and
tσ ≡ (pdσ), tπ ≡ (pdπ) for Fe - Si and Si - Si hop-
pings. In calculations of the model phase diagrams
(maps) for magnetic moments we neglected the weak
δ− bonds (tδ = 0) for Fe - Fe hopping and kept fixed
the relations tπ = tσ/3 for the nearest neighbors (NN)
Fe -Si (tσ ≡ tFe−Si) and tπ = tσ/2 for the next near-
est neighbors (NNN) Fe - Fe (tσ ≡ tFe−Fe) and Si - Si
(tσ ≡ tSi−Si) and tπ = tσ/2. We assume that hopping
integrals depend on the distance R between the ions
exponentially,

t(R) = tmaxexp(−γ∆R) (5)

where tmax = t(Rmin) and ∆R = R−Rmin(Å). We
have found the parameters γ1 = 0.89Å−1 for tFe−Fe,
γ2 = 0.93Å−1) for tFe−Si [10] and γ3 = 0.94Å−1 for
tSi−Si. The on-site parameters during all model calcu-
lations were the following: U = 1eV, J = 0.4eV, εSi =
6 eV εFe = 0 . In the rest of the paper all hopping
parameters are given in eV.

III. RESULTS AND DISCUSSION

A. The effect of lattice distortions on
magnetism formation

The compound α − FeSi2 has a tetragonal unit
cell with the lattice parameters a = b = 2.7Å and
c = 5.13Å. Its structure is shown in Fig.1a. The iron
atoms are located at (0, 0, 0), the Si atoms are located
at the points (0.5, 0.5, 0, 272) and (0.5, 0, 5, 0.728). As
seen from Fig.1a there is a cavity between Si atoms
in the structure due to the large distance between Si
atoms along the tetragonal c−axis (RSi−Si = 2.4Å).
The calculated equilibrium distance between Fe -Si
atoms RFe−Si = 2.36Å. Our DFT-GGA calculations
confirm that the ground state of α − FeSi2 is non-
magnetic metal [19]. The full density of electron states
(DOS) of α− FeSi2 is shown in Fig. 2a. The peak in
the DOS in the vicinity of the Fermi energy is mainly
due to the eg d−electrons (fig.2b, black line). The
other interesting peculiarity of the α−FeSi2 structure
is the presence of a network of quasi-one-dimensional
channels, which is easily seen on the map of electron
localization function [20](Fig.1b).

While α − FeSi2 in the bulk form is non-magnetic,
there are several experimental studies where ferromag-
netism is found in thin films [7] and nano-particles

(a) (b)

Figure 1. Color online. (a) The crystal structure of
α − FeSi2; (b) The electron localization function (ELF)
for α − FeSi2. Blue and green colours correspond to the
delocalized electrons, yellow and red colours correspond
to the localized electrons. The blue balls stand for the Fe
atoms, the grey ones are for the Si atoms .

[8, 9]. Recently [11] nano-sized grains [001] - faceted
α−FeSi2 have been synthesized on a silicon substrate.
The magnetic measurements indicated the existence of
small magnetic moment (MM), ∼ 0.2µB per Fe atom.
According to experimental data [11] the spacing be-
tween Fe layers along the tetragonal axis in the ob-
tained nano-grains is changed compared to that in the
bulk: being larger between the layers which are close
to the substrate surface, it decreases with distance
away from the substrate and then again increases. Si-
multaneously, the stresses of ∼ 1.2% arise in the plane
perpendicular to the c axis due to the misfit with the
silicon substrate. These stresses induce an increase of
the distance RFe−Fe between the iron atoms in this
plane.

In our earlier work [10] we have shown that the fer-
romagnetism can be induced by external stresses as
well as by insertion into the structure of additional
atoms of iron or silicon. Contrary to the sugges-
tion [8, 9] which explains the appearance of the mag-
netism in nanoparticles of α − FeSi2 by formation of
Fe clusters, the results of our theoretical analysis, to-
gether with experimental results [11], indicate that
the stresses alone may switch on the mechanisms of
the MM formation in α − FeSi2. In the present work
we will investigate the influence of other types of lat-
tice distortions, on the ferromagnetism formation in
α − FeSi2. Particularly, we expect that the MMs in
α − FeSi2 have to be sensitive to the changes of the
distance between the layers of irons and/or silicon.

In order to understand how the Fe interlayer dis-
tances RIL observed in [11] influence the magnetic
properties of α − FeSi2 we performed ab initio cal-
culations of the model supercell 1 × 1 × 4 with the
different RIL (ranging from 5.13Å to 5.4Å) between
Fe planes along tetragonal axis. The stress com-
ing from the substrate are modeled by a 1.2% in-
crease of the distance between in-plane iron atoms
(RFe−Fe = 2.73 Å) compared to the one in the bulk
α − FeSi2 (RFe−Fe = 2.70 Å). The optimization of
the supercell with respect to the atomic coordinates
results in the changing of the interlayer distances be-
tween Fe and Si planes (on average by about 3%) com-
pared to the bulk ones. These changes induce MMs
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(a)

(b)

Figure 2. Color online. (a) Full DOS for α−FeSi2; (b) eg-
DOS of α − FeSi2 (black line), supercell with RFe−Fe =

2.73 Å (green line), supercell with RFe−Fe = 2.8 Å (red
line). Zero on the energy axis is the Fermi energy.

about 0.2µB on the Fe atoms in accordance with ex-
perimental data. The partial contribution to DOS
from the eg-electrons of Fe for this model supercell
is shown by the green (on-line) curve in Fig.2b. The
lattice distortion of the parent α − FeSi2 shifts the
eg-electron peaks in the spin-up and spin-down DOS
relative to each other and increases the spin polar-
ization by about 70% in the model supercell. The
latter is one of the most important characteristics for
the spintronic applications. An increase of the lattice
parameter up to RFe−Fe = 2.8 Å leads to further am-
plification of these peaks in the DOS and to the strong
increase of the spin polarization (Fig.2b, red line).
Thus, the ab intio calculations indicate that increase
of merely the distance between in-plane Fe atoms re-
sults in the appearance of small magnetic moments.
In order to obtain moments of at least ' 0.3µB/atom,
the lattice parameter of α−FeSi2 has to be increased
by ∼ 5% (RFe−Fe = 2.8 Å ), while an increase of
the moment till ∼ 0.7µB/atom requires the increase
of the iron-iron distance up to ∼ 3 Å, i.e., approx-
imately, by 10% ! Although the distortions always
arises when α − FeSi2 film is experimentally synthe-
sized on the Si substrate, it never reaches such a large
value. The experiment [11], however, shows that the
MM ∼ 0.2 − 0.3µB/atom arises in the nanoparticles
of α − FeSi2 at a smaller misfit strain, ∼ 1.2%. This
fact prompts that, possibly, some other mechanisms of

Figure 3. Color online. The map of magnetic moments
M(tFe−Fe, tFe−Si) for α−FeSi2 at the equilibrium lattice
parameter. Dashed blue lines and blue point show the
values of hopping integrals which provide the best fit to the
ab initio charge density. The values of hopping parameters
are given in eV.

the moment formation can be switched on by/during
synthesis of the α−FeSi2films. The simplest ones are
just other, different types of distortions. There are
several types of the bulk-α − FeSi2-lattice distortions
which may cause the magnetism appearance in our
model supercells. It can be either an increase of the
distance between Fe atoms in the plane, or a change
of the distance RSi−Si between silicon atoms, or even
the distance RFe−Si between iron and silicon atoms.
Below we examine these possibilities in details.

A convenient tool for that is the mapping of the
results, obtained by the first-principle calculations,
to the multiple-orbital model, described in [12] and
shortly outlined in Sec. 2.2. According to the results
[10], the main parameter which controls the MM for-
mation is the hopping integral tFe−Fe between the in-
plane Fe atoms ( Fig. 3). Blue point on Fig.3 shows
the values of hopping integrals (tFe−Fe = −0.7eV ,
tFe−Si = 1.0eV , tSi−Si = 1.75eV ) which provide
the best fit to the ab initio charge density for bulk
α− FeSi2.

The parameters for Fe - Si hopping tFe−Si and Si -
Si hopping tSi−Si intuitively seem to be non-relevant
to MM formation. As will be seen below, this ex-
pectation is not supported by calculations. Via the
self-consistent solution of the model equations for the
population numbers of orbitals and the magnetization
within the Hartree-Fock approximation we obtained
the MMmap in the coordinates tFe−Si vs tSi−Si at the
fixed value of tFe−Fe = −0.7eV (Fig.4a). The latter
value corresponds to the equilibrium Fe - Fe distance
RFe−Fe = 2.7Å for bulk α− FeSi2. Notice that a de-
crease of the distance between silicon atoms, RSi−Si,
increases the distance between Fe and Si atoms, and
vice versa (Fig.1a). As seen from the map in Fig.4a,
there is no magnetism at the equilibrium distance
RFe−Fe = 2.7Å in undistorted α − FeSi2. However,
a decrease of the hopping integral tFe−Si with simul-
taneous increase of tSi−Si leads to the arising of the
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(a)

(b)

Figure 4. Color online. The map M(tFe−Si, tSi−Si) of
magnetic moments M for α − FeSi2 : (a) at equilibrium
lattice parameter a = 2.7Å; (b) at a = 2.8Å. Dashed blue
lines and blue point show the values of hopping integrals
which provide the best fitting to the ab initio charge den-
sity. The values of hopping parameters are given in eV.

magnetism at the same distance RFe−Fe. As seen
from the upper left corner of the map Fig.(4a), a large
MM ∼ 1 − 1.1µB can be achieved by decrease of the
distance between Si atoms which causes the changes
of the hopping integral magnitudes. So, hoppings in-
tegrals tSi−Si ≈ 3.1 and tFe−Si ≈ 0.5 correspond
to distances RSi−Si ≈ 1.6Å and RFe−Si ≈ 2.6Å. And
vice versa an increase of the Si−Si distance (decrease
of tSi−Si and increase of tFe−Si ) leading to decrease
of the MM to ∼ 0.1− 0.3µB .

Thus, the analysis of the model within the Hartree-
Fock approximation shows that the ferromagnetic
state in α − FeSi2 may be induced by: (a) the in-
crease of the distance between iron atoms (Fig.3), and
(b) the change of the distance between NN silicon
and iron atoms and between silicon atoms (Fig.4a).
An application of both types of changes expands the
area of existence of the ferromagnetic solutions. This
is illustrated by Fig.4b, which displays the map of
MMs evaluated at tFe−Fe = −0.65eV . This corre-

Figure 5. Color online. The dependence of the MM in
α − FeSi2on the distance RSi−Si between silicon atoms (
the hopping integrals in the model t = t(RSi−Si) ). The
results for RFe−Fe = 2.7Å are displayed by the black color
and for RFe−Fe = 2.78Å by the red one. The solid line
stands for GGA (in VASP), the points are for the model
within the HFA. The vertical line indicates the equilib-
rium distance RSi−Si = 2.34Å in α−FeSi2. The values of
hopping parameters are given in eV.

sponds to RFe−Fe = 2.78Å, according to Eq.(5), i.e.,
to the misfit strain ∼ 3%. At this distance the mag-
nitudes of the MM M ∼ 1.0µB arise at the smaller
hoppings (Fig.4b) tSi−Si ≈ 2.7 (RSi−Si ≈ 1.8Å) and
tFe−Si ≈ 0.65 (RFe−Si ≈ 2.5Å). In order to confirm
the model findings we performed ab initio calculations
of the moment dependence on the distances between
silicon atoms in α−FeSi2. Fig.5 displays the compar-
ison of the results of model and ab initio calculations
for the dependence of the MM at iron atoms on silicon-
silicon distance RSi−Si at equilibrium and expanded
RFe−Fe distances between in-plane iron atoms. Simi-
lar to the model result, a decrease of RSi−Si causes a
sharp increase of the MM. Notice that a slight increase
of RSi−Si also may induce MM, but in this case the
moment is small. An increase of the distance between
iron atoms leads to appearance of a large moment at
the same distance RSi−Si. Fig. 5 confirms that the
results of the model and the ab initio calculations are
in quite good agreement with each other.

The analysis performed in this part can be summa-
rized as follows. Both the model and ab initio calcu-
lations indicate that the ferromagnetism in α− FeSi2
can be induced by different types of the lattice distor-
tions: not only by an increase of the in-plane distance
between iron atoms, but also by a change of the dis-
tance between layers along the tetragonal axis. The
latter alters iron-silicon and silicon-silicon interatomic
distances (see Fig.5 ). The decisive parameter for MM
formation is the iron-iron distance in the plane per-
pendicular to the tetragonal axis c (Fig.3, 4). How-
ever, in order to obtain the moments large enough for
practical applications, the required misfit strain has to
be made quite large, ∼ 10−15%. Such big magnitudes
can hardly be achieved experimentally. At the experi-
mentally feasible range of the misfit strain 1−3% the
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Figure 6. Color online. The dependence of the MM in
α − FeSi2 on the distance RFe−Fe between iron atoms (
the hopping integrals in the model t = t(RFe−Fe) ). The
results for RSi−Si = 2.34? are displayed by the black color
and for RSi−Si = 1.90Å by the red one. The solid line
stands for GGA (in VASP), the points are for the model
within the HFA.

MM remains to be small. The other solution would
consists of simultaneous decrease of the Si - Si dis-
tance (RSi−Si) and increase of the Fe - Si and Fe - Fe
distances. Indeed, as seen from Fig.6, where the de-
pendence of the on-iron-MM on the distance RFe−Fe
at RSi−Si = 2.34Å and RSi−Si = 1.9Å is displayed;
the decrease of RSi−Si gives rise to a larger MM at
the same Fe - Fe distance.

Another way to understand why some of the lat-
tice distortions favor to the magnetism appearance is
to analyze the evolution of the partial density of d-
electron states (d-DOS) with these distortions. As
shown at Fig.7 the decrease of the distance between
silicones (RSi−Si) shifts the peaks of the t↓2g states,
which move towards the Fermi level. This, in turn,
gives rise to spin polarization. However, an increase
of RSi−Si or the distance RFe−Fe between the iron
atoms shifts not the t2g-, but the eg-peaks. In this
case the e↑g-states appear near the Fermi level, provid-
ing a non-zero spin polarization.

The analysis given above highlights the main dif-
ficulty which is expected to arise in experiment on
inducing a magnetism in α − FeSi2 with reasonably
large MM via the lattice distortions. Particularly,
the MM ' 1.0µB should arise at RFe−Fe ' 3Å, or
RSi−Si ' 1.8Å (RFe−Si ' 2.5Å ). Such distances
between atoms are hardly possible to implement in
α − FeSi2 films with any type of substrate. The dis-
tortions which arise when the α−FeSi2 is grown on the
silicon substrate are much smaller: in the experiments
[11] on α−FeSi2 nanoparticles the magnitudes of the
distortions between in-plane iron atoms are about 1%,
while for interlayer distances this is about 5%. Such
small distortions induce, correspondingly, small MM.
The question arises, would it be possible to overcome

this difficulty with a “chemical pressure”?

Figure 7. Color online. Partial densities of d-states of
α−FeSi2 for different lattice distortions. From top to bot-
tom: RSi−Si = 1.90Å, the equilibrium RSi−Si = 2.34Å,
RSi−Si = 2.90Å. The t2g-DOS is displayed by red (on-
line) and the eg ones by blue colors. Zero on the energy
axis is the Fermi energy.

B. The effect of intercalation on the magnetism
formation

As was mentioned above, there is a cavity between
Si atoms in the α − FeSi2 structure (Fig.1a). An in-
tercalation of other atoms into this cavity will distort
the lattice. Here we investigate if intercalated atoms
can introduce the change of the distances RFe−Fe and
RSi−Si sufficient for magnetism appearance. In order
to check this hypothesis we performed ab initio calcu-
lations of α−FeSi2 with embedded atoms of different
elements. The results suggest that there are two posi-
tions for guest atoms which are the most energetically
favorable. The types of positions for embedding the
guest atoms are shown at Fig.8. Notice that all con-
sidered structures have been fully optimized.
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Table I. The lattice parameters (a, c), magnetic moments on Fe atom (µFe), the distance between Fe - Si (RFe−Si) and
Si - X (X - intercalant) atoms (RSi−X), spin polarization (P = ρ↑(εF )−ρ↓(εF )

ρ↑(εF )+ρ↓(εF )
· 100%) and anisotropy of the plasma

frequency η = Ωxx/Ωzz in the intercalated α− FeSi2

Atom X Lattice parameters (Å) µFe(µB) RFe−Si(Å) RSi−X(Å) P (%) η = Ωxx/Ωzz
Position 1 (Fig.8а)

H 2.72 6.28 0.20 2.37 1.76 0 0.52
O 2.76 5.91 0.45 2.36 1.63 61 1.76
P 2.71 7.27 0.47 2.28 2.35 75 1.63
As 2.76 7.58 0.53 2.36 2.46 38 1.73
Sb 2.89 7.80 0.90 2.40 2.64 38 2.12
N 2.74 6.05 0.00 2.39 1.63 0 1.96

Position 2 (Fig.8b)
Li 2.93 5.34 0.90 2.43 2.50 11 0.84
Na 2.90 6.80 0.65 2.41 2.94 71 1.19
K 2.87 8.07 0.14 2.44 3.36 68 2.68
Ca 3.00 6.85 1.00 2.46 3.04 11 1.03
Sr 3.09 7.02 1.05 2.50 3.16 11 1.09
Cu 2.95 5.38 0.90 2.24 2.52 24 1.06

α− FeSi2 2.70 5.13 0.00 2.36 - 0 0.87

a b

Figure 8. Color online. Two possible positions for atom imbedding into the cavity between silicon atoms. (a) The
positions occupied by non-metal atoms; (b) The positions occupied by metal atoms. Blue balls represent the Fe atoms,
grey balls represent Si atoms, red balls represent intercalated atoms.

The non-metal atoms are found to prefer the posi-
tions on the bonds between the silicon atoms (Fig.8a),
whereas the position inside of the tetragonal cavity
formed by the silicon atoms is more energetically fa-
vorable for the atoms of metals (Fig.8b). The interca-
lated atoms create a negative chemical pressure which

results in an increase of the distance between host
atoms compared to pure α − FeSi2. The results of
calculations are summarized in the Table I, where the
parameters of the lattice cell, the values of the MMs
at the iron atoms and the spin polarization in some of
the considered structures are shown.

As seen from Table I, an intercalation not always
leads to magnetic state formation. E.g., the structures
with the intercalated nitrogen atoms are not magnetic
(see Tab.I). Nevertheless, the general tendency of the
MM increase with the increase of lattice distortions,
studied in the previous Section, is reproduced by the
direct calculation. As expected, the magnitude of the
MM at iron atoms grows with an increase of the Fe -

Fe distance, but an increase of RFe−Fe only does not
provide the magnitudes of MM listed in the Tab.I. For
example, an increase of in-plane distance RFe−Fe up
to 2.95Å in pure α − FeSi2 leads to MM at Fe atom
MFe ' 0.5µB only (Fig.6) whereas intercalation by
some atoms increases MM 1.5 − 2 times at the same
RFe−Fe. The latter occurs due to additional structure
distortions and corresponding restructuring of DOS
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(a) (b)

Figure 9. (a) eg-DOS for α−FeSi2 intercalated by the non-metal atoms which occupy the first positions in Fig. 8; from
top to bottom: P, As, Sb (b) eg-DOS for α − FeSi2 intercalated by the metal atoms (second position in Fig. 8); from
top to bottom: Li, Na, K Zero on the energy axis is at the Fermi energy.

due to intercalated atoms.

The calculations show that the distortions caused
by intercalation change the t2g-DOS only slightly, the
main changes occur in the eg-DOS. Similar to pure
α − FeSi2 it is namely the eg-DOS that forms the
peaks in the vicinity of the Fermi level. This is il-
lustrated in Fig.9 for several intercalates: similar to
pure α − FeSi2 the increase of the distances RFe−Fe
and RSi−Si causes shifts of the e↑g- and e↓g- peaks. In
the case on non-metallic intercalates (P, As, Sb) this
shift grows with an increase of the distances RFe−Fe
and RSi−X(Fig.9a). For the metallic intercalates Li,
Na, K the tendency is opposite (Fig.9b). As seen from
Fig.9 and Table I, the intercalation by P and Na is ex-
pected to provide high spin polarization due to cross-

ing the Fermi energy by the d↑- peaks of DOS. The
quite strong spin polarization (7-th column in Table
I) may occur not only in the cases of intercalation by
mentioned above P and Na , but also by O and K.
Small increase of the in-plane lattice parameter which
arisen when the α−FeSi2 is intercalated by H, As, O
or P allows for use of the silicon substrate. The inter-
calation by Li, Na, K and Sb atoms results in the 7%
increase of the in-plane lattice parameter compared to
pure α − FeSi2, but the compressive strain from the
substrate can decreases this distortion. This, however,
does not kill MM completely, but decreases it by 30-
40%. Therefore, one can expect that the choice of a
substrate with a larger lattice parameter than that of
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silicon (e.g., Ge) would allow to decrease this misfit
strain and increase the magnitude of MM.

Since it is hardly possible to achieve 100% concen-
tration of intercalated atoms in the experiment, we
estimate the value of MM arising at the Fe atoms for
the lower concentration of intercalated atoms, namely
for 25% and 50% concentrations of intercalated atoms.
In order to consider a possible ordering of interca-
lated atoms with these concentrations we constructed
a 2 × 2 × 2 supercell of α − FeSi2. Further calcula-
tions depend on the way how the sample is made. An
annealing of a sample may switch on the thermody-
namic equilibration processes, possibly, ion migration,
etc.. This may exclude the contribution of the less en-
ergetically favorable configurations. An estimation of
the barriers for migration of ions and the contribution
of phonons is needed for a quantitative description of
these processes. This requires special consideration.
In the case when a sample is made by quenching the
situation is simpler: due to fast cooling of the sample
the energy hierarchy of different possible configura-
tions is much less important and their contributions
to an averaged physical quantity < A > may be calcu-
lated either with the help of simple statistical weights,
or by means of some of realization of the coherent po-
tential approximation. The latter, however, also in-
volves additional assumption about the distribution
function and the way, how the effective medium is
introduced, but has the advantage that it does not
require supercell calculations and can be used for ar-
bitrary (but not too small) concentration. Here we
consider the first case.

Let us denote the statistical weights of the config-
urations i as w(n)

x (i), where x is the concentration of
intercalated atoms, and nix is number of equivalent
configurations of the type i , and Anx(i) is value of the
physical quantity in the configurations i. Then the to-
tal number of configurations is Nc(x) =

∑
i n

i
xw

(n)
x (i)

and

< A >=
1

Nc(x)

∑
i

Ani
x (i)nixw

(n)
x (i). (6)

For the 25% concentration of intercalating atoms

we have Nc(0.25) =

(
8
2

)
= 28 arrangements. Five

of them are different. Considering all possible config-
urations we find that for the x = 0.25 the statistical
weight w(3)

0.25 = 4 for tree of them, and w
(2)
0.25 = 8

for two of them. For 50% concentration of interca-

lated atoms there are Nc(0.5) =

(
8
4

)
= 70 possi-

ble ways to distribute atoms. Nine of them are dif-
ferent: for three configurations w(3)

0.5 = 2, for two it
is w(2)

0.5 = 4, w(2)
0.5 = 8, w(1)

0.5 = 16, and w
(1)
0.5 = 24

(
∑
i n

i
0.5w

(n)
0.5 = 70). We find that the perspective

candidates are Li metal and the O non-metal inter-
calates. As seen from Table I, the intercalation by
these atoms results in the relatively large MMs for
comparatively small lattice distortions. We performed
the full optimization for all ordered structures. In
Tab.II we give the difference ∆E = Emax −Emin be-
tween maximal and minimal energies of the structures

Table II. The energy difference (∆E) between maximal
and minimal energies of ordered supercells of intercalated
α−FeSi2, average magnetic moments (< µ >), spin polar-
ization (< P >) and lattice parameters (< a >, < c >) in
ordered intercalated α − FeSi2 for 25% and 50% concen-
trations of intercalated atoms of oxygen and lithium.

O Li
25% 50% 25% 50%

∆E (eV) 0.23 0.5 0.05 0.42
< µ > (µB) 0.14 0.28 0.31 0.67
< P > (%) 61 63 57 35
< a > (Å) 2.72 2.74 2.77 2.82
< c > (Å) 5.43 5.66 5.14 5.19

for each of cases. The total energy values of differ-
ent ordered structures are within 0.5 eV range per
unit cell of α−FeSi2. The average lattice parameters
< a >,< c > (Å), and Fe MMs < µ > (µB) and spin
polarization< P > (%), calculated according to Eq. 6
are given in Table II.

Although at 25% concentration of lithium atoms the
lattice parameters have only little change as compared
with α−FeSi2 (Tab.II), the average MM on Fe atoms
is equal to 0.31 µB ; the increase of concentration up
to 50% results in the increase of MM up to 0.67µB .
Notice that at the equilibrium lattice parameters of
pure α−FeSi2 but without structure optimization by
the atom coordinates the MM on Fe atoms does not
arise even at 100% concentration of Li atom. This
proves that emergence of the magnetism in interca-
lated α − FeSi2 primarly associated with the lattice
distortions.

Notice that in order to obtain a sample with large
spin polarization, the optimal concentration of Li in-
tercalate has to be found. Indeed, since a move along
Li concentration from xLi = 0 towards xLi = 1 in-
duces magnetism, the corresponding e�

g -peak in the
DOS moves from the region above the Fermi level Ef
at xLi = 0 to the region below it at xLi = 1, while
e↓g - peak remains above Ef . In a certain range of
the concentration the e�

g -peak passes through Ef (see
Fig.10). In our case such concentration is in the vicin-
ity of xLi = 0 : 25. The latter provides large spin
polarization. This conclusion is obtained for fully op-
timized structures.

When we intercalate α − FeSi2 by non-metal oxy-
gen atoms the value of magnetic moment decreases
with decrease of oxygen concentration. However the
spin polarization practically does not change with con-
centration. Fig. 9 shows that the positions of the
d-electron peaks in DOS are much more sensitive to
the intercalation by the heavier atoms (such as anti-
mony), than by atoms of a metal. The intercalation
by light oxygen or phosphorus atoms shifts the same
d-electron peak with increase of concentration much
less: at 100% concentration the peak is shifted by
0.25eV reaching the Fermi level.

Since there are preferable positions for the metal
and non-metal intercalates, one may expect that the
intercalation may cause an anisotropy of the com-
pound properties. One of ways would be to inspect
the tensor of static electroconductivity σ0, which in
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Figure 10. Full DOS of Li-intercalated α − FeSi2 for 0%
(black line), 25% (green line) and 50% (red line) concen-
trations of intercalated atoms. Zero on the energy axis is
the Fermi energy.

the VASP package is calculated by means of the Drude
formula σαβ = τΩ2

αβ/ (4π). Here Ωαβ is the plasma
frequency and τ is the relaxation time. However, τ is
the parameter which depends on many factors (like,
e.g., the way of preparation of the sample) and may
differ for different samples even with the same concen-
tration of the intercalates, not to speak of compounds
with different intercalates. For this reason we prefer to
estimate the degree of anisotropy of a compound just
from the ratio η = Ωxx/Ωzz (notice that Ωxx = Ωyy).
The results of calculations are shown in Table I, in 8-
th column. A question arises if the different preferable
positions for the metal and non-metal atoms in lattice
of α − FeSi2 can be associated with the anisotropy?
We inspected the maps of electronic localization func-
tion (ELF) at the intercalation by Li and P atoms
(Fig. 11). For the non-metal atoms, which prefer to
locate on the Si - Si bond, the conductive channels
in xy plane are retained. In turn, the metal interca-
lated atoms prefer the position on the bond between
out-plane Fe - Fe atoms. This leads to overlap of con-
ductive channels. The latter leads to more uniform
distribution of delocalized electrons by volume of crys-
tal (Fig. 11). Although this difference seems to exist
for all metal and non-metal intercalated compounds,
its contribution to anisotropy is not monotonic and a
general rule does not exist.

IV. CONCLUSION

The fact that the large, if not the decisive, role in
the mechanism of the magnetic structure formation
in different compounds is played by the local envi-
ronment of the magnetic species is well-known from
the physics of surface and interfaces. In earlier works
[10, 12] in the framework of suggested by us approach
(hybrid self-consistent mapping approach (HSCMA))
we have shown that the distortions of crystal lattice
have a significant impact on the magnetic moment

a b

Figure 11. Color online. The electron localization function
(ELF) for (a) Li-intercalated α−FeSi2 ; (b) P-intercalated
α−FeSi2 Blue and green colours correspond to the delocal-
ized electrons, yellow and red colours display the localized
electrons. Blue balls represent the Fe atoms, grey balls
stand for Si atoms, red balls represent intercalated atoms.

formation along with types of atoms in the local envi-
ronment. According to the latest experimental data,
α − FeSi2 is predisposed to the appearance of ferro-
magnetism in it. In Ref. [10] we studied the possi-
ble reasons for this. As it follows from the analysis
of the map of the magnetic moment dependencies on
the hopping integrals, the hopping integral, which is
responsible for the distortion of the crystal lattice in
the Fe plane, plays a crucial role in the appearance of
ferromagnetism. The distinctive feature of all the cal-
culated maps is the presence of sharp boundaries be-
tween region with magnetic states and non-magnetic
ones. Therefore, the system is in the vicinity of mag-
netic instability and it is reasonable to assume that
some other type of crystal-lattice distortions can cause
the formation of magnetic state in α− FeSi2

In the present work we consider the conditions
which can lead to the appearance of magnetic state
in α− FeSi2. As it follows from our analysis within a
model, the magnetic state can arise not only when the
distance between in-plane Fe - Fe atoms is changed,
but also, for example, when the distance between out-
of-plane Si - Si atoms is changed. Unfortunately, pro-
nounced magnetic moment can arise only at quite
large distortions of the crystal lattice, even if a com-
lex set of distortions is applied. We suggest that in-
tercalation of α − FeSi2 could be a way to solve this
problem. Actually, our calculations show that the in-
tercalation of α − FeSi2 results in the appearance of
significant magnetic moment on Fe atoms (0.5 - 1µB)
at the relatively small lattice distortions (Table I). No-
tice, that it is hardly possible to reproduce the com-
plex set of lattice distortions caused by the interca-
lated atoms by selecting different substrates for the
film or nanoparticle fabrication. Besides, we expect
the appearance of a large spin polarization (60-80%)
in α − FeSi2 intercalated by some atoms, such as Li,
P, Na, O, which cause a reconstruction of the elec-
tronic structure. Such high value of spin polarization
makes intercalated α−FeSi2 a promising candidate for
the application in spintronics. Although it is hardly
possible to achieve 100% concentration of intercalated
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atoms in practice, the high spin polarization remains
large even at smaller concentrations. Moreover, main-
taining a magnetic state at the smaller concentration
of intercalated atoms, the small distortions of lattice
allow experimental fabrication of films on the silicon
substrate, which is extremely important for the mod-
ern silicon technology.
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