T. 61, № 12

ФИЗИКА

2018

ФИЗИКА МАГНИТНЫХ ЯВЛЕНИЙ

УДК 537.621; 004.942

А.В. ИЗОТОВ^{1,2}, Б.А. БЕЛЯЕВ^{1,2}, П.Н. СОЛОВЬЕВ^{1,2}, Н.М. БОЕВ^{1,2}

ОСОБЕННОСТИ ДВУХМАГНОННЫХ ПРОЦЕССОВ РЕЛАКСАЦИИ В НАНОКРИСТАЛЛИЧЕСКИХ ТОНКИХ МАГНИТНЫХ ПЛЕНКАХ^{*}

Численным анализом микромагнитной модели обнаружена «резонансная» особенность процессов релаксации в нанокристаллических тонких магнитных пленках. Особенность проявляется в виде резкого уширения линии ферромагнитного резонанса (ФМР) на определенной частоте f_1 , зависящей от магнитных характеристик пленки, и она наблюдается только в пленках, толщина которых превышает некоторое пороговое значение d_{\min} . Резкое уширение линии ФМР сопровождается значительным смещением резонансного поля, причем величина смещения меняет знак на частоте $\sim f_1$. Аналитически показано, что природа наблюдаемых эффектов связана с двухмагнонным процессом рассеяния спиновых волн на квазипериодической магнитной микроструктуре – «ряби» намагниченности. Полученные выражения для порогового значения толщины пленки d_{\min} и частоты максимального уширения линии ФМР f_1 хорошо согласуются с результатами численного расчета микромагнитной модели.

Ключевые слова: микромагнитное моделирование, нанокристаллиты, случайная магнитная анизотропия, ферромагнитный резонанс, сверхвысокие частоты, двухмагнонный процесс релаксации.

Введение

Известно, что тонкие магнитные пленки (ТМП) широко используются в качестве среды для записи цифровой информации на жестких дисках, однако в настоящее время проводятся исследования по созданию на пленках магнитной памяти с произвольным доступом [1]. В высокочастотных магнитометрах слабых магнитных полей ТМП используются в качестве чувствительных элементов [2, 3], они являются также основными элементами в устройствах спинтроники [4]. Предельно достижимые параметры таких устройств на ТМП определяются динамическими характеристиками намагниченности, которые напрямую зависят от процессов релаксации. Поэтому изучению механизмов релаксации и возможностей управления процессами релаксации в тонких магнитных пленках уделяется в настоящее время большое внимание [5].

Очевидно, что ширина линии ферромагнитного резонанса (ФМР) любого магнитного материала, в первую очередь, определяется его собственным коэффициентом затухания. Однако существуют и другие несобственные механизмы релаксации намагниченности, среди которых доминирующий вклад в поглощение высокочастотной мощности и уширение линии ФМР в тонких магнитных пленках вносят процессы двухмагнонного рассеяния [6]. Эти процессы сопровождаются затуханием спиновых волн (магнонов) при взаимодействии с неоднородными внутренними магнитными полями, которые могут возникать в магнитной среде по различным физическим причинам. В частности, в [7, 8] рассмотрено влияние случайной локальной анизотропии на процессы релаксации в поликристаллических тонких пленках, в [9, 10] изучается влияние случайного распределения неоднородностей и шероховатостей на поверхности пленок. Исследуются также возможности управления магнитной релаксацией в ТМП путем создания в них искусственных магнитных неоднородностей [11–14].

В тонких нанокристаллических пленках вследствие обменного и магнитодипольного взаимодействия кристаллитов магнитные моменты образуют волнообразную квазипериодическую структуру с периодом, зависящим как от магнитных параметров пленки, так и от величины приложенного внешнего поля [15, 16]. Такая неоднородная магнитная микроструктура, названная «рябью» намагниченности, увеличивает затухание спиновых волн и может приводить к существенному уширению линии ФМР, а также к смещению резонансного поля, что впервые было показано Игнатченко и Дегтяревым [17]. Целью настоящей работы является изучение влияния неоднородной магнитной микроструктуры на процессы релаксации в нанокристаллических тонких пленках, используя микромагнитную модель для численного расчета высокочастотной восприимчивости [18, 19].

^{*} Работа выполнена при поддержке Министерства образования и науки РФ, задание № 3.1031.2017/ПЧ.

1. Численное моделирование

Для простоты, исследования проводились на пленках, представляющих собой монослои плотноупакованных наночастиц размером D_0 со случайной ориентацией осей анизотропии. При этом рассматривалась микромагнитная модель пленки толщиной $d = D_0$ площадью 1024×1024 дискретных ячеек, размер которых соответствовал размеру наночастиц и варьировался в пределах 12–100 нм. Для вычисления компонент тензора размагничивающих коэффициентов, обусловленных магнитодипольным взаимодействием между наночастицами, использовалось аналитическое выражение из работы [20]. А чтобы исключить краевые эффекты, связанные с неоднородностью внутреннего магнитного поля вблизи границ образцов, при расчете энергий обменного и магнитодипольного взаимодействий применялись двумерные периодические граничные условия [21].

Для определенности, магнитные параметры исследуемых образцов выбраны в соответствии с хорошо известным нанокристаллическим сплавом Fe_{73.5}Cu₁Nb₃Si_{13.5}B₉ [22], намагниченность насыщения которого $M_s = 955$ Гс ($\mu_0 M_s = 1.2$ Тл), константа обменной жесткости $A = 1 \cdot 10^{-6}$ эрг/см ($1 \cdot 10^{-11}$ Дж/м), параметр затухания спиновых волн $\alpha = 0.005$, поле локальной одноосной анизотропии $H_k = 2K/M_s = 171.7$ Э (K = 8200 Дж/м³). Однако считалось, что у всей пленки магнитная анизотропия отсутствует. Внешние постоянное и переменное магнитные поля прикладывались в плоскости пленки и были направлены ортогонально друг другу. Для расчета высокочастотной магнитной восприимчивости пленок использовалась численная реализация метода неопределенных коэффициентов при решении линеаризованной системы уравнений Ландау – Лифшица [18].

Как уже отмечалось, магнитные неоднородности, связанные со стохастической магнитной микроструктурой, оказывают сильное влияние на спектр высокочастотного поглощения нанокристаллических тонких пленок. Их влияние приводит не только к смещению поля Φ MP и уширению резонансной линии, но и к появлению асимметрии формы резонансной кривой [18]. Очевидно, что резонансное поле H_R и ширину линии $\Delta H \Phi$ MP, полученные в результате численного расчета микромагнитной модели, можно записать в виде сумм

$$H_R = H_0 + H_{2m},$$

$$\Delta H = \Delta H_0 + \Delta H_{2m},$$
(1)

где первые члены правой части каждого из двух выражений характеризуют резонансную линию однородного ФМР пленки в отсутствие неоднородной магнитной микроструктуры, а вторые члены показывают сдвиг резонансного поля H_{2m} и уширение линии ФМР ΔH_{2m} в результате двухмагнонных процессов рассеяния спиновых волн на неоднородностях. Резонансное поле H_0 удовлетворяет уравнению $\omega_0 = 2\pi f_0 = \gamma \sqrt{H_0 (H_0 + 4\pi M_s)}$, где $\gamma = 1.76 \cdot 10^7$ рад/(с·Э) – гиромагнитное отношение. Ширина линии однородного ФМР определяется хорошо известным выражением $\Delta H_0 = 4\pi \alpha f_0 / \gamma$.

Согласно теории двухмагнонных процессов релаксации, разработанной Ариасом и Милсом для ультратонких пленок [9], частотная зависимость уширения линии Φ MP ΔH_{2m} описывается выражением

$$\Delta H_{2m} = \Gamma \arcsin \frac{H_0}{H_0 + 4\pi M_s} = \Gamma \arcsin \sqrt{\frac{\sqrt{f_0^2 + (f_M/2)^2} - f_M/2}{\sqrt{f_0^2 + (f_M/2)^2} + f_M/2}},$$
(2)

широко используемым на практике для интерпретации экспериментальных зависимостей $\Delta H(f_0)$. Здесь $f_M = 2\gamma M_s$, а Γ – коэффициент, характеризующий «интенсивность» магнитных неоднородностей. Как видно из (2), зависимость $\Delta H_{2m}(f_0)$ является монотонно увеличивающейся до некоторого насыщения функцией без каких-либо особенностей.

Однако, как показал численный расчет микромагнитной модели ТМП, у нанокристаллических пленок толщиной выше некоторого порогового значения на определенной частоте f_1 , зависящей от параметров пленки, наблюдается резкое увеличение поглощения высокочастотной мощности и как следствие – резкое уширение линии ФМР. В качестве примера на рис. 1 для двух значений толщины пленки d = 12 и 24 нм сплошными линиями построены зависимости $\Delta H_{2m}(f_0)$, полученные численным расчетом высокочастотной восприимчивости нанокристаллических тонких пленок. Штриховыми линиями показаны зависимости, построенные по формуле (2). Видно, что для пленки толщиной d = 12 нм теория Ариаса и Милса достаточно хорошо описывает полученную зависимость $\Delta H_{2m}(f_0)$. Однако для пленки толщиной 24 нм уширение линии ФМР $\Delta H_{2m}(f_0)$

155

имеет острый пик на частоте $f_1 \approx 10.75 \ \Gamma \Gamma \mu$, при этом на высоких частотах наблюдается достаточно хорошее согласие микромагнитного расчета с теорией Ариаса и Милса.

С увеличением толщины пленки обнаруженная «резонансная» особенность двухмагнонных процессов релаксации сохраняется, при этом быстро увеличивается релаксационный вклад ΔH_{2m} в ширину линии Φ MP и монотонно понижается частота «резонанса» f_1 (таблица). Из таблицы видно, что для пленки толщиной 24 нм за счет двухмагнонных процессов релаксации ширина линии ФМР увеличивается примерно в 1.5 раза, а для пленки толщиной 100 нм - больше чем на порядок. Важно отметить, что с ростом толщины пленки монотонно увеличивается асимметрия формы линии ФМР. Как и следовало ожидать, уширение линии ФМР за счет двухмагнонного механизма релаксации намагниченности на величину ΔH_{2m} одновременно сопровождается существенным изменением резонансного поля на величину H_{2m} относительно поля

Рис. 1. Частотные зависимости уширения линии ФМР ΔH_{2m} , полученные численным микромагнитным моделированием высокочастотной восприимчивости нанокристаллических тонких пленок толщиной d = 12 нм (1) и 24 нм (2). Штриховые линии – зависимости по формуле (2)

Зависимости от толщины пленки частоты максимального уширения линии Φ MP f_1 за счет двухмагнонного механизма релаксации на «ряби» намагниченности, величины уширения ΔH_{2m} , а также резонансного поля H_0 и ширины линии ΔH_0 для пленок в отсутствие «ряби»

<i>d</i> , нм	$f_1, \Gamma \Gamma$ ц	ΔH _{2m} , Э	Н ₀ , Э	$\Delta H_0, \Im$
24	10.75	16.86	1121	38.4
32	6.65	25.74	452	23.7
42	4.66	35.01	225	16.6
56	3.46	47.6	129	12.5
75	2.89	82.2	89	10.4
100	3.26	123.7	111	11.6

 H_0 , соответствующего полю ФМР пленки без «ряби» намагниченности. Этот факт подтверждает зависимость $H_{2m}(f_0)$, представленная на рис. 2. Видно, что с повышением частоты f_0 добавка к резонансному полю имеет положительный знак, однако примерно на частоте $f_1 = 3.26$ ГГц она меняет знак, при этом зависимость $H_{2m}(f_0)$ имеет два экстремума.

2. Теоретическая модель

Для объяснения природы обнаруженных эффектов, связанных с поведением магнитной релаксации в нанокристаллических тонких пленках, была рассмотрена двухмагнонная модель рассеяния спиновых волн на магнитных неоднородностях, возникающих из-за неоднородной магнитной микроструктуры в ТМП – «ряби» намагниченности. Важно отметить, что основной особенностью нанокристаллических тонких магнитных пленок является

Рис. 2. Частотные зависимости смещения резонансного поля H_{2m} (кр. 1) и уширения линии ФМР ΔH_{2m} (кр. 2), полученные численным микромагнитным моделированием высокочастотной восприимчивости нанокристаллической пленки толщиной 100 нм

малый размер кристаллитов по сравнению с эффективным радиусом обменного и магнитодипольного взаимодействия [23]. Поэтому наличие магнитной связи между кристаллитами приводит к усреднению и частичному подавлению случайной магнитной анизотропии отдельных кристаллитов. Однако такое подавление локальной анизотропии обычно не бывает полным, что приводит к отклонениям вектора намагниченности $M = M_s m$ относительно некоторого среднего направления $M_0 = \langle M \rangle$. Именно поэтому возникает своеобразная магнитная структура с пространственными отклонениями намагниченности возле некоторого среднего направления (рис. 3), называемая в литературе «рябью» намагниченности [15, 16].

Рис. 3. Модель тонкой магнитной пленки и схематичное изображение продольной «ряби» намагниченности. Эллипсом выделена магнитокоррелированная область

Наиболее строгая и последовательная статическая теория такой тонкой магнитной микроструктуры была развита в работах Гоффмана [15]. Гоффман, опираясь на результаты электронной микроскопии, разработал модель невзаимодействующих между собой магнитокоррелированных областей, формируемых в пленке. Размер и форма таких областей зависят от радиуса обменного и магнитодипольного взаимодействия, от размера кристаллитов и величины приложенного магнитного поля. В общем случае такая связанная магнитным взаимодействием область (магнитокоррелированная область) является эллипсоидом, сильно вытянутым в направлении, перпендикулярном направлению средней намагниченности M_0 (рис. 3). В линейном приближении [15] длина полуоси эллипсоида (R_{\parallel}) вдоль среднего направления намагниченности $R_{\parallel} = \sqrt{D/H}$, где $D = 2A/M_s$.

Используя усреднение магнитной анизотропии отдельных кристаллитов, со случайной ориентацией осей анизотропии, в пределах магнитокоррелированной области, Гоффман получил выражение для дисперсии поперечной составляющей намагниченности, а также наиболее вероятную основную длину периода продольной «ряби» намагниченности:

$$\lambda_R = 2\pi R_{\parallel} = 2\pi \sqrt{D/H} . \tag{3}$$

Квазипериодическая структура намагниченности с периодом λ_R формирует в тонкой нанокристаллической пленке квазипериодические магнитные поля размагничивания с тем же периодом. Это эквивалентно формированию в пленке магнитных неоднородностей с характерным «размером» R_{\parallel} и волновым числом:

$$k_R = 2\pi / \lambda_R = 1/R_{\parallel} = \sqrt{H/D} .$$
⁽⁴⁾

Отличительной особенностью этих неоднородностей является то, что их размер зависит не только от магнитных параметров пленки, но и от величины приложенного внешнего поля.

В рамках теории двухмагнонных процессов релаксации [6, 7, 9, 24, 25], магнитные неоднородности, в частности связанные и с неоднородной стохастической магнитной структурой, рассматриваются как возмущение собственных магнитных колебаний (спиновых волн) однородного образца. Неоднородности нарушают ортогональность собственных колебаний намагниченности и приводят к связи между ними. Это вызывает перекачку энергии из рассматриваемого типа колебаний (в частности, однородного ФМР) в неоднородные типы колебаний, т.е. к возникновению дополнительной диссипации, а также к сдвигу резонансных частот [6, 7, 9].

Запишем дисперсионное уравнение спиновых волн для модели однородной тонкой магнитной пленки (рис. 3) [9]:

$$\omega_k = \gamma \sqrt{[H + Dk^2 + 4\pi M_s N_k][H + Dk^2 + 4\pi M_s \sin \varphi_k (1 - N_k)]}.$$
(5)

Здесь Dk^2 – поле обменного взаимодействия для спиновой волны с волновым вектором k (k = |k|); H – величина планарного внешнего магнитного поля, совпадающего с направлением равновесной намагниченности M_0 ; φ_k – угол между направлением распространения спиновой волны и равновесной намагниченностью M_0 ; N_k – размагничивающий фактор, зависящий от волнового числа k. В приближении тонкой пленки, у которой намагниченность незначительно изменяется по ее толщине, этот фактор имеет вид [16]

$$N_k = \frac{1 - e^{-kd}}{kd} \,. \tag{6}$$

Дисперсионная зависимость (5) графически представлена на рис. 4. Здесь ω_0 показывает частоту однородного ФМР с k = 0, а кривые с $\varphi_k = 0$ и 90° соответственно представляют собой нижнюю и верхнюю границу спектра спиновых волн. Видно, что дисперсионные кривые при $\varphi_k < \varphi_k^{crit}$ пересекают линию ω_0 . Это означает, что частота однородного ФМР совпадает с частотами группы спиновых волн, для которых $0 < k_i < k_{max}$, а наличие неоднородного внутреннего магнитного поля (магнитных неоднородностей) с волновым числом, совпадающим с k_i , обеспечивает перекачку энергии однородного возбуждения тонкой пленки в энергию спиновых волн на неоднородностях.

Рис. 4. Дисперсионные зависимости спиновых волн для различных направлений их распространения φ_k

Максимальное волновое число вырожденных состояний k_{max} определяется из условия

$$\omega_k(H, k_{\max}, \varphi_k = 0) = \omega_0.$$
⁽⁷⁾

Очевидно, что наибольшее рассеяние спиновых волн на магнитных неоднородностях «ряби» намагниченности с волновым числом k_R (см. формулу (4)) будет наблюдаться при условии равенства $k_{\text{max}} = k_R$. Поэтому величина поля H_1 , при котором будет наблюдаться максимум уширения линии ФМР, определяется из условия

$$\omega_k(H_1, k_R, \varphi_k = 0) = \omega_0.$$
(8)

Для нахождения аналитического решения этого уравнения необходимо упростить выражение для входящего в него фактора размагничивания N_k , определяемого формулой (6). В классических работах [7, 9] по теории двухмагнонных процессов в тонких пленках используется приближение для ультратонких пленок $kd \ll 1$, в силу которого $N_k \approx 1 - kd/2$. Однако, как будет показано ниже, рассеяние спиновых волн на неоднородностях стохастической магнитной структуры возможно только для пленок, имеющих толщину больше определенного порогового значения. При этом значение $k_R d$ порядка 1, а N_k лучше аппроксимировать выражением $N_k \approx 1 - kd/e$. Тогда уравнение (8) переходит к квадратному уравнению относительно переменной $x = \sqrt{H_1}$:

$$\frac{3}{4\pi M_s} x^2 - \frac{2d}{e\sqrt{D}} x + 1 = 0.$$
(9)

Из условия существования решения уравнения (9) минимальная толщина пленки

$$d_{\min} \approx \frac{e}{2} \sqrt{\frac{3D}{\pi M_s}} \approx 1.33 \sqrt{\frac{D}{M_s}},$$
(10)

при которой влияние «ряби» намагниченности на двухмагнонные процессы релаксации становится определяющим фактором. Минимальная толщина d_{\min} для используемых нами магнитных параметров численной модели, согласно (10), составляет $d_{\min} \approx 19.7$ нм. Полученное значение хорошо согласуется с результатами численного моделирования, представленными на рис. 1.

Следует отметить, что уравнение (9) имеет точное решение, однако наиболее простой аналитический вид имеет его приближенная формула

$$x = \sqrt{H_1} \approx \frac{e}{2} \frac{\sqrt{D}}{d}.$$
 (11)

Непосредственно из (11) с учетом (4) получаем значение $k_R d \approx 1.36$, а также выражение для резонансной частоты ω_1 , при которой будет наблюдаться максимальное уширение линии ФМР:

$$\omega_1 = \gamma \sqrt{H_1(H_1 + 4\pi M_s)} \approx \gamma \frac{e}{d} \sqrt{\pi M_s D} = \gamma \frac{e}{d} \sqrt{2\pi A} .$$
(12)

На рис. 5 теоретическая зависимость $f_1(d) = \omega_1(d)/2\pi$, полученная с помощью приближенной формулы (12), показана штриховой кривой *l*, а сплошная кривая *2* отражает результаты точного решения уравнения (9). Видно, что наибольшее отличие между точным и приближенным реше-

Рис. 5. Зависимость частоты $f_1 = \omega_1/2\pi$, при которой наблюдается максимальное уширение линии ФМР, от толщины нанокристаллической тонкой магнитной пленки. Круглые маркеры – результат численного расчета микромагнитной модели, кр. 1 – расчет по приближенной формуле (12), кр. 2 – точное решение уравнения (9)

ниями наблюдается вблизи пороговой толщины пленки d_{\min} . На этом же рисунке круглыми маркерами представлена зависимость $f_1(d)$, полученная на основе численного расчета микромагнитной модели, которая показывает хорошее согласие с точным решением уравнения (9).

Однако следует отметить появление нарастающего различия результатов вычислительного эксперимента (расчета микромагнитной модели) и решения уравнения (9) для «толстых» пленок с d > 80 нм. Для таких пленок максимальное уширение линии ФМР наблюдается на сравнительно низких частотах возбуждения, а значит, в области малых магнитных полей H (см. таблицу). В этом случае линейное приближение, используемое Гоффманом при выводе выражения для λ_R (3), для пленки, находящейся в малых магнитных полях, становится уже слишком грубым. При этом очевидно, что в теоретической модели необходимо учитывать влияние нелинейных членов при расчете внутрен-

них неоднородных магнитных полей, значительно возрастающих в слабых внешних полях из-за увеличения дисперсии намагниченности в пленке [15, 16].

Заключение

Таким образом, в работе исследовано влияние магнитной микроструктуры «ряби» намагниченности на двухмагнонные процессы релаксации в нанокристаллических тонких магнитных пленках. Численным расчетом высокочастотной магнитной восприимчивости с использованием микромагнитной модели ТМП показано, что «рябь» намагниченности оказывает существенное влияние на релаксацию в нанокристаллических пленках, но только при толщинах, превышающих некоторое пороговое значение. В частности, установлено, что уширение линии ФМР имеет резкий пик на определенной частоте f_1 , связанной с толщиной и магнитными параметрами пленки. При этом наблюдается существенное смещение резонансного поля ФМР, причем величина смещения меняет знак на частоте $\sim f_1$. Важно отметить, что для пленок, имеющих толщину ниже порогового значения, зависимость уширения линии ФМР от частоты показывает монотонное увеличение до некоторого насыщения, и эта зависимость хорошо описывается классической теорией Ариаса и Милса [9].

Для объяснения природы обнаруженных особенностей магнитной релаксации в нанокристаллических тонких пленках проведен аналитический расчет модели пленки, в которой учитывается двухмагнонное рассеяние спиновых волн на магнитных неоднородностях, возникающих из-за неоднородной магнитной микроструктуры «ряби» намагниченности. В результате получено выражение для вычисления порогового значения толщины пленки, выше которого на определенной частоте f₁ наблюдается резкое уширение линии ФМР. Также получена формула для вычисления частоты f_1 . Наибольшее рассеяние спиновых волн на магнитных неоднородностях «ряби» намагниченности наблюдается при равенстве волновых чисел «ряби» и спиновых волн, именно поэтому только на определенной частоте имеет место максимальное увеличение ширины линии ФМР. Отметим, что основные результаты аналитического расчета рассмотренной модели ТМП хорошо согласуются с результатами численного анализа микромагнитной модели.

СПИСОК ЛИТЕРАТУРЫ

- 1. Lee S.-W., and Lee K.-J. // Proc. IEEE. 2016. V. 104. P. 1831-1843.
- 2. Бабицкий А.Н., Беляев Б.А., Боев Н.М. и др. // ПТЭ. – 2016. – № 3. – С. 96–104.
- Babitskii A.N., Belyaev B.A., Boev N.M., and Izotov A.V. // IEEE Sensors 2017, Confer-3 ence Proceedings. - 2017. - P. 316-318.
- 4. Wolf S.A., Awschalom D.D., Buhrman R.A., et al. // Science. 2001. V. 294. P. 1488-1495.
- Barman A. and Sinha J. Spin Dynamics and Damping in Ferromagnetic Thin Films and Nanostructures. -5. Switzerland: Springer International Publishing AG, 2018.
- Гуревич А.Г. Магнитный резонанс в ферритах и антиферромагнетиках. М.: Наука, 1973. 6
- McMichael R.D. and Krivosik P. // IEEE Trans. Magn. 2004. V. 40. P. 2-11. 7.
- Kalarickal S.S., Krivosik P., Das J., et al. // Phys. Rev. B. 2008. V. 77. P. 054427. 8.
- Arias R. and Mills D.L. // Phys. Rev. B. 1999. V. 60. P. 7395-7409. 9
- 10. Korner M., Lenz K., Gallardo R.A., et al. // Phys. Rev. B. 2013. V. 88. P. 054405.
- 11. Woltersdorf G. and Heinrich B. // Phys. Rev. B. 2004. V. 69. P. 184417.
- 12. Barsukov I., Romer F.M., Meckenstock R., et al. // Phys. Rev. B. 2011. V. 84. -P. 140410(R).
- 13. Lu L., Young J., Wu M., et al. // Appl. Phys. Lett. 2012. V. 100. P. 022403.
- 14. Belyaev B.A., Izotov A.V., Leksikov A.A., et al. // Solid State Phenom. -2014. V. 215. -P. 233–236.
- 15. Hoffmann H. // IEEE Trans. Magn. 1968. V. 4. No. 1. P. 32–38.
- 16. Harte K.J. // J. Appl. Phys. 1968. V. 39. No. 3. P. 1503-1524.
- 17. Игнатченко В.А., Дегтярев Г.В. // ЖЭТФ. 1971. Т. 60. Вып. 2. С. 724–732.
- 18. Беляев Б.А., Боев Н.М., Изотов А.В., Соловьев П.Н. // Изв. вузов. Физика. 2018. T. 61. – № 10. – C. 50–56.
- 19. Беляев Б.А., Изотов А.В. // ФТТ. 2013. Т. 55. Вып. 12. С. 2370–2378.
- 20. Newell A. J., Williams W., and Dunlop D. J. // J. Geophys. Res. 1993. V. 98. P. 9551-9555.
- 21. Lebecki K.M., Donahue M.J., and Gutowski M.W. // J. Phys. D: Appl. Phys. 2008. V. 41. -P. 175005.
- 22. Herzer G. // JMMM. 1996. V. 157/158. P. 133-136.
- 23. Беляев Б.А., Изотов А.В., Лексиков Ан.А. // ФТТ. 2010. Т. 52. Вып. 8. С. 1549–1556. 24. Sparks M. // Phys. Rev. B. 1970. V. 1. Р. 3856–3869.
- 25. Hurben M.J. and Patton C.E. // J. Appl. Phys. 1998. V. 83. P. 4344-4365.
 - ¹Сибирский федеральный университет, г. Красноярск, Россия
 - ² Институт физики им. Л.В. Киренского ФИЦ КНЦ СО РАН,

г. Красноярск, Россия

Поступила в редакцию 03.10.18.

Изотов Андрей Викторович, к.ф.-м.н., доцент, ст. науч. сотр. ИФ СО РАН, доцент каф. радиотехники СФУ, е-mail: iztv@mail.ru;

Беляев Борис Афанасьевич, д.т.н., профессор, зав. лабораторией ИФ СО РАН, профессор каф. радиотехники СФУ, e-mail: belyaev@iph.krasn.ru;

Соловьев Платон Николаевич, к.ф.-м.н., науч. сотр. ИФ СО РАН, мл. науч. сотр. СФУ, e-mail: solap@ya.ru;

Боев Никита Михайлович, ведущ. технолог ИФ СО РАН, мл. науч. сотр. СФУ, e-mail: nik88@inbox.ru.