

12th International Scientific Conference on Functional Materials and Nanotechnologies

FM&NT-2018

October 2- 5, 2018, Riga, Latvia

BOOK OF ABSTRACTS

PO-69

Thermal Expansion and Polarization of (1-x)PbNi_{1/3}Nb_{2/3}O₃-xPbTiO₃ Solid Solutions

M. V. Gorev^{1,2}, Igor N. Flerov^{1,2}, Karlis Bormanis³, M. S. Molokeev^{1,2}, and <u>Anna Kalvane³</u>

¹Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk, Russia

²Institute of Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk, Russia

³Institute of Solid State Physics, University of Latvia, Riga, Latvia

e-mail: gorev@iph.krasn.ru kalvane@cfi.lu.lv

The prospects of the PNN-PT solid solutions - $(1-x)Pb(Ni_{1/3}Nb_{2/3})O_3$ - $xPbTiO_3$ - for applications are associated with high dielectric permittivity, large piezoelectric and electrostriction coefficients. The PNN belongs to multiferroic compounds of relaxor behaviour with $T_m \approx 153$ K and

 $T_N \approx 5$ K, respectively. Well-studied typical ferroelec-tric lead titanate undergoes cubic-to-tetra-gonal phase transition at $T_c \approx 750$ K. The T-x phase diagram of the PNN-PT system demonstrates a morphotropic region existing around $x \sim 0.35$ where several phases may coexist: the cubic, pseudo-cubic, tetragonal, and rhombohedral [1].

The present investigation describes the detailed studies of thermal expansion in the series of the (1-x)PNN-xPT solid solutions with x=0 - 0.8 performed in the temperature range from 100 to 780 K. The anomalous and lattice contributions of deformation and the coefficient of thermal expansion are analysed and used to estimate the Burns temperature and the mean square polarization P_d (Figure 1). The

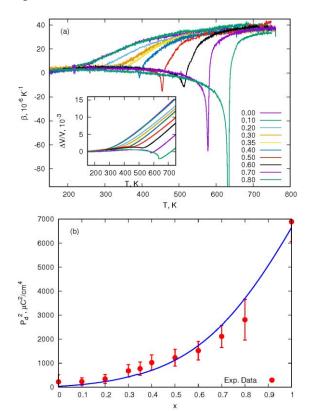


Fig.1. Thermal expansion (a) and polarization (b) of solid solutions (1-x)PbNi_{1/3}Nb_{2/3}O₃-xPbTiO₃

obtained results are discussed within thermodynamic theory [2], and coefficients 2-4-6 of Landau potential for solid solutions are determined.

References

- 1. S. N. Kallaev, A. R. Bilalov, R. M. Ferzilaev, Z. M. Omarov, K. Bormanis and S. M. Sadykov, Phys. Sol. State 54, 1829 (2012)
- 2. A.A. Heitmann and G. A. Rossetti, J.Am. Ceram. Soc. 97, 1661 (2014)