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On the Effect of Magnetostatic Interaction on the
Collective Motion of Vortex Domain Walls in a Pair
of Nanostripes
Vitaly A. Orlov,* Anatoly A. Ivanov, and Irina N. Orlova
The periodic motion of interacting vortex domain walls in a pair of
nanostripes has been analytically and numerically investigated. A model
consisting of two parallel nanostripes with the domain magnetization
structure has been proposed, where domains are separated by vortex walls.
The magnetic subsystems of the stripes magnetostatically interact, which
causes the existence of normal magnetic vortex motion modes in the latter.
Frequencies of the collective magnetization modes have been calculated
using empirical expressions for the magnetic energy of interaction between
vortex walls. It is shown that not any combinations of the polarity and
chirality lead to the resonance magnetization behavior in ac fields.
1. Introduction

Close attention of researchers to quasi-two-dimensional objects,
including nanowires and nanostripes, is due to both the
prospects of their use in designing various spintronic devices[1–3]

and the possibility of solving many fundamental problems of
magnetism of low-dimensional magnets. Special interest is
focused upon magnetization switching of such objects. At the
same time, the analytical description of the magnetic properties
faces essential computational difficulties caused by a complex
structure of stripe and wire magnetization. To solve particular
problems and understand the processes occurring in nano-
stripes upon magnetization switching, computer simulation is
often used.
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The domain structure evolution in
nanostripes in an applied ac magnetic field
has attracted considerable interest. The
structure of domain walls (DWs) in these
magnets is extremely diverse and exhibits a
complex behavior in dc and ac magnetic
fields. Depending on the geometry of
stripes (the ratio between their linear sizes)
and their magnetic characteristics, DWs of
different types are implemented, including
conventional Néel (transverse) walls (TWs),
vortex walls (VWs), and their complex
combinations.[4–9] Different types of DWs
have been intensively theoretically (see, for
example, ref. [10]) and experimentally (see,
for example, ref. [11]) investigated. Obvi-
ously, the motion of DWs with such complex configurations is
accompanied by intriguing effects and attracts attention of
researchers. In particular, several modes of VW motion under
the action of a dc field or spin-polarized current of different
values were found and fairly well-studied.[12–16] Interestingly, the
vortex structure underlies the cyclic wall motion with displace-
ments, i.e., the drift.

In arrays of adjacent wires (stripes), the mutual effect of
magnetic subsystems of the latter cannot be excluded. The
interaction between topological magnetization inhomogeneities
is significant and affects magnetization switching.[17,18] The aim
of this work was to describe the cyclic VW motion in a pair of
magnetostatically interacting nanostripes under the action of an
ac magnetic field applied in the stripe plane. In addition, we
discuss the effect of a dc magnetic field applied perpendicular to
the stripe plane. The formalism of the description of magnetic
vortex behavior in ac fields as topological inhomogeneities has
been fairly well-developed (see, for example, refs. [19–30] and
references therein). The analytical calculations are based on
representing the Landau–Lifshitz equations in collective
variables,[31,32] specifically, the velocity and coordinates of the
magnetic vortex core. The core is a region of the strongly
inhomogeneous magnetization directed perpendicular to the
magnet surface. In a magnetic field, it behaves as a quasiparticle
and is formed by the competition between the exchange and
magnetostatic energy.

The core magnetization state is usually specified by the two
parameters: polarity p ¼ �1 and chirality q ¼ �1. The polarity
sign is conventionally specified parallel or antiparallel to the
stripe surface normal. The chirality sign is also conventional:
clock- or counterclockwise magnetization rotation. To specify the
vortex magnetic state, it is often convenient to use the parameter
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πT ¼ pq. In nanomagnets, the core moves as if a quasiparticle is
affected by the gyroscopic force FG ¼ G� v. Here, G � is the
gyrovector and v � is the core velocity.

The gyrovector value is determined as
Gj j ¼ πT 2πMSb=γð Þ 1� phð Þ, where b is the magnet thickness,
γ is the gyromagnetic ratio, MS is the saturation magnetization,
and h ¼ H= μ0MSð Þ is the dimensionless field applied perpen-
dicular to the magnet plane (parallel or antiparallel to the
magnetization at the core center).[24,32] The VWs in wires and
stripes are also affected by this force.

To describe the VW motion, we should first derive the
analytical expression for a core quasiparticle potential.
2. Effective Energy of a Vortex Domain Wall in
the Stripe

To solve the equation of magnetization motion, it is necessary to
establish to have a functional dependence of the potential energy
of a stripe magnetic subsystem on the generalized parameters. It
is difficult to obtain a strict analytical form of the dependence of
energy on the vortex core coordinate. In such systems, the energy
of interacting VWs can be, at best, approximately presented as a
system of interacting dipoles (quadrupoles). In such an
approximation, the energy is expressed via complex integrals
(see, for example, ref. [10]), but near the equilibrium, the energy
is quadratic with respect to the wall coordinates.[13] The results
important for application are often obtained using computer
simulation.[6,13,14,33–35]

Now, let us derive an empirical expression for the potential
energy as a function of the core coordinateWM rð Þ. We consider a
model consisting of two parallel ferromagnetic stripes with
thickness b and width L (b � L). The distance between the
stripes is d. The lengths of the stripes exceed by far their width
and thickness. The system of coordinates and model used are
presented in Figure 1. The magnetization distribution in
nanostripes with the domain structure is formed by the
competition between several energy types, including the
exchange, demagnetizing, and anisotropy energies. In the
general case, a DW can consist of regions with the traditional
Neel-type magnetization rotation and a vortex region.[36,37]

Below, we present the qualitative considerations that specify a
model magnetization distribution in a complex wall consisting
of a TW and a VW.

We assume the magnetization distribution in the transition
region between domains to result from superposition of TWs
Figure 1. Model of a pair of parallel stripes.
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and VWs. This is, however, not a formal sum of the TWand VW
vectors. Here, we should take into account that the absolute value
of magnetization does not change with coordinate and the
characteristic correlation radius of magnetization in a vortex is a
finite quantity (the degree of the core effect on themagnetization
direction decreases fairly fast with distance). In studies of
refs. [38–41], different descriptions of the spatial magnetization
distribution in the vortex structures were reported. It is worth
noting that the use of different types of anzats in the calculation
does not affect the qualitative conclusions in describing the
vortex structures. Therefore, to describe the correlation between
the magnetizations in the core and at distance r from it, we use
the dependence of the perpendicular magnetization component
mz on the coordinate from ref. [41]:

mz ¼ ξ r; δcð Þ ¼ 1� h

1þ 0:6 r2
δ2c

exp �0:1
r2

δ2c

 !
þ h ð1Þ

The dimensionless dc field h is applied along the z axis,

rj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � Xð Þ2 þ y� Yð Þ2

q
, X and Y are the vortex core center

coordinates, and δc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A= μ0M2

S

� �q
is the characteristic length of

the perpendicular magnetization component decrease.
We present the components of the magnetization unit vector

in the form

mx;y ¼ a0 mxvort;yvort þmxtr ;ytr

� � ð2Þ

where mxvort and myvort are the x and y components for the case of
only the VW available, mxtr and mytr are the magnetization
components in the TW,[37] and the normalization parameter a0 is
determined from the condition m2

z þm2
x þm2

y ¼ 1. We assume
the stripe thickness to be so small that the magnetization is
independent of coordinate z. The expressions for the corre-
sponding components are

mxvort ¼ � yξ r; δwð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ; myvort ¼
xξ r; δwð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
mxtr ¼ s tanh

x� X
δw

� �
; mytr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�m2

xtr

q ð3Þ

where the parameter s ¼ �1 determines the magnetization
direction in domains. The quantity δw determines the correlation
magnetization length in the xy plane. It is reasonable to suggest
that the difference between the quantities δc and δw is determined
by the difference between the components of the tensor of
demagnetizing factors along the z and y axes (Nz and Ny,
respectively). This allowsus to assume δw=δc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nz=Ny

p
.[42] Thus,

using Equation (2), for the requiredmagnetization component we
obtain

my x; y; X; Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ r; δcð Þ2

p
� q x� Xð Þξ r; δwð Þ þmytr rj j
� �

r21þ ξ r; δwð Þ2�
þ 2qξ r; δwð Þ rj j x � Xð Þmytr � y� Yð Þmxtr

� �� 1=2 ð4Þ
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The examples of magnetization distribution calculated using
Equation (4) are shown in Figure 2, where the arrow lengths are
proportional to the projection of the magnetization unit vector
onto the xy plane. Note that the concept of the configuration of a
magnetic field of the magnetostatic charge on the lateral stripe
surface as a quadrupole (charge/dipole/quadrupole complex
systems) is not quite correct. The region charge of localization on
the stripe lateral surfaces is fairly large and comparable with
stripe width L. It can be seen that the surface charge densities σ
on the lateral surface are noticeably different in their absolute
value in the regions with the positive and negative signs. In
Figure 2, the regions with the higher density are shown by
double symbols “þþ” “��” and the regions with the lower
density, by single symbols “þ” “�”. The same feature was
observed for the field distribution in real wires.[11]

Now, let us consider the mechanism of the occurrence of
conservative forces acting on the core. At the vortex core
displacement, the surface charge density distribution on the
stripe lateral surface changes. This leads to the variation in the
intrinsic energy of the stripes and their magnetostatic interac-
tionWM. Hence, the effective forces acting on the vortex cores of
stripes 1 and 2, as in the case of quasiparticles, can be written in
the form Fα r1; r2ð Þ ¼ �gradα WM r1; r2ð Þð Þ (subscript α is the
stripe number and r1 and r2 are the radius vectors of the vortex
centers in local systems of coordinates). In the estimations, it is
convenient to use the rigid vortex model, in which the change in
the magnetization distribution profile upon slight variation in
the core coordinate is ignored.[43–45] For the energy of the
magnetic subsystem of a pair of stripes, we obtain

WM X1;X2;Y1; Y2
� � ¼ W1self X1; Y1ð Þ þW2self X2; Y2ð Þ

þWint X1; X2; Y1; Y2ð Þ ð5Þ

In the right-hand side of Equation (5), the first term
W1self X1;Y1ð Þ describes the intrinsic energy of the first stripe
without interaction with the magnetization of the second stripe.
In Equation (5), W2self X2;Y2ð Þ is the intrinsic energy of the
second stripe andWint X1;X2;Y1;Y2ð Þ is the term describing the
interaction between the stripe magnetic subsystems. We write
this expression in more detail. For each stripe, we use a local
system of coordinates. For example, for the first stripe, we can
write:
Figure 2. Example of the magnetization distribution in the vortex wall at
different combinations of parameters q and s at δw ¼ L and δc ¼ 0:2δw.
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W1self X1;Y1ð Þ ¼ μ0b
2

4π

Z1
�1

Z1
�1

σ1 x1; X1; Y1ð Þσ2 x2; X1; Y1ð Þdx1dx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ x1 � x2ð Þ2

p

þμ0b
2

4π

Z1
�1

Z1
�1

σ1 x1; X1; Y1ð Þσ1 x2; X1; Y1ð Þdx1dx2
2 x1 � x2j j

þ μ0b
2

4π

Z1
�1

Z1
�1

σ2 x1; X1; Y1ð Þσ2 x2; X1; Y1ð Þdx1dx2
2 x1 � x2j j ð6Þ

or

W1self U1; V1ð Þ ¼

μ0b
2M2

S

4πL

Z1
�1

Z1
�1

my u1; � 1
2 ; U1 V1

� �
my u2; 1

2 ; U1 V1
� �

du1du2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u1 � u2ð Þ2

q
2
64

þ
Z1
�1

Z1
�1

my u1; � 1
2 ; U1; V1

� �
my u2; � 1

2 ; U1; V1
� �

du1du2
2 u1 � u2j j

þ
Z1
�1

Z1
�1

my u1; 1
2 ; U1; V1

� �
my u2; 1

2 ; U1; V1
� �

du1du2
2 u1 � u2j j

#
ð7Þ

Here, we passed to the dimensionless parameters u1;2 ¼ x1;2=L,
U1;2 ¼ X1;2=L, and V1;2 ¼ Y1;2=L. In the framework of this
model, the charge density on the stripe lateral surfaces (Figure 2)
can be written in the form σ1 x;X;Yð Þ ¼ MSmy x; L

2 ; X; Y
� �

,
σ2 x; X; Yð Þ ¼ MSmy x; � L

2 ; X; Y
� �

. The first term in Equa-
tion (7) describes the energy of interaction between charges from
the opposite lateral surfaces and the second and third terms
describe the interaction between the charges on one surface.
Similarly, we can write the expression for the intrinsic energy of
the second stripe.

The energy of interaction between the magnetizations in a
pair of stripes is expressed as

WintðU1;V1;U2;V2Þ ¼

μ0b
2M2

S

4πL

Z1
�1

Z1
�1

my u1; � 1
2
; U1; V1

� �
m0

y u2; � 1
2
; U2; V2

� �
du1du2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ δð Þ2 þ u1 � u2ð Þ2
q

2
664

þ
Z1
�1

Z1
�1

my u1;
1
2
; U1; V1

� �
m0

y u2;
1
2
; U2; V2

� �
du1du2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ δð Þ2 þ u1 � u2ð Þ2
q

þ
Z1
�1

Z1
�1

my u1; � 1
2
; U1; V1

� �
m0

y u2;
1
2
; U2; V2

� �
du1du2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ δð Þ2 þ u1 � u2ð Þ2
q

þ
Z1
�1

Z1
�1

my u1;
1
2
; U1; V1

� �
m0

y u2; � 1
2
; U2; V2

� �
du1du2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2 þ u1 � u2ð Þ2
q

3
775

ð8Þ
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where δ ¼ dL. The stripe magnetization components my and m0
y

are rewritten in dimensionless variables on the basis of
Equation (4). According to Equations (5–8), the total energy
can be presented as

WM U1; V1; U2; V2ð Þ ¼ μ0b
2M2

S

4πL
I U1; V1; U2; V2ð Þ ð9Þ

The factor I U1;V1;U2;V2ð Þ is the sum of dimensionless
integrals from the brackets in Equations (7–8).

It is important that in Equation (5), the term responsible for
the interaction between the vortex core magnetizations is
missing. In the vortex core, the magnetization does not lie in the
plane and is perpendicular to the stripe surface at the center. We
do not take into account this energy, assuming it to be low.
Indeed, the core magnetic charge on the stripe surface is
proportional to the core area. However, the characteristic linear
size of the core is about 10 nm; therefore, the core area is much
smaller than the area of the regions with the surface charge on
the lateral surfaces. Hence, the energy of dipole interaction
between the cores can be ignored. Nevertheless, note that the
energy of interaction between the cores should depend not only
on the coordinate, but also on the polarities p1, p2.

Figure 3 shows the I U1;V1;U2;V2ð Þ dependence for the
interesting cases. Near the global minima, dimensionless energy
integral (9) is satisfactorily described by the approximate
function:
Figure 3. Profile of the dimensionless energy factor of a pair of interacting
below, the color shows the values of I.
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I U1; V1; U2; V2ð Þ �

I0 þ kxΔU2

2 1þ 0:06 ΔU3
�� ��� �þ kyΔV2

2 1þ 10ΔV4
� �

þ k0yV2
1

2 1þ 60ΔV4
1

� �þ k0yV2
2

2 1þ 60ΔV4
2

� � ð10Þ

where ΔU ¼ U1 �U2 þ u0, ΔV ¼ V1 � V2 þ v0, u0, and v0 are
the coordinate differences of the equilibrium core position, I0 is
a constant determined by the level of the energy, k0y is a constant
that determines the magnitude of the restoring force at the
displacement of the core along the axis y, kx, ky are constants,
determining the interaction force between the cores in the
projection on the x axis and the y axis, respectively. The
numerical calculation of the integral I U1;V1;U2;V2ð Þ showed
that near the minima, the parameters q and s only determine the
free term I0 and equilibrium core position. The rest parameters
in Equation (10) are determined also, according to Equation (4),
by the δc and δw values. The potential well curvature remains
almost invariable at any q and s combinations. It means that, at
the slight displacements of the core from the equilibrium
position, the arising restoring force is independent of q and s.
Figure 4 shows the comparison of empirical formula (10) with
the numerical calculation. It can be seen that Equation (10) is
qualitatively consistent with the data numerically calculated
vortex walls. The surfaces are built for the case V ¼ V1 ¼ �V2. Here and
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using Equation (9) and agrees satisfactorily with the results
reported in refs. [6,12,13,46] for a single stripe. Near the minima,
good quantitative agreement is observed. In further calculations,
assuming the core displacements to be slight, we use
Equation (10) in the quadratic approximation on the coordinates.
3. Cyclic Motion of a Vortex Wall

Now, let us consider the behavior of the vortex core in an ac
magnetic field applied in the stripe plane.

As was mentioned above, in the field of central forces, the
magnetic vortex core behaves as a Larmor particle. The dynamic
behavior of magnetic vortices is described well by the Thiele
equation.[31] The system of Thiele equations for the VWs of two
stripes has the form

G1 � v1 �Dv1 �rW1 ¼ 0;

G2 � v2 � Dv2 �rW2 ¼ 0

(
ð11Þ

where Gα ¼ πTαG0 1� pαh
� �

k is the gyrovector (k is the unit
vector along the z axis, andG0 ¼ 2πMSb=γ), v is the core velocity,
and D is the effective viscous friction coefficient. The subscripts
indicate the stripe (first or second) a vortex belongs to. The third
term in the left-hand side of Equation (11) is responsible for the
nondissipative forces acting on the vortex core as a quasiparticle.
Among such forces are the restoring force, force of interaction
with the vortex core in the neighboring stripe, and effective force
caused by the interaction between the vortex magnetization and
external magnetic field. Thus, we haveWα ¼ WM r1; r2ð Þ þWαH .
Here, WαH is the Zeeman energy of a VW in the stripe with
number α.

Then, taking into account (9) and (10), for the generalized
forces acting on the vortex cores, we can write (i and j are the unit
vectors along the x and y axes, respectively)

Fα r1; r2ð Þ ¼ �rWα ¼ �κx U1 �U2ð Þi
�κy V1 � V2ð Þj� χVαjþ FαH

ð12Þ
Figure 4. a) Profile of the dimensionless energy factor for a pair of interacti
calculation of the dimensionless integral at q1¼ q2 and s1 ¼ s2 with empir
V ¼ V1 ¼ �V2.
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Here, we used the designations κx ¼ μ0M2
Sb

2kx= 4πLð Þ,
κy ¼ μ0M2

Sb
2ky= 4πLð Þ, χ ¼ μ0M2

Sb
2k0y= 4πLð Þ. The effective force

FαH acting on the core in an ac magnetic field is perpendicular to
the direction of this field and lies in the stripe plane. A specific
direction of this force is determined by the vortex chirality
qα.

[47,48]

Being projected onto the system of coordinates (local for each
stripe), system (11) takes the form

�G1vy1 � Dvx1 � κx x1 � x2ð Þ ¼ �F1x ;

G1vx1 �Dvy1 � κy y1 � y2
� �� χy1 ¼ �F1y ;

�G2vy2 � Dvx2 � κx x2 � x1ð Þ ¼ �F2x ;

G2vx2 �Dvy2 � κyy2 � y1 � χy2 ¼ �F2y

8>>>><
>>>>:

ð13Þ

where Fαx and Fαy are the projections of force FαH acting on the
vortex cores due to the presence of the ac field component. Let
the ac field be changing in accordance with the law
FαH ¼ qαF0 eiωt þ e�iωt

� �
, ω be the cyclic field variation frequency,

and F0 be the field amplitude.
We choose the trial solutions of system (13) in the formxα ¼ x0α

eiπTα ωtþϕαx þ e�iπTα ωt�ϕαx
� �

, yα ¼ iy0α eiπTα ωtþϕαy � e�iπTα ωt�ϕαy
	 


.
Here, i is the unit imaginary number and ϕαx;y is the phase
difference between the lawof variation in the force FαH and laws of
thevariation incoordinatesxandy, respectively.Then, substituting
the trial solutions into Equation (13), we obtain for the steady-state
regime

G0 1� p1h
� �

ωy01 � κx þ iDωð Þx01 � κxx02 ¼ F0x q1;

G0 1� p1h
� �

ωx01 � κy þ χ þ iDω
� �

y01
�πT1πT2κyy02 ¼ �iπT1F0y q1;

G0 1� p2h
� �

ωy02 � κx þ iDωð Þx02 � κxx01¼ F0x q2;

G0 1� p2h
� �

ωx02 � κy þ χ þ iDω
� �

y02
�πT1πT2κyy01 ¼ �iπT2F0y q2

8>>>>>>>>>><
>>>>>>>>>>:

ð14Þ
ng vortex walls plotted using formula (10). Comparison of the numerical
ical formula (10) in the cross sections (b) ΔU ¼ 0 and (c) V ¼ 0. Here
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Table 1. Set of eigenfrequencies ωs of the system calculated using
Equation (20) at different combinations of polarities and chiralities of
the vortex walls.

No p1; p2; q1; q2
� 

ωs

1 1; 1;�1;�1f g 2ωx1 Ωþ 2ωy
� �

= 1� hð Þ 2

2 1; 1;�1;�1f g 2ωxΩ= 1� hð Þ 2

3 �1;�1; 1; 1f g, � 1;�1;�1;�1f g 2ωx Ω 1þ h2
� �þ 2ωyh

2� �
= 1� h2
� �

2

4 �1;�1; 1;�1f g, � 1;�1;�1; 1f g 2ωx Ω 1þ h2
� �þ 2ωy

� �
= 1� h2
� �

2

5 �1;�1;�1;�1f g 2ωx Ωþ 2ωy
� �

= 1þ hð Þ 2

6 �1;�1;�1;�1f g 2ωxΩ= 1þ hð Þ 2

www.advancedsciencenews.com www.pss-b.com
Solving this system, we determine the complex amplitudes

x01 ¼ � Cx

G0 1� p1h
� �

3 1� p2h
� �

3Z
;

y01 ¼ � Cy

G0 1� p1h
� �

3 1� p2h
� �

3Z

ð15Þ

Here, we introduced the designations

Cx ¼ F0x q11 ωy þΩþ iωωΓ
� �

1� p2h
� ���

�p2πT1ωy 1� p1h
� �Þ � iF0y p1ω 1� p1h

� �
1� p2h
� ��

� ωx þ iωωΓð Þ ωy þΩþ iωωΓ
� �

1� p1h
� ��

þπT1πT2ωxωy 1� p2h
� �� ω2 1� p1h

� �
1� p2h
� �

2�

þ F0x q21 ωy þΩþ iωωΓ
� �

1� p1h
� ���

�p1πT2ωy 1� p2h
� �Þ � iF0y p2ω 1� p1h

� �
1� p2h
� ��

� ωx1 ωy þΩþ iωωΓ
� �

1� p2h
� ��

þπT1πT2 ωx þ iωωΓð Þωy 1� p1h
� �� ð16Þ

Cy ¼ F0x q11 ωy þΩþ iωωΓ
� �

1� p2h
� ���

�p2πT1ωy 1� p1h
� �Þ � iF0y p1ω 1� p1h

� �
1� p2h
� ��

� ωx1 ωy þΩþ iωωΓ
� �

1� p1h
� ��

þπT1πT2ωy1 ωx þ iωωΓð Þ 1� p2h
� ��

þ F0x q21 ωy þΩþ iωωΓ
� �

1� p1h
� �� p1πT2ωy 1� p2h

� �� ��
�iF0y p2ω 1� p1h

� �
1� p2h
� ��

� ωx þ iωωΓð Þ ωy þΩþ iωωΓ
� �

1� p2h
� ��

þπT1πT2ωxωy 1� p1h
� �� ω2 1� p1h

� �
2 1� p2h
� �� ð17Þ

Z ¼ ω4 � ω2

 
ωx þ iωωΓ

" !
ωy þΩþ iωωΓ
� �

� 1

1� p1h
� �

2
þ 1

1� p2h
� �

2

 !
þ 2πT1πT2ωxωy

1� p1h
� �

1� p2h
� �

#

þ
ωx þ iωωΓð Þ 2 � ω2x

� �
ωy þΩþ iωωΓ 2
� �� ω2y

h i
1� p1h
� �2

1� p2h
� �

2
ð18Þ

where ωΓ ¼ D=G0 is the dimensionless quantity, Ω ¼ χ=G0,
ωx ¼ κx=G0, and ωy ¼ κy=G0.

The phase difference between the laws of variation in the
exciting force and laws of the vortex core motion is determined
from the expressions
Phys. Status Solidi B 2019, 256, 1900113 1900113 (
sin ϕαx

	 

¼ Im x0αð Þ

x0αj j

cos ϕαx

	 

¼ Re x0αð Þ

x0αj j

sin ϕαy

	 

¼ πTα

Im y0α

	 

y0α
�� ��

cos ϕαy

	 

¼ πTα

Re y0α

	 

y0α
�� ��

8>>>>>>><
>>>>>>>:

ð19Þ

It is interesting to discuss a simple particular case of a
negligible damping ωΓ ¼ 0. In this case, the mode eigenfre-
quencies can be determined from the condition Z ¼ 0. As a
result, we obtain

ω2s ¼ ωxΩ
1

1� p1h
� �

2
þ 1

1� p2h
� �

2

 !

þωxωy
πT1

1� p1h
þ

πT2

1� p2h

� �2
ð20Þ

The polarity and chirality distributions and frequency
values are given in Table 1. Since both stripes in the pair have
the same sizes and magnetic characteristics, the G0, D, and χ
values for the stripes are analogous. This leads to the frequency
degeneracy of the states. In particular, are twofold degenerate
and states 3 and 4 are fourfold degenerate. As a result, we have
six eigenfrequencies.

In the absence of a perpendicular dc field (h ¼ 0), using
expression (20) we obtain for the resonance frequencies

ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωxΩþ 2ωxωy 1þ πT1πT2ð Þ

q
ð21Þ

The states with certain combinations of the chiralities, but
opposite polarities in zero field h do not differ. Hence, at ωΓ ! 0
the degree of degeneracy is enhanced. As a result, the
frequencies of states 1, 4, 5 from Table 1 become indistinguish-
able; and the frequencies of states 2, 3, 6 become
indistinguishable, too. Note that, in the absence of dc field h
the difference between the polarities and chiralities is not as
important as the difference between their products πTα , which is
reflected in formula (21) suggesting that, at h ¼ 0 there
are only two different frequencies, ωs ¼

ffiffiffiffiffiffiffiffiffiffiffi
2ωxΩ

p
and

ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωxΩþ 4ωxωy

p
. In the study of Talbi et al.,[49] the dynamics

of two interacting vortices in one stripe was theoretically
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim6 of 9)
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analyzed. The authors obtained the result for a collective vortex
motion frequency, which is a particular case of formula (21).

The power absorbed by a pair of stripes can be estimated as

P ω; hð Þ � Dω2 x01j j 2 þ y01
�� �� 2 þ x02j j 2 þ y02

�� �� 2	 

ð22Þ

The dependences of the absorbed power on the frequency of
an external ac field applied along the y and x axes are shown in
Figure 5 and 6, respectively. These plots need in our comments.

First of all, note that the investigated stripes are long and the
VWs are distant from the ends. Therefore, the magnetic energy
of an isolated stripe does not change at the vortex core
displacement along the x axis. Therefore, the restoring force is
not induced along the x axis. Upon displacement of the vortex
core of a single stripe along the y axis, the magnetic subsystem
energy changes because of the redistribution of magnetic
charges on the stripe lateral surfaces. Thus, the restoring force
arises along the y axis, regardless of the closeness to the second
stripe. This feature is reflected in the character of wall motion in
an ac magnetic filed.

The state illustrated in Figure 5a does not exhibit the
resonance properties. Depending on the mutual orientation of a
perpendicular dc field h and core polarity pα, we have the
frequency dependences monotonically descending at different
rates. The calculation of the difference between phases of the
wall core motion in stripes 1 and 2 using formulas (19) showed
that the rotation occurs synchronously (ϕ1x¼ ϕ2x and ϕ1y ¼ ϕ2y ).
At such combinations of the vortex polarities and chiralities, the
Figure 5. Dependence of the absorbed power (arb. units) on the ac field frequ
parameters ωy ¼ Ω, ωx ¼ ωy, ωΓ ¼ 0:1, and h ¼ 0:1. a, b) Power for the case
applied parallel and antiparallel to the z axis. c) Set of curves 1–6 at dc f
combinations p1; p2; q1; q2

� 
for the vortex walls and phases and directions

origins of coordinates.

Phys. Status Solidi B 2019, 256, 1900113 1900113 (
DWs do not interact, since, at any instant of time, the conditions
ΔU ¼ 0 and ΔV ¼ 0 are met. In this case, the equations of
motion do not contain the restoring force projection along the x
axisand the system is not oscillatory.

The similar effect can be observed in the case of an ac field
applied along the y axis (Figure 2a and b). The calculation of
phases for these combinations p1; p2; q1; q2

� 
showed that the

coordinates U1 and U2 change in time synchronously. This is
indicative of the absence of restoring force along the x axis.

The system behaves differently when the coordinates U1 and
U2 of the vortex centers change in time nonsynchronously. In
this case, the generalized force of interaction between the cores
has a nonzero projection onto the x axis. In other words, there is
a restoring factor both along the y axis and along the x axis. Then,
the system has all the features of an oscillatory one and the
resonance states in an ac field are observed. Such combinations
are illustrated in Figure 1b, c, d, 2c, and d. The insets in the plots
show the directions and phases of the vortex core motion at
certain instants of time.

It is interesting to examine the states with the same chirality,
but opposite polarities (Figure 1c and 2c). When an ac field is
applied along the y axis, the resonance peak is only observed in a
dc field perpendicular to the stripe plane. If an ac field is applied
along the x axis, the resonance is implemented in any
perpendicular fields h. In these states, the phase shift between
the positions of stripe vortex centers ϕ1x;y � ϕ2x;y depends on the
frequency ω of an ac field and value of dc field h. This
dependence is not observed at the rest p1; p2; q1; q2

� 
combi-

nations, where there are only two possible cases: ϕ1x;y � ϕ2x;y ¼ 0
ency. The ac field is applied along the y axis. The curves are plotted for the
of a dc field applied antiparallel to the z axis (dashed lines). c, d) Dc field
ields of h ¼ 0:::0:5 with a step of Δh ¼ 0:1. Inset: polarity and chirality
of the vortex cores. Closed circles show the cores and open circles, the

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim7 of 9)
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Figure 7. Dependence of the tangent of x-coordinate phase of the magnetic vortex core in stripe 1 (solid curves) and stripe 2 (dotted lines). Curves 1, 2,
and 3 are built for perpendicular fields of h1 ¼ 0:01, h2 ¼ 0:05, and h3 ¼ 0:1, respectively. a) Plot for the ac field applied along the y axis, and b) plot for
the ac field applied along the x axis.

Figure 6. Dependence of the absorbed power (arb. units) on the frequency of ac field applied along the x axis. The curves are built for the same
parameters as in Figure 5.

www.advancedsciencenews.com www.pss-b.com
and π. The behavior of rotational phases of the stripe cores in the
investigated case is shown in Figure 7.
4. Conclusions

In this article, we discussed the specific features of the behavior
of vortex domain wall in an ac magnetic field applied parallel to a
pair of magnetostatically interacting stripes and across them.
Our analysis and solution of equations of vortex motion showed
that there exist certain combinations of the polarities and
chiralities of the VWs at which there is resonance. Ignoring the
damping, we obtained a simple expression for the resonant
frequencies as functions of the vortex polarity, chirality and the
Phys. Status Solidi B 2019, 256, 1900113 1900113 (
value and direction of a dc magnetic field applied perpendicular
to the stripe surface.

The knowledge of the states of interacting VWs, which exhibit
the resonance or nonresonance behavior in ac fields, opens the
opportunities for controlling the magnetization of parallel stripe
arrays. This is of great importance for the development of data
storage devices.

The field dependence of the frequencies of collective VW
motionmodesmakes these systems candidates for application in
various field sensors and other spintronic devices. The existence
of the states with the resonant frequencies sensitive to the
perpendicular field direction (Figure 5b) offers a promising field
for designing sensors capable of detecting both field value and
direction.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim8 of 9)
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