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The existence of bound states in the continuum (BIC) manifests a general wave phenomenon first predicted
in quantum mechanics by John von Neumann and Eugene Wigner [J. von Neumann and E. Wigner, Phys. Z.
30, 465 (1929)]. Today it is being actively explored in photonics, radiophysics, acoustics, and hydrodynamics.
We report an experimental observation of an electromagnetic bound state in the radiation continuum in a
one-dimensional array of dielectric particles. By measurement of the transmission spectra of the ceramic disk
chain at GHz frequencies, we demonstrate how a resonant state in the vicinity of the center of the Brillouin
zone turns into a symmetry-protected BIC with increase in the number of the disks. We estimate a number of
the disks when the radiation losses become negligible in comparison to material absorption and, therefore, the
chain could be considered practically as infinite. The presented analysis is supplemented by measurements of
the near fields of the symmetry-protected BIC. All measurements are in a good agreement with the results of
the numerical simulation and analytical model based on a tight-binding approximation. The obtained results
provide useful guidelines for practical implementations of structures with bound states in the continuum that
opens up horizons for the development of optical and radio-frequency metadevices.
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I. INTRODUCTION

It is well known that a dielectric rod or slab supports
waveguide modes formed under the condition of total internal
reflection from the waveguide boundaries [1]. The wave num-
bers of the waveguide modes lie under the light line of the
surrounding space making them orthogonal to the radiation
continuum. When the dispersion curve crosses the frequency
cutoff, the waveguide mode turns into a leaky mode (resonant
state) [1]. However, recently it was acknowledged that the
introduction of periodic modulation of the refractive index
along the axis of the rod or slab discretizes the radiation
continuum, and this could result in complete suppression of
radiation losses for leaky modes [2–7]. Therefore, the reso-
nant state becomes localized, i.e., totally decoupled from the
radiation continuum. Such localized solutions are known as
bound states in the continuum (BICs) [8,9]. Recently, the im-
mense progress in handling photonic crystals has encouraged
extensive studies on BICs in various periodic photonic struc-
tures [5,10–29]. These studies are predominantly motivated
by potential applications in resonant enhancement [30–33],
lasing [34,35], filtering of light [36,37], biosensing [38,39],
encasement of light-matter coupling [40], and polarization
control [41,42]. The mechanism resulting in the appearance of
BIC in periodic structures results in the appearance of high-Q
states (quasi-BIC) in single resonators [43–47].

*Corresponding author: a.bogdanov@metalab.ifmo.ru

Among the variety of the considered designs of photonic
structures, the one-dimensional arrays of spheres or disks are
distinctive because of the rotational symmetry. It gives rise to
the existence of BICs with orbital angular momentum. In the
scattered spectra, such a state manifests itself as a scattered
field with orbital angular momentum traveling along the array
[5,7,21,48]. This could be used for the generation of twisted
light and, therefore, for optomechanical manipulations [49],
quantum cryptography, and other applications [2,50]. The
theory of BICs in the one-dimensional arrays of spheres and
disks is developed in Refs. [6,51] but, in spite of a variety
of potential applications, experimental study has not been
presented to date.

In this work, we report an experimental study of BICs in
a one-dimensional (1D) axially symmetric array of dielec-
tric particles. We study the transformation of the resonant
state into symmetry-protected BIC with an increase of the
number of the scatterers by measurement of the transmission
characteristic of the chain. In order to make the analysis
more reliable, we measure the field profiles, which confirm
observation of the symmetry-protected BIC.

II. THE RESONANT STATES IN PERIODIC ARRAY OF
DIELECTRIC DISKS

A. General theory of BIC in 1D chain

The basic theory of BICs in the periodic stack of an infinite
number of dielectric disks is presented in Ref. [51]. Here, we
briefly give the fundamentals of BIC theory and introduce the
basic notations used further. According to the Bloch theorem,
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FIG. 1. (a) Chain of ceramic disks with ε = 40, radius R =
10.2 mm, and thickness h = 10.1 mm arranged in an array with
period L = 15.1 mm. (b) Diagram showing the number of open
diffraction channels, �, depending on frequency ω and Bloch wave
vector kz.

the electric field E of eigenmodes in a 1D periodic chain [see
Fig. 1(a)] has the following form:

E(r, ϕ, z, t ) = Us
m,kz

(z, r)e−iωt±ikzz±imϕ. (1)

Here, m is the orbital angular momentum (OAM), kz is
the Bloch wave vector defined in the first Brillouin zone,
and superscript s encodes the index of the photonic band.
The sign ± reflects the degeneracy of the modes propa-
gating in opposite directions along the array and rotating
in clockwise/counterclockwise directions. Each mode with
indices m and s has its own dispersion ω = ωs

m(kz ). The
dispersion of the two lowest modes with m = 0 is shown in
Fig. 1(b) with the red solid lines. The function Us

m,kz
(r, z)

is a periodic function of the variable z with a period L. Its
expansion into the Fourier series can be written as follows:

Us
m,kz

(z, r) =
∑

n

Cs
m,kz,n(r)e

2π in
L z. (2)

In the general case, each mode consists of near fields and
outgoing cylindrical waves. Therefore, the Fourier coefficient
has the following asymptotic far from the chain axis:

Cs
m,kz,n(r) → C

s
m,kz,nH (1)

m (αnr) as r → ∞. (3)

Here, H (1)
m are the Hankel functions and αn =

[(ω/c)2 − (kz + 2πn/L)2]1/2 is the radial component of
the wave vector. Indices n numerate the diffraction channels.

For open channels, αn is real, and for the closed ones, αn

is imaginary. The number of open diffraction channels, �,
depends only on ω and kz [see Fig. 1(b)]. If the amplitudes of
all open diffraction channels are zero, we have a BIC. In the
case of kz < ω/c < |kz ± 2π/L|, only one diffraction channel
is open [the yellow area in Fig. 1(b)] and the radiation losses
are determined only by the zero-order Fourier coefficient
Cs

m,kz,0
(r) = 〈Us

m,kz
(r, z)〉z. Here, 〈·〉z implies integration over

the period of the chain. The structures symmetric with respect
to the transformation z → −z allow for the existence of
antisymmetric solutions at the � point, i.e., the so-called
symmetry-protected BIC. Protection by the symmetry means,
for example, that a substrate without a large refractive index
(i.e., not opening the additional diffraction channels) does not
destroy the BIC in spite of breaking the rotational symmetry
of the chain. In other cases, BICs are called accidental or
off-� BIC.

B. Infinite chain

In the considered geometry, the variables z and r are
not separable. Therefore, the eigenfunctions Us

m,kz
(z, r) and

dispersion of the modes can be found only numerically.
Figure 2(a) shows the dispersion of three eigenmodes with
OAM m = 0, 1, 2 calculated numerically using COMSOL MUL-
TIPHYSICS. The parameters of the chain are listed in the
caption of Fig. 1. Below the light line, the modes have no
radiation losses. Above the light line, the modes are leaky
due to emanation into the first open diffraction channel.
The dispersion of the radiation losses characterized by γ =
Im[ω(kz )] is shown in Fig. 2(b). One can see that γ remains
constant in the � point for the modes with m = 1, 2. However,
the radiation losses for the mode with m = 0 tend to zero
quadratically with kz in the vicinity of the � point. The
dashed line is the approximation of the numerical results by
quadratic function γ (kz ) = 0.26(kzL/π )2 in the vicinity of
the � point. Therefore, the mode with m = 0 turns into the
BIC in the � point. Therefore, the mode with m = 0 turns
into the BIC in the � point. The statement that this state is
symmetry protected immediately follows from the distribution
of the electric field Eϕ [see Fig. 2(c)]. It is antisymmetric with
respect to the center plane of the disk, and therefore it vanishes
after averaging over the unit cell.

The states with m = 0 differ qualitatively from the states
with nonzero OAM. Indeed, polarizations of the modes
with m = 0 is completely separable into transverse electric
(TE) and transverse magnetic (TM). For TE modes, E =
(0, Eϕ, 0) and H = (Hr, 0, Hz ), and, for TM modes, E =
(Er, 0, Ez ) and H = (0, Hϕ, 0). This classification remains
valid even for finite chains. Below, in Sec. IV A, we will use
this fact for selective excitation of the symmetry-protected
BIC with m = 0 via near fields. The BIC with m = 0 shown
in Fig. 2(a) can be classified as a TE mode. Polarization of
the modes with nonzero OAM (m �= 0) is hybrid and it is
contributed by both TE and TM components. Moreover, it
follows from Maxwell’s equations that the parity of the TE
and TM components for these states in the � point is always
different [52]. Therefore, it is impossible to cancel the far field
in both polarizations simultaneously using only the symmetry
reasons. Thus, there are no symmetry-protected BICs with
m �= 0 in the � point of k space. However, the accidental
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FIG. 2. (a) Dispersion of three eigenmodes with OAM m = 0, 1, 2 in the infinite chain of the ceramic disks. The � point for the mode with
m = 0 corresponds to BIC. Index s shows the number of the photonic bands (see Appendix A for details). The parameters of the chain are
mentioned in the caption of Fig. 1. The black circles show the dispersion of the eigenmode with m = 0 in a finite chain consisting of N periods.
(b) Dispersion of the radiation losses for eigenmodes with OAM m = 0, 1, 2 in the infinite chain of the ceramic disks. The dashed line is the
quadratic approximation of γ for m = 0. The approximation was made in the range 0 < kzL/π < 0.1 and then it was extrapolated to higher
values of kzL/π . (c) Side and front views of the distribution of the azimuthal electric field for the eigenmodes with OAM m = 0, 1, 2 at the �

point. The upper row shows the field distribution for BIC. (d) Dependence of the Q factor for the number of periods in the chain for different
levels of material losses obtained numerically using COMSOL MULTIPHYSICS. The dashed line is the quadratic approximation given by Eq. (4).

BIC in the � point can be obtained due to fine tuning of the
geometrical or material parameters of the system [52].

C. Finite chain

In practice, we always deal with finite arrays of scatterers.
Therefore, the diffraction continuum is not quantized com-
pletely and the diffraction channels are smeared, providing the
radiation in the range of angles around diffraction directions
of the infinite chain. Strictly speaking, this results in destruc-
tion of a true BIC, turning it into a quasi-BIC—a resonant
state with high but finite value of Q factor.

The dependencies of the Q factor of quasi-BICs on the
number of scatterers, N , for arrays of different dielectric par-
ticles have been studied theoretically for waveguide modes,
leaky modes [53,54], and quasi-BIC [52,55–57]. In particular,
it was predicted that the Q factor of the symmetry-protected
BIC is proportional to N2, while the Q factor of accidental
BICs is proportional to N3 [58]. Our simulations confirm that
in the absence of material losses, the Q factor of the quasi-BIC
at the � point grows as N2 [Fig. 2(d)]. The experimental study
of this dependence is provided is Sec. IV A.

The dependance of the Q factor on N can be obtained
from the dependence of γ on kz in the infinite chain [see
the dashed line in Fig. 2(b)]. Indeed, photonic bands of a
finite chain consist of a finite number of resonances placed
equidistantly in the Brillouin zone. The distance between the
neighbor resonances, 
kz = π/(NL), is defined by the Fabry-
Perot quantization [Fig. 2(a)]. The resonance with the minimal
Bloch wave vector kmin

z = 
kz has the highest Q factor and
this resonance can be associated with quasi-BIC as the closest
state to the � point. Substitution of 
kz into γ (kz ) gives a
simple estimation for the dependence of the Q factor of the
quasi-BIC on the number of periods,

Q
(
kmin

z

) = ωBIC

2γ (
kz )
= 4.24

2 · 0.26
N2 ≈ 8.15N2. (4)

This estimation agrees well with the results of the numerical
simulation of the finite chains [see Fig. 2(d)]. This result
means that radiation due to scattering on the ends of the chain
is negligible.

053804-3



Z. F. SADRIEVA et al. PHYSICAL REVIEW A 99, 053804 (2019)

Besides the radiation losses due to a finite size of the
chain, there are other sources of losses (absorption in material,
roughness of the scatterers, structure disorder, leakage into
high-index substrate, etc.) which contribute to the total losses,
even in the case of the infinite chain [52,55,59]. The prac-
tically important question is how many disks it is necessary
to take to ensure that the radiation losses due to the finite
size of the sample will be negligible with respect to other
losses. Figure 2(d) shows the dependence of the Q factor of
the quasi-BIC on the number of disks N for different levels of
material losses introduced through the imaginary part of the
permittivity ε′′. For a larger number of the disks, the total Q
factor saturates. It means that material losses give the main
contribution into the total losses. The maximal achievable Q
factor could be estimated as Qmax = ε′/ε′′.

III. SAMPLE

The sample represents a finite chain of the disks fabricated
from a BaO-TiO2 microwave ceramic placed equidistantly
with the period L = 15.1 mm (see Fig. 1). The permittivity of
the ceramics and tangent of losses extracted from the auxiliary
experiment on measurement of the scattering cross section
on a single ceramic disk in a microwave frequency band
(2–5 GHz) are equal to ε = 40.0 and tan δ = 2.5 × 10−4,
respectively (see Appendix B). The radius and the height of
the disks are R = 10.2 and h = 10.1 mm, respectively. To
fix the array, a special holder with grooves was fabricated
from a Styrofoam material with a permittivity close to 1.1 at
the microwave frequencies. Simple calculations show that the
holder results in blueshift of the BIC with m = 0 at the � point
less than 1 MHz and it does not affect the radiation losses at
all since the BIC is symmetry protected.

The array of disks has two main advantages over the
array of spheres. The first one is that disk resonators are
easier to fabricate using a conventional sintering procedure of
microwave ceramic powder after pressing it in a steel die. The
second one is that disks have two scale parameters, height h
and radius R. Their independent variation, together with the
period of the chain L, allows one to provide precise mode

engineering, getting a number of BICs with different orbital
angular momenta and Bloch vectors [51].

It follows from Fig. 2 that the frequency bands for m =
0 and m = 2 overlap. This hinders the observation of the
symmetry-protected BIC through measurement of the scatter-
ing cross section since the incident plane wave is contributed
by cylindrical waves with all OAM. Thus, our preliminary
experiments on measurement of the scattering cross section
of the chain provided insufficient results because we cannot
clearly distinguish the modes with m = 2 and quasi-BIC with
m = 0 (see Appendix C).

IV. RESULTS OF MEASUREMENTS

A. Transmission spectra

As we mentioned above (see Sec. II B), the polarization of
the mode with m = 0 is separated into TE and TM. There-
fore, they can be selectively excited via near field by axially
symmetric antennas placed coaxially with the chain. The TM
modes can be excited by an electric dipole antenna, and the
TE modes can be excited by a magnetic dipole antenna. Since
the analyzed symmetry-protected BIC is a TE mode, in the
experiment we use two identical shielded-loop antennas [60]
placed coaxially with the chain and connected to ports of a
vector network analyzer (VNA) [see Fig. 3(a)]. The antennas
with the outer diameter of 10 mm have been fabricated from
086 semi-rigid coax cable. They are placed at the distance
D = 5 mm away from the faces of the first and last disks.
Such a distance provides a weak-coupling regime between
the antennas that make the analysis of the Q factor of the
quasi-BIC eligible (see Appendix D).

The measured transmission spectra of the array of 20 disks
placed between two loop antennas are shown in Fig. 3(b).
Two transmission bands consisting of 20 resonance peaks
each are clearly seen. These bands correspond to the modes
with m = 0 shown in Fig. 1(b). A weak ripple at frequencies
2.7–2.9 GHz correspond to the modes with m = 1, which are
excited due to nonperfect axial symmetry of the sample. The
resonances laying in the green area in Fig. 3(b) correspond to
the waveguide modes of the infinite chain and the resonances
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FIG. 3. (a) Artistic view of the experimental setup for measurement of the transmission spectra of the chain of the ceramics disks.
(b) Experimental transmission spectra of the chain consisting of 20 ceramics disks placed between two coaxially positioned loop antennas.
The parameters of the chain are shown in the caption of Fig. 1. The green and gray areas correspond to the waveguide and leaky modes,
respectively. The inset shows the photo of the sample. (c) Zoomed-in view of the transmission spectra shown in (b). The dotted line shows the
results of numerical simulations carried out in COMSOL MULTIPHYSICS. The last peak in the series corresponds to quasi-BIC.
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FIG. 4. Experimental dependence of Q factors of the symmetry-
protected quasi-BIC (mode 1) and the neighboring resonance (mode
2) on the number of disks N in the chain of ceramics disks. Error
bars indicate the standard deviation in the Q factor extracted from
the transmission spectra measured five times. The parameters of the
chain are mentioned in the caption of Fig. 1. The dotted line shows
the results of numerical simulation in COMSOL MULTIPHYSICS.

in the gray area correspond to the leaky modes. The intensity
of the leaky resonances in the transmission spectrum is very
weak because of coupling with the continuum of radiation
modes in surrounding space. Figure 3(b) shows the zoomed
transmission spectra in the region of leaky modes. The blue
solid line is the experimental data and the red dotted line is
the result of numerical simulation carried out using COMSOL

MULTIPHYSICS. Figure 3(c) shows clearly that the width of
the last peak in the series is the most narrow. This peak
corresponds to quasi-BIC, which transforms into a true BIC at
the � point as N → ∞. The amplitudes of the resonances in
the transmission spectrum decrease approaching to the edge of
the photonic band, and the amplitude of the peak correspond-
ing to the quasi-BIC is minimal. It is explained by the decrease
of the coupling between the loop antennas and the modes,
when theirQ factor increases. Similar behavior is observed
in the reflectance spectra of photonic crystal slabs supporting
BICs [12].

Each transmission spectrum with a fixed number of disks
was measured five times. After each measurement, the disks
were extracted from the holder and shuffled. The experimental
dependence of the Q factor for the two last resonances in the
series [see mode 1 and mode 2 in Fig. 3(c)] on the number
of the disks is shown in Fig. 4 by rhombus markers. The
error bars show the standard deviation in the Q factors. The
dotted lines correspond to the simulation. One can see that
for small N , when the radiative losses are dominant, the Q
factor increases quadratically. However, the deviation from
the quadratic behavior becomes essential as N ∼ 20. Further
increase of the number of the disks results in saturation of
the total Q factor to the level Qabs = ε′/ε′′. It is clear that the
lower the material losses, the bigger the number of scatterers
necessary to take in order to suppress the radiative losses
of quasi-BIC with respect to the material absorption. The

analyzed chain of the ceramic disks with tan δ = 2.5 × 10−4

behaves as an infinite one when the number of the disks is
more than 50.

B. Field distribution

In the previous section, we analyzed the spectral charac-
teristics of quasi-BIC. Here, we focus on the experimental
study of its field profile. A true symmetry-protected BIC with
m = 0 being the TE-polarized mode has only three nonzero
components of electromagnetic field, Eϕ, Hr , and Hz. It is
notable that for the considered mode, the component Hr is
not equal to zero only for the closed diffraction channel.
Therefore, it characterizes only the structure of near fields. To
measure the radial component of magnetic field Hr , we use the
shielded-loop antenna as a probe [see Fig. 5(a)]. The antenna
of the same geometry as the previous two has been connected
to the third port of the VNA and fixed to an arm of a high-
precision scanner equipped by an automated step motor. The
magnetic field was probed at the distance of 1 mm above the
disks along the array with the step of 0.5 mm. The frequency
range to scan the magnetic field has been determined by the
transmission coefficient measurement.

The measured magnetic field profiles for quasi-BIC and
two neighbor resonances [see peaks 2 and 3 in Fig. 3(c)]
for the chain of 20 disks are shown in Figs. 5(f)–5(h). The
results of the numerical simulations carried out using COMSOL

MULTIPHYSICS are shown in Figs. 5(b)–5(d). One can see that
for the mode at f = 4.249 GHz, the envelope of the field
profile is one-half of the sine period. Therefore, the observed
mode is a symmetry-protected quasi-BIC with the minimal
possible Bloch wave vector equal to kz = π/(LN ).

V. TIGHT-BINDING MODEL

It is clearly seen from Fig. 3(b) that the transmission drops
dramatically for resonances above the light line. It happens
due to their coupling with the radiation continuum. This
behavior could be described in the framework of the tight-
binding approach accounting for the interaction between the
neighbor disks and their coupling to the radiation continuum.
The use of the tight-binding approach is natural because the
ceramics disks composing the chain have a permittivity ε =
40 that makes the field well localized inside the disks [see
Figs. 2(c) and 5(e)].

The tight-binding Hamiltonian of the chain consisting of N
disks has 2N nodes coupled by an alternating way as shown
in Fig. 6 [61]:

ĤB =
2N∑
j=1

|ψ j |2 −
2N−1∑

j=1

u jψ jψ
∗
j+1 + H.c. (5)

Therefore, each disk is described by a pair of nodes with
coupling coefficient u1. Two nodes per disk are needed to
realize an antisymmetric mode of the disk resulting in the
appearance of BIC in the chain. The coupling between the
disks is described by coefficient u2. The effective Hamiltonian
accounting for radiation losses and coupling with antennas
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distribution of the radial magnetic field component for the chain consisting of 20 ceramics disk. (e) Numerically obtained distribution of the
azimuthal electric field component for the chain consisting of 20 ceramics disk. (f)–(h) Measured distribution of the radial magnetic field
component for the chain consisting of 20 ceramic disks.

can be written as follows:

Ĥeff = ĤB −
2N∑
j=1

[vaLeikδ j,1 + vaReikδ j,2N + vradeikp]. (6)

Here, the coefficients vaL and vaR are responsible for coupling
with transmitting and receiving antennas, respectively, with
the propagation band

E = 4 sin2 k. (7)

The coefficient vrad is responsible for coupling with the
radiation continuum, which could be considered as a wide
waveguide coupled to the array along its entire length. In
order that only a part of the eigenvalues was embedded
into the radiation continuum, we shift the cutoff energy of
the radiation continuum separating the spectra of leaky and
waveguide modes to the level E = 3,

E = 3 + 8 sin2 kp. (8)

annetnaannetna

Radiation continuum

disk

FIG. 6. The tight-binding simulation of the N disks coupled with
the left and right antennas via the couplings vaL and vaR. The whole
chain is coupled with the wide waveguide simulating the radiation
continuum via the coupling vrad.

The reference transmission spectrum for N = 10 calcu-
lated neglecting the coupling with the radiation continuum
(vrad = 0) is shown in Fig. 7(a). The used parameters are
listed in the caption. One can see that the spectrum con-
sists of the acousticlike and optical-like bands, which agrees
with the experimental data [see Fig. 3(b)]. By analogy with
the classification of phonon bands in solid-state physics, we
imply that for the acousticlike band, wave functions ψ j and
ψ j+1 inside each of the disks are in-phase in the � point.
For the optical-like band, the wave functions inside each of
the disks are antiphase in the � point. The transmission at
the resonances is close to unit. Introduction of the coupling
(vrad �= 0) with the radiation continuum only affects the modes
with energies above the cutoff [Fig. 7(b)]. The coupling to the
continuum results in a leakage of the pumped wave from the
left antenna into the radiation continuum and, respectively,
a decrease of the transmission peaks at resonances energies
above embedded into the radiation continuum. The following
increase of vrad results in blurring of the transmission peaks.
The considered toy model well describes the experimental
behavior of the transmission shown in Figs. 3(b) and 3(c).

VI. CONCLUSION

In this paper, we have observed a symmetry-protected
bound state in the continuum (BIC) in the linear array of
periodically arranged ceramic disks. In the experiment, we
selectively excited the modes with zero orbital angular mo-
mentum by coaxially placed loop antennas and measured the
transmission spectra of the array. We analyzed the dependence
of the Q factor of the BIC on the number of disks in the chain
and estimated the critical number of the disks making the
radiation losses become negligible with respect to the material
absorption. For the considered ceramics with tangent of losses
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FIG. 7. The transmission spectra of the tight-binding model
for (a) vrad = 0 and (b) vrad �= 0, u1 = 0.5, u2 = 1, vaL = 0.5, vaR =
0.6.

tan δ = 2.5 × 10−4, this critical number of disks is about 50.
We confirmed the observation of BIC by the measurements of
the magnetic field profiles. All measurements are in a good
agreement with the results of the numerical simulation and
analytical model based on the tight-binding approximation.
The obtained results provide useful guidelines for practical
implementations of structures with bound states in the contin-
uum, which opens up horizons for the development of optical
and radio-frequency metadevices.
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FIG. 8. (a) Dispersion of eigenmodes with OAM m = 0, 1, 2 in
the infinite chain of the ceramic disks. (b) Calculated distribution of
the magnetic field amplitude |H| of eigenmodes in a single ceramic
cylinder.

APPENDIX A: BAND DIAGRAM

Figure 8(a) shows the calculated dispersion of eigenmodes
with OAM m = 0, 1, 2. The photonic bands in the chain of
cylinders are formed due to splitting of the eigenmodes of a
single resonator. The calculated distributions of the magnetic
field amplitude |H| of eigenmodes in a single ceramic cylinder
are shown in Fig. 8(b).

APPENDIX B: ABSORPTION IN CERAMICS

To define the loss tangent of the ceramics, we measured the
spectrum of the extinction cross section of a single ceramic
disk in the vicinity of high-Q resonance, where absorption
makes the dominant contribution to the total losses [see
Fig. 9(a)]. To perform the measurements, the ceramic disk was
placed in the middle between two wideband horn antennas.
The antennae were connected to the ports of a vector network
analyzer (VNA). The polarization of the incident wave is
shown in the inset of Fig. 9(a). The spectrum of the extinction
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FIG. 9. (a) Measured extinction cross section of a single ceramic
disk. The resonance corresponds to the mode with orbital angular
momentum (OAM) m = 3. The left inset shows the distribution of
|E|2 (top and side views). The right inset shows the scheme of the
experiment. The solid line is the experimental data and the circle
markers show the approximation. (b) Calculated dependence of the
total Q factor for the resonance with m = 3 at ω0 = 4.47 GHz on the
loss tangent. The dash-dotted line shows the Q factor in the absence
of material losses in ceramics. The dashed lines correspond to the
experimentally measured loss tangent tan δ ≈ 2.5 × 10−4.
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FIG. 10. (a) The scheme of the experiment on the measurement
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to OAM m = 0, 1, 2.

cross section has been calculated by applying the optical
theorem. Using the classical Fano formula [1],

F () = A
( + q)2

2 + 1
, (B1)

we extracted the Q factor of a resonance with the azimuthal
number m = 3. Here,  = (ω − ω0)/(γ /2) is a normalized
frequency, ω0 is the resonance frequency and γ is the damping
constant of the mode, q is the Fano asymmetry parameter, and
A is the amplitude of the resonance. The distribution of |E|2
for the resonance under consideration is shown in the inset of
Fig. 9(a). The treatment of the experimental data yields the
Q factor about 2.3 × 103. This is the total Q factor, which
includes the radiation losses and losses due to absorption in
the ceramics,

1

Qtot
= 1

Qrad
+ 1

Qabs
. (B2)

To find Qabs from Eq. (B2), we obtain the Qrad numerically
using COMSOL MULTIPHYSICS software. The total Q factor of
the analyzed mode equals 6 × 103. Substitution of this value
to Eq. (B2) gives Qabs = 4 × 103. According to the definition,
the loss tangent tan δ = ε

′′
/ε

′
, and therefore tan δ = 1/Qabs =

2.5 × 10−4. This value corresponds to ε
′′ ≈ 0.01. We also

find the dependence of Qtot on tan δ numerically using the
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FIG. 11. (a) Transmission spectra |S12|2 of the chain consisting
of 20 ceramic disks placed between two coaxially positioned loop
antennas measured for different distances d between the antennas
and the outermost disks. The parameters of the chain are shown in the
caption of Fig. 1 of the main text. (b) Measured dependences of the Q
factor of the last three resonances of the transmission band depending
on the distance d between the antennas and the chain. (c) Numer-
ically calculated dependence of the Q factor of the resonance with
OAM m = 2 at the frequency 3.86 GHz in a single disk on the
distance d between the disk and the loop antenna. (d) Numerically
calculated dependence of the Q factor of the quasi-BIC (20th peak)
in a chain consisting of 20 disks on the distance d between the
outermost disk and the loop antenna. Material absorption in (c) and
(d) are neglected.

eigensolver of COMSOL MULTIPHYSICS [see Fig. 9(b)]. The
numerical calculations confirm that tan δ = 2.5 × 10−4 gives
Qtot = 6 × 103 for the resonance at ω0 = 4.47 GHz. We used
the found value of tan δ to calculate the theoretical depen-
dence of the total Q factors of the symmetry-protected quasi-
BIC on the number of the disks in the array (see Fig. 4).

APPENDIX C: PLANE-WAVE SCATTERING FROM
AN INFINITE CHAIN OF DISKS

A plane-wave incident on a chain of dielectric disks [see
Fig. 10(a)] excites the modes with all OAM (m = 0, 1, 2, . . .).
For the considered design of the chain (see Fig. 1), the trans-
mission bands corresponding to m = 0 and m = 2 overlap
[see Fig. 2(a)]. Therefore, it is difficult to distinguish the
resonances corresponding to the modes with m = 0 and m =
2 in the extinction spectra under a plane-wave excitation.
Indeed, Fig. 10(b) shows the calculated spectra of partial
extinction cross sections σm corresponding to m = 0, 1, 2 and
the total extinction cross section σtot defined as their sum. It
is worth mentioning that the modes with m = 2 appear in the
transmission spectra if the loop antenna placed noncoaxially
with the chain.
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APPENDIX D: COUPLING STRENGTH BETWEEN DISK
ARRAY AND LOOP ANTENNA

In the general case, the loop antenna used for the mea-
surement of the transmission spectra of the disk chain makes
an additional contribution into the losses of all resonances,
particularly into the losses of quasi-BIC. To be sure that the
additional losses arising due to the coupling of the antenna
to the array are negligible, we provide additional experiments
and numerical calculations.

Figure 11(a) shows the experimental transmission coeffi-
cient measured for different distances d between the array and
antenna. Figure 11(b) shows that there is no dependence of Q
factors of the last three resonances of the transmission band

on d . This confirms indirectly that in the considered range of
d , the coupling of the array to the antenna is weak and the
antenna does not affect the Q factors of the resonances in the
main text.

To be sure that we work in the weak-coupling regime
not decreasing the radiation Q factor of quasi-BIC and other
resonances, we provide a numerical simulation showing the
dependence of the Q factor on d for a single disk and the array
of 20 disks [see Figs. 11(c) and 11(d)]. Our calculations show
that the antennas affect the Q factor of the resonances if d
is less than about 1.5 mm. In the experiment (see Fig. 3), the
distance d is 5 mm. Therefore, the measurements are provided
in the weak-coupling regime.
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