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Abstract

Taking into account the real crystalline structure of the CuO; plane and the strong spin-
fermion coupling, the influence of the on-site Coulomb repulsion of holes U, and the
intersite Coulomb repulsion V, between holes located at the next-nearest-neighbor
oxygen ions on the formation of the superconducting gap with the d-wave symmetry
of the order parameter of the spin-polaron quasiparticles is studied. It is shown that
the formation of the resulting superconducting gap within the spin-fermion model is
caused by three components. The dependence of the narrowing of the superconducting
gap on the values U, and V; is analyzed.

Keywords Cuprate superconductors - Unconventional superconductivity -
Spin-charge correlations - Spin polarons - Intersite Coulomb interaction

1 Introduction

At the present time, the problem of influence of the interplay between the spin and
charge degrees of freedom on the normal and superconducting properties of cuprate
superconductors attracts a significant attention of researchers [1-4]. The strong spin-
fermion coupling in these systems not only plays an important role, but determines a
number of their low-temperature properties.

Recently, within the spin-fermion model (SFM), it was shown [5,6] that taking into
account both the features of the real crystalline structure of the CuO; plane and the
strong spin-fermion coupling resulting in an occurrence of the spin-polaron quasi-
particles [7-9] allows one to solve the problem of stability of the superconducting
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Fig.1 The intersite Coulomb interactions on the CuO; plane (Color figure online)

d-wave pairing toward the intersite Coulomb repulsion in cuprates. It was demon-
strated analytically [5] that the intersite Coulomb interaction V; of fermions located
at the nearest oxygen ions of CuO, plane (Fig. 1) does not affect the superconducting
d-wave pairing, because its Fourier transform V,; = 4V cos(gyx/2) cos(gy/2) does not
appear in the kernel of the corresponding integral equation. Taking into account both
the intersite repulsion V» of fermions located at the next-nearest-neighbor oxygen ions
(Fig. 1) and the Hubbard repulsion U, leads to the decrease in the superconducting
transition temperature; however, this temperature remains within the limits that are
observed experimentally [6]. The subject of the present paper is to study the influence
of the Coulomb interactions on the formation of the superconducting gap with the
d-wave symmetry of the order parameter.

2 The Spin-Fermion Model

In the regime of strong electronic correlations, when the on-site Coulomb repulsion
energy Uy of holes at one copper ion is large (A s = €, — &4 is the charge transfer
gap)

Apds(Ud_Apd) > tpd > 0, (D
the Emery model [10,11], which is one of the most realistic model for the CuO, plane,
can be reduced to the SFM [12—17] with the Hamiltonian
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which describes the subsystem of oxygen holes interacting with the spins localized at
copper ions. Here,

Ekyiyy = €p T 2Vpa +T(1 —cosky(y)) — i, fr = (2T — 41)Sk xSk,

kx xy(yx) Vy i
Sk,x = Sin —, Qky X 12 ike(y) + e_’ky(X)’
2 Vo

2 2
e T T -
Apa Ui — Dpa —2Vpa )’ Apa Ui — Apa —2Vpa )

3

urp = Sk.xarp + Sk,ybrg,

In the Hamiltonian, “Za (are) and bza (bie) are the hole creation (annihilation) opera-
tors in the oxygen subsystem with the py- and py-orbitals (Fig. 1) in the momentum
representation, « = =£1/2 is the spin projection. The bare on-site energy of oxygen
holes is &, u is the chemical potential, and ¢ is the hopping integral of the oxygen
holes. The intersite Coulomb interaction between holes (Fig. 1) is described by the
operator V,,. The operator J corresponds to the exchange interaction between the
oxygen holes and the localized copper spins, where S is the operator of a spin at
the site f and 0 = (o, o, %) is the vector of the Pauli matrices. The operator i
describes the superexchange interaction between the neighboring copper spins arising
in the fourth order in 7,4 of the perturbation theory. For the sake of compactness,
we denote momenta over which the summation is performed by numbers 1,...,4. The
Dirac delta function §142_3_4 takes into account the momentum conservation law.
Below, we use the commonly accepted set of parameters for the Emery model: ¢4 =
1.3eV, Apg =3.6eV, Uy =10.5¢eV, Vg = 1.2 eV [18,19]. For the holes hopping
integral, we use the value + = 0.12 eV [20] and suppose that the superexchange
parameter / = 0.136 eV (1570 K) in accordance with experimental data on cuprate
superconductors [19]. In the calculations, we put V, = V, for simplicity.

@ Springer



Journal of Low Temperature Physics (2019) 196:242-252 245

3 Basis Set and Equations for Green’s Functions

In order to describe the dynamics of oxygen holes, it is necessary to take into con-
sideration the large exchange interaction (J = 3.38eV > 7 &~ 0.1 eV) rigorously.
This problem can be solved in the framework of the Zwanzig-Mori projection tech-
nique [21,22] using basis set of operators [20,23,24]

{ak’r3 kaa LkTv aikis bT_k¢v Liki} ’ (4)

where the operator Lyy = 3 Z e fa=k (Sroqp)uyp describes the strong spin-
charge coupling. The system of equatlons for the normal G;; and anomalous Fj;
Green’s functions can be represented in the form (j = 1, 2, 3)

(0 —&,)G1; =81 +1Gaj + J.G3j + A1 Frj + Ay P,
(0 —&,)G2j =6b2j + 1k G1j + JyG3j + Az Fij + A4kF1js

(w—£&1)G3; =63;Ki + (JxG1j + Jy sz)Kk-i- F3,,

(w+& )= AlkGlj + A3kG2j — g Fyj + JxF3j,
(0 + &) F2j = A5 G1j + Ay Gaj — ti Frj + Jy Faj,

*

ASk
X, Gi3j + (JxFij + JyF2j) K. (5)

(w+E)F35 =

Here, G11 = ((aktlaj,)). Ga1 = ((bk¢|aZT)), and G3; = ((LleaZT)). The functions
G2 and G;3 are determined in a similar way with the only difference that a,:T is

replaced by bZT and thT’ respectively. The anomalous Green’s functions are defined

as Fii = (@', laf,)), Far = (b7, lafy)), F31 = (LT, la[,)). For Fis and Fis,
the same type of notation regarding the second index is used. The functions involved
in the system (5) are given by the expressions

Jewy = Isextys Ki = ULy, L, ) = 3/4 = Ciyix,
L =¢ep—pu—2t+5t/2—J +[Q2t — ) (Cryik — Cayar) — (t/2)(Cryik — C3y3k)
+JCI(+ 4y /4 — IC (i + DK, (6)

where yji are the square lattice invariants: y1; = (cosky + cosky)/2, yy =
cosky cosky, y3x = (cos 2k + cos2ky)/2.

The introduced superconducting order parameters A ; ; are related to the anomalous
averages as follows

2 Up ,
A== Z(T + V2 cos(ky = gy) + V3 costhy = g ) (agra—q.),

4V1
Ay = Z‘f’k qlagrb—qy),
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4V1
Az = Zfﬁk —q{bgra—q\),

A= ;(7” + Vacos(ky — 4x) + Vi costhy — 4,) ) (by1b—g.),
Asp = %Z{qu«LqTLqU — Ci{ugyu—qy)) +81C (unuqi)}
4+ = Z{ 2y19(Lgr L—qy) + (3/2 - 4C1V1k)<“q?”—q¢>}
+ N Z (5(qx)sq.x + 1454.y) (agrL—g})
q
+% D (6@y)sqy +1g50.x) (gt Lg))
q

Up 38— S cosk 4378 — S cosky) (borh
_W : 3/ —7005 agra—g)) + 3/ — o cos y){bgrb—q)

Vi
N
q
X (<aqu*qi) + <qua*q¢>)

{(3/4 = 2C171k + Cay2u)¥g + Ca sinky sin kyqbq}
1
N V2(Cy cosky — Cayar) cos gy

q

3 C

+V, <—§ + Cjcosky — 73 cos 2kx> cos qx}(aqTaqi)

1
N {V2(C1 cos ky — Cayak) COS Gx

q

3 c
+V3 <—§ +Cy cosk, — 73 cos 2ky) cos y } (bgrb_g)). %

ky ky ke | ky
Here I} = 41y, ¢r = cos > cos > Yy = sin > sin > and the average

(ugru—gy) = _S§,x<aqT“—q¢) - S§,y<qub—q¢> - ‘ﬁq(“’ﬁb—qi) + (qua—qU)-
3)

When deriving the system (5), we assume that the state of the localized momenta
corresponds to the quantum spin liquid. In this case, the spin correlation functions
Cj = (SoSy;) arising in Eqgs. (6) and (10) satisfy the relations

Cj =3(85;) =3(5S7) = 3(85S5). )
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where r; is the position of a copper ion within the coordination sphere j. Besides,
(S;-) = (Sjy‘-) = (S}) = 0. The doping dependences of the correlation functions
C; were calculated within the spherical symmetric self-consistent approach for a
frustrated antiferromagnet in Ref. [25]. Determination of the spin correlation functions
with the use of the model considered here was described in detail in Ref. [20].

The role of the Coulomb repulsion V| between holes located at the nearest oxygen
sites in superconducting pairing was clarified in Ref. [5]. It was shown that the Fourier
transform of the Coulomb interaction V,;, = 4V; cos(gx/2) cos(gy/2) vanishes in the
set of the integral self-consistency equations determining the superconducting order
parameter with the d,>_ »-wave symmetry. Therefore, the Coulomb repulsion of holes
located at the neighboring oxygen sites V; has no influence on the Cooper pairing in
the d-wave channel.

This result allows us to neglect all the contributions connected with Vj in the system
(7) and restrict ourselves to a treatment of the interactions V, and VZ/ between the next-
nearest neighbors. For the sake of simplicity, we rename A4y — Agi and Asp — Az
and, in view of the experimental data, we omit all the contributions in (7) which do
not lead to the superconducting d-wave pairing. As a result, the relation between the
introduced order parameters A  and the anomalous averages becomes

2
Ay = - ;(Vz cosky cos gy + V, cos ky cos qx)(aqTa_N),
2
Ay = -V %:(Vz cosky cos gx + V, cos ky cos qy)(qub_N),
1
Az = N Zlk—q«LqTL—qi) — Ciugru—qy))
q
1 C
-y Xq:{VQCl cosky cosqy — U,,71 cos ky
/ G
+ Vo | Crcosky, — > cos 2ky | cos gy ({agra—q))
1 C
-v ;{VZCI cos ky COS gy — U,,?l cosky

c
+V; (Cl cosky — 73 cos 2ky) cos ¢y } (byrb_q)). (10)

4 Self-Consistent Equations and Their Solutions

It follows from the analysis of the system (5) in the superconducting phase that the
fermionic excitations spectrum of the quasiparticles within the SFM is determined by
the solutions of the sextic equation in w, which can be reduced to the bicubic equation.
At low doping, the dynamics of holes is determined by the lower band Ej; which is
caused by the strong spin-fermion coupling inducing both the exchange interaction
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between holes and the localized spins at the nearest copper ions and spin-correlated
hoppings [24].

To analyze the Cooper instability, we express the anomalous Green’s functions
in terms of the Aj; parameters (! = 1, 2, 3). Then, using the spectral theorem [26],
we find the expressions for the anomalous averages and obtain the closed system of
integral equations for the superconducting order parameter components. The kernels
of these equations appear to be split and this allows us to seek a solution of this system
in the form

A = Agi(cos ky — cosky). (11
Here, we neglect the contributions of harmonics cos 2k, and cos 2k, of the d-wave
pairing because of their small contribution, according to our previous calculations [6].
Substituting Eq. (11) into the system of integral equations and equating the coefficients

of the corresponding trigonometric functions, we finally arrive at the closed system of
self-consistent equations

1 /
Ao = Y Z (Vycos gy — Vacos gy) Aga(Elg, Aot Az, Ao3) Ry,
q
1 /
Ay = N Z (Vacos gy — V5 cosqy) Apy(E1g. Ao, Aoz, Ao3) Ry,
q

1
Az = N Z (cos gx — cosgy) [ALL(Elq, Aot, Aoz, Aps)
q

+C (ngAaa(Elqv Qo1 Aoz, Aa) + sy App(E1g. Aot Ao, Aoz)
+ Yy (Aap(Erg, Aots Az, Ao3) + Apa(Erg, Aot, A, A03))>]Rq

1 Cq
— 5 2.5 (Up/2+ V3cosqe = Vacosgy) Aaa(Elg. Aot Ao, Ao3)Ry

q
1 Cq
— < 25 (Up/2+ Vacosge — Vicosay) Apy(Eig, Aot A, Ao3) Ry,
q
(12)

tanh (Elq/ZT)
2E1q(E12q - qu)(Elzq - qu)
equation. Solving system (12) with regard to the equation for the doping dependence
x of the chemical potential

where R, =

and E j, are the solutions of the bicubic

x 1 Z (An(E1q, Aot, Aoz, An3) f(E1g) — AN(—E\g, Aor, Aoz, Ao3) f(—Elg))
q

Z - N 2 2 2 2
26, (B, - E2,) (B3, - £2,)

(13)
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Fig. 2 Amplitudes of the superconducting order parameter components versus doping level (Color figure
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Fig.3 Superconducting gap versus quasimomenta on the Fermi contouratx = 0.125, 7 = 0.136eV, T=0

and the different values of the Coulomb interactions (Color figure online)

where f(E1y) = (eF14/T 4 1)~ is the Fermi-Dirac distribution function, we find the
dependence of amplitudes Ag, Aga, Aoz of the superconducting order components
on the doping (Fig. 2). The functions A,q, App, Aab, Aba, ALL, An enter Egs. (12)

and (13) are found from Eq. (5) and listed in “Appendix.”
Figure 3 shows the modifications of the gap in the excitations spectrum of the
spin-polaron quasiparticles on the Fermi contour in the superconducting phase at the
different values of the Coulomb interactions. It can be seen that the dependence of the
gap on the quasimomentum in the first Brillouin zone is characterized by the d-wave
symmetry. It follows from the plot that an increase in the intensity of interactions U,
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and V5 results in the narrowing of the superconducting gap; however, as it was shown
in Ref. [6], it determines the superconducting transition temperatures that are observed
experimentally.

5 Conclusion

In conclusion, we have shown that the resulting gap in the excitation spectrum of the
spin-polaron quasiparticles within the spin-fermion model with the on-site Coulomb
repulsion of holes U, and the intersite Coulomb repulsion V; of holes at the next-
nearest-neighbor oxygen sites on the CuO; plane is formed by three components
and determined by solutions of the system of self-consistency integral equations. It
is shown that the inclusion of the realistic values of U, and V; leads to the nar-
rowing of the d-wave symmetry superconducting gap; however, it determines the
superconducting transition temperatures remaining within the limits that are observed
experimentally.
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Appendix
The functions Ag,, Apb, Aab, Abas ALL, An enter Egs. (12) and (13) have the form

Aaa(E1x) = AREY, — (Autf + Akl + 2AuKiJ} + |Anl* Ak + Ay

+ A3 P A/ K — JEA3) ER + Agt?E? + 2t Jy Az I &y + J)?K/%Alk

— 2t Aok Ky Jy Iy — 28, A Kk J2 — JfAﬁkAlkﬂzk — | Anl? T2 Asp

— A ] Ak Asi + AnESEL + | AP AikéL + | An P | Anl* A/ K

— P Aut} + | AP Aok — TP AwE] + | AP Anéy /KL + T KT A, (14)
App(Erx) = Ak E}y — (Ask€p + At + 200K} + | Al Aok + Ak}

+ A3k * Aok /Ky — Jy2A3k)Efk — 26, Aok K J2 + 26t T Jy Asy

=2 A KiEL T Ty — JTARE] + TIKE Mgy — TP A A Aoy — J7 A A Az

— I Autt — | AP Ad) + AuEEL + | AP Akl + JTITKE A

+ ARIREL + 1 An P Auil /K + 1Al Ask? Ao /K + 1 Aul Anl, (15
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ALL(Ew) = AwEf /K + (J7KZ Mg — (|Anl* + [ AP Az — 260 Axy
— Asi(EF + &) + JIKFAWET / Ki + (26 Iy KL Aot T + 21 Ty K A Iy
AP AnE] — JTKFAwt; — 26 Ayt — KR AuEl + 1 Asy
— JEKFAE]+ A5 At Az — JEKEGE A+ | A > Al — TIK| Agie* A
+ A Ak Ak + | AP | Ak Az + Aské 6y — AP TF K Ao) Kk, (16)
Aap(E1p) = AlE3y + A EY, + Az Erg + Aag, (17)
Ak = 1 (Aox — Ark),
App =t (6x Aok + &y Arp) + T Jy (A Ky + Ay Ky + Azyp),
Ask = JeJyE (A Ky + Ax) — Aw o JyEy + At (J; — D)
+ 1A% Pt (A — Aw) /KE — EyAuKiJyJy + At}
+EL T Iy Kk (Ao — Arp) — Atiéf + Jkaﬂlktk — e Aok K J2,
Agk = A KiEL T — Ey AtiEf — Ey| A3 > At/ K — & T AsicJ by
+ yKidy Apnkr + &y AuKibL Ty T — il Ase|* A/ K} + 7 Asid
— Iy At I + Ty A A A + 2K  AutiéL — tApén} — JyKETD Aoy
— LK Ay + &y T Asty,

Apa(E1x) = —AE3 + A EY, — AscErx + A, (18)

AN(Ew) = B + & EYy — ( + | A3/ KR + 2KiJ? + K J? + 67 + £2
AR/ KD EY + QKitiJy Ty — EEF — &&) — (1 Aul* + [Ax*/KDéx
— 2Kk TS + KiELT] + &0 ED + (A3 8] /K] — 26, KiéL I} + T K]
| A PR K} — 2KiEpndyJx + 6267 + K J262 + J2Kitf + 1767
— AR IR Az + JEKRTE — J2A% Ag + | AP Ki I + | Aok %67 + T3 K Ee
+ AP A3/ KE =26y Kiti Jy J) Eve+ JEKitfEp — Kk JRE2 + JPKRI2E,
1A PEESKE + Ty Ay At Ty + Az Ay Tyt T — Ey1267 — 203 K,
— &AM/ KE — TP A% Agiks + | AP | A PE /K + EE08]

+ 26, Kbt Sy Ty — Agg A5y T8 — 28 KibL £ J7 — | AP KibL 7 +| Aok 76,87
(19)

The functions A1, Axr and A3y are defined in Eq. (11).
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