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Abstract
Taking into account the real crystalline structure of the CuO2 plane within the spin-
fermion model and using the diagram technique, the spin-polaron concept of the
fermionic excitations in cuprate superconductors is implemented. It is shown that an
account of the on-site scattering processes leads to considerable binding energy of
the spin-polaron quasiparticles. An account of the two-site spin-fermion scattering
processes results in the energy spectrum and spectral properties of the spin-polaron
quasiparticles which agree well with experimental data on cuprate superconductors.

Keywords Cuprate superconductors · Unconventional superconductivity ·
Spin-charge correlations

1 Introduction

Nowadays, it is established that the strong interaction between the carriers and the spin
subsystem causes the complicated behavior of the spectral and transport properties of
the high-temperature superconductors [1–3]. The doping transition from the insulator
state to the metal state is accompanied by the appearance of a pseudogap with the
modulation of the spectral carrier density and the drastic reduction of the density of
states in the vicinity of the chemical potential [4,5]. Despite considerable efforts of
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researchers, the pseudogap behavior is still one of the most exciting and puzzling
phenomena in the field of high-temperature superconductivity in the cuprates.

On the other hand, it is also known that the strong spin-fermion correlations under-
lie the formation of the spin-polaron quasiparticles [6,7]. It was shown that the theory
based on the spin-polaron concept within the realistic spin-fermion model (SFM) [8–
14] allows one to describe correctly a number of important features of the spectral
properties of the cuprates in the normal phase [15]. An important factor confirming
the promise of this concept is the occurrence of the Cooper instability in the ensemble
of the spin-polaron quasiparticles for the actual d-wave pairing and critical tempera-
tures corresponding to the experimental data [16]. Recently [17,18], the spin-polaron
concept acquired special significance, since it allowed one to solve a problem concern-
ing the stability of the superconducting d-wave pairing toward the intersite Coulomb
repulsion of fermions located at the nearest oxygen ions of the CuO2 plane.

In view of these circumstances, the problem of description of the pseudogap state
under the conditions where this state is formed not for the bare holes but in the sub-
system of the spin polarons is of current interest. An elegant method for consideration
of this problem is the diagram technique suggesting a particular algorithm for obtain-
ing the exact representation of a single-particle Green’s function which involves the
self-energy operator

Σ( p, iωn) = Σ(1)( p, iωn) + Σ(2)( p, iωn) + . . .

Each termΣ(m)( p, iωn) arises as a result of an account for the spin-fermion scattering
processes in all the orders of the perturbation theory, which are connected to them-site
spin correlations. Thediagram technique is considered to be awell-controlled approach
and makes it possible to describe adequately the main features of an ensemble of the
spin polarons. Thus, the development of the diagram approach to the problem of the
properties of the normal phase of the spin-polaron quasiparticles within the SFM is
the subject of this work.

2 Hamiltonian of the'− d Model

It is known that the three-band p − d model or the Emery model [19,20] describes
adequately the main features of the electronic structure of the CuO2 plane in high-
Tc cuprate superconductors. In the regime of strong electron correlations, when the
on-site Coulomb repulsion energy Ud for holes at one copper ion is large, the Emery
model can be reduced to the SFM [8–14] with the Hamiltonian

Ĥh =
∑

kα

(
ξkx a

†
kαakα + ξky b

†
kαbkα + tk(a

†
kαbkα + b†kαakα)

)

+ J

N

∑

f kqαβ

ei f (q−k)u†kα(S f σαβ)uqβ + I

2

∑

f δ

S f S f +2δ. (1)
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The first term describes the subsystem of oxygen holes in the quasimomentum repre-

sentation, where ξkx(y) = εp −μ+ t̃(1− cos kx(y)) and t̃ = t2pd
Δpd

(
1 − Δpd

Ud − Δpd

)

takes into account the dynamics of oxygen holes coupled with the copper subsystem of
the localized spins due to the processes of the second order in the hybridization param-
eter tpd . Here, Δpd = εp − εd is the charge transfer gap. The operators a†kα(akα) and

b†kα(bkα) are the hole creation (annihilation) operators with the px - and py-orbitals.
The bare on-site energy of oxygen holes is εp and α = ±1/2 is the spin projec-
tion. The Fourier transform tk = (2t̃ − 4t)sk,x sk,y describes the hopping processes

of holes on oxygen sites, where sk,x(y) = sin
kx(y)
2

and t is the hopping parameter.

The second term corresponds to the exchange interaction between subsystems of the
oxygen holes and the localized copper spins, where S f is the operator of a spin local-
ized at the site with index f , σ = (σ x , σ y, σ z) is the vector of the Pauli matrices,

ukβ = sk,xakβ + sk,ybkβ , and J = 4t2pd
Δpd

(
1+ Δpd

Ud − Δpd

)
. The last term corresponds

to the superexchange interaction between the neighboring copper spins arising in the
fourth order of the perturbation theory.

The analysis of energy structure of the SFM can be simplified with the help of
the canonical transformation if one introduces new operators ϕk and ψk which are
connected with operators akα and bkα as follows:

akα = sk,x
νk

ϕkα + sk,y
νk

ψkα, bkα = sk,x
νk

ψkα − sk,y
νk

ϕkα, (2)

where νk =
√
s2k,x + s2k,y . Due to the fact that only ϕ-fermions interact with the spin

subsystem [21] and owing to this interaction their energy band is considerably lower
[22], the terms containing inactive ψ-fermions can be omitted, and Hamiltonian (1)
of the SFM can be reduced to the Hamiltonian of so-called ϕ − d model [22,23]

Ĥϕ−d =
∑

kα

ξkϕ
†
kαϕkα + 1

N

∑

f kqαβ

ei f (q−k) Jkqϕ
†
kαS f σαβϕqβ

+1

2

∑

f m

I f mS f Sm, (3)

where ξk = εp − μ + 2t̃ν2k − 8t
s2k,x s

2
k,y

ν2k
and Jkq = Jνkνq .

3 Effective Interaction, Self-Energy Part, and the Spin-Polaron
Green’s Function

To calculate the fermionic excitations spectrum within the SFM, we introduce the
Matsubara Green’s function [24,25]
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Gα(k, τ − τ ′) = −〈Tτ ϕ̃kα(τ )ϕ̃
†
kα(τ ′)〉 = T

∑

ωn

e−iωn(τ−τ ′)Gα(k, iωn), (4)

where Tτ is the operator of Matsubara time ordering, ωn = (2n + 1)πT , n =
0,±1,±2, . . . is the Matsubara frequency and T is the temperature. In Eq. (4), the
operators ϕ are written in the Heisenberg representation with Matsubara time τ

ϕ̃kα(τ ) = exp(τ Ĥϕ−d)ϕkα exp(−τ Ĥϕ−d), 0 < τ < 1/T . (5)

To find theMatsubara Green’s function, we use a special form of diagram technique
which is the combination of theFeynmandiagram technique and the diagram technique
for the spin operators. For the Fourier transform Gα(k, iωn), it is easy to write down
the Dyson equation in the graphical form

(6)

In Eq. (6), the bold line represents the total propagator Gα(k, iωn). The circle with
inscribed symbol Σ corresponds to the irreducible self-energy operator Σ(k, iωn)

[26]. The thin line denotes the bare fermionic Green’s function for which the explicit
expression is

G0(k, iωn) = 1

iωn − ξk
. (7)

In the analytical form, the Dyson equation is given by

Gα(k, iωn) = 1

iωm − ξk − Σ(k, iωn)
. (8)

The calculation of the self-energy part Σ(k, iωn) is connected with the calculation of
the interaction operator of the Hamiltonian Ĥϕ−d . Obviously, an account for Ĥϕ−d

cannot be realized using the simple perturbation theory based on the parameter of
exchange interaction J . Indeed, the value of this interaction is J ≈ 3eV and such a
high value results in formation of the spin-polaron quasiparticles [7]. The description
of this quasiparticles demands an account for all the contributions of series of the
perturbation theory up to infinity corresponding to an account for the processes of
on-site scattering. The solution of such a problem is related to the summation of an
infinite series for the self-energy part which has the following graphical form

(9)
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The intersection of the thin solid line and the wavy line forms the bare vertex

(10)

which corresponds to the amplitude of interaction Jkq . It is important that this ampli-
tude is split in indices k and q, namely, Jkq = Jνkνq .

The dark circle at the intersection of the interaction lines corresponds to the on-site
irreducible cumulant Kn of the n-th order. An order of Kn in the graph is determined
by the number of convergent lines of interaction and is equal to the order of diagram
in parameter J . Cumulant Kn is given by the expression

Kn =
∑

j1 j2... jn

〈S j1
f S

j2
f . . . S jn

f 〉irr (σ j1σ j2 . . . σ jn )αα. (11)

One canfind an exact recurrence relation convenient for the calculation of cumulants
Kn

Kn = −Kn−1. (12)

We take into account the fact that the 2D subsystem of spins localized at copper
ions at T �= 0 is in the quantum spin-liquid state [27,28]. In this case, spin correlation
functions Cδ = 〈S f S f +δ〉 satisfy the relations

Cδ = 3〈Sxf Sxf +δ〉 = 3〈Syf Syf+δ〉 = 3〈Szf Szf +δ〉, (13)

where δ is the distance between the copper ions. Additionally, 〈Sxf 〉 = 〈Syf 〉 = 〈Szf 〉 =
0. According to Eq. (11), one can obtain that

K2 =
∑

i j

〈Sif S j
f 〉irr (σ iσ j )αα =

∑

i j

1

4
δi j −

∑

i jk

ε2i jk〈Skf 〉σ k
αα = 3

4
, (14)

where εi jk is the Levi-Civita symbol. Therefore, we obtain

Kn = (−1)n(3/4), n ≥ 2. (15)

After summation of infinite series with regard to Eq. (15), we find an expression for the
self-energy operator which takes into account the processes of the on-site scattering
in all the orders of the perturbation theory

Σ(1)(k, iωn) = 3

4
Jν2k

X(iωn)

1 + X(iωn)
, (16)
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where

X(iωn) = 1

N

∑

q

Jν2qG0(q, iωn) = 1

N

∑

q

Jν2q

iωn − ξq
. (17)

Using the Dyson equation, we arrive at the expression for the spin-polaron Green’s
function

G(1)
α (k, iωn) = 1 + X(iωn)

(iωn − ξk)(1 + X(iωn)) − (3/4)Jν2k X(iωn)
. (18)

Note that Eq. (18) in the limiting case, when one can neglect the intraband hopping
of fermions, leads to the right result for the energies corresponding to the singlet and
triplet states. Indeed, in this limit ν2k → 1, εk → ε and X(iωn) = J/(iωn − ε + μ).
As a result, the energies of the singlet and triplet states are

ω = ε − μ − 3J

2
, ω = ε − μ + J

2
. (19)

4 Two-Site Processes of the Spin-Fluctuation Scattering

The approximation used in Sect. 3 takes into account the on-site spin-fluctuation
scattering processes in all the orders of perturbation theory and allows us to obtain
the self-energy operator and the Green’s function describing the main effect which
is the formation of a strongly coupled spin-polaron state. However, to describe the
correct quasimomentum dependence of the spin-polaron quasiparticle energy, the
used approximation is not enough. In this Section, we go beyond the first order
approximation by taking into account the contributions determined by the multisite
spin-fluctuation scattering processes in the self-energy part.

To calculate these contributions, we take into account two circumstances. The first
one is connected with the fact that the subsystem of localized copper ions is in the
spin-liquid state as it was mentioned in Sect. 3. This state is characterized by nonzero
values of the two-site correlation functions Cδ . The second circumstance is related
to the fact that the multisite correlation functions C f1 f2... f2n = 〈Si1f1 S

i2
f2

. . . Si2nf2n 〉 are
reduced rapidly with an increase in an even number of sites (the correlation func-
tions with an odd number of sites are equal to zero). Correspondingly, we can restrict
ourselves to the contributions induced by only the two-site scattering processes. The
contributions of these processes to the self-energy operator are described by the fol-
lowing two classes of diagrams

(20)
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(21)

The analysis shows that the other diagrams give zero or insignificant contributions to
the self-energy operator. In graphs (20) and (21), the ovals, which include two points
at the ends of the lines of interaction, correspond to the two-site correlator

Cδ = 〈S f S f+δ〉, δ �= 0. (22)

The values of these correlators for the spin-liquid phase of the 2D system of localized
spins coupled by the antiferromagnetic Heisenberg interaction are well established
[29].

The bold wavy line stands for an effective interaction

J̃kq(iωn) = Jkq
1 + X(iωn)

. (23)

The analytical expression for the contributions determined by the two-site spin-
fluctuation scattering processes (20) and (21) in the self-energy part has the form

Σ(2)(k, iωn) = Σ
(2)
1 (k, iωn) + Σ

(2)
2 (k, iωn),

Σ
(2)
1 (k, iωn) = Jν2k

∑

δ

Cδ

e−ikδXδ(iωn)

(1 + X(iωn))2
,

Σ
(2)
2 (k, iωn) = Jν2k

∑

δ

Cδ

X2
δ (iωn)

(1 + X(iωn))3
, (24)

where

Xδ(iωn) = 1

N

∑

q

Jν2qe
−iqδ

iωn − ξq
. (25)

5 Results and Discussion

Using Eqs. (8), (16), (26), and taking into account that Σ(k, iωn) = Σ(1)(k, iωn) +
Σ(2)(k, iωn), one can calculate the energy spectrum of the system. The Fermi exci-
tation spectrum in the ϕ − d model is determined by the solutions of the dispersion
equation
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Fig. 1 Energy spectrum of the
ϕ − d model calculated for the
set of parameters
J = 2.86, t̃ = 0.22, t = 0.1
and the values of the two-site
correlation functions C1 =
−0.27, C2 = 0.1, C3 = 0.1
(Color figure online)

ω − ξk − 3

4
Jν2k

X(ω)

1 + X(ω)
− Jν2k

∑

δ

Cδ

(
e−ikδXδ(ω)

(1 + X(ω))2
+ X2

δ (ω)

(1 + X(ω))3

)
= 0.

(26)

The calculations show that the main mechanism for the formation of the spin-
polaron coupling consists in the strong spin-fermion interaction provided that on-site
correlations are taken into account in all the orders of the perturbation theory in the
exchangeparameter J .However, this spin-polaronquasiparticle has aminimumenergy
at the point (π, π) of the Brillouin zone, since the effective spin-fermion coupling
constant Jν2k at this point has the greatest value.

The energy structure of the spin-polaron quasiparticles is changed qualitatively as
soon as two-site spin-fermion scattering processes are taken into account. The most
important result of such a change manifests itself in the displacement of the minimum
of the spin-polaron band from point (π, π) to point (π/2, π/2) of the Brillouin zone.
Figure 1 shows the lower energy band of the ϕ − d model obtained for the set of
parameters J = 2.86, t̃ = 0.22, t = 0.1 [23] and the values of the two-site correlation
functions C1 = −0.27, C2 = 0.1, C3 = 0.1 [29]. The energy spectrum of the
spin-polaron quasiparticles agrees quantitatively well with the energy structure of
quasiparticles in the normal phase of cuprate superconductors. It should be emphasized
that the shift of the minimum of the bottom of the spin-polaron band due to the two-
site spin-fluctuation scattering processes occurred without introducing any additional
fitting parameters.

Another important result of the developed theory is connected with the non-
monotonic dependence of the spectral intensity

A(k, ω) = − 1

π
ImG(k, ω + iδ), (27)

when moving along the Brillouin zone (Fig. 2). This suggests the pseudogap behavior
of the normal phase of cuprate superconductors.
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Fig. 2 Spectral intensity A(k, ω) (a) and the residue of the Green’s function Z(k) =
∫

ω
A(k, ω)dω (b)

calculated for the same parameters as those in Fig. 1 (Color figure online)

Conclusion

The proposed method for calculating the Fermi excitation spectrum in the normal
phase of cuprate superconductors takes into account the main features of the real
structure of these materials. First of all, this is due to the special features of the CuO2
plane containing two oxygen ions in the unit cell. The second important feature is that
the hole motion over oxygen ions is strongly correlated with the spin dynamics of the
copper ions. This circumstance demands rigorous account for the on-site correlations.
This problem is solved by the method based on the combination of the Feynman
diagram technique and cumulant expansion for the spin operators.

It is essential that we managed to obtain an exact analytical expression for the part
of the self-energy operator which is associated with the one- and two-site scattering
processes in all the orders of perturbation theory. This allows us to derive the Green’s
function describing the spin-polaron quasiparticle possessing the energy which is
smaller than the energy of the bare hole by the value ∼ J .

The calculations of the energy structure result in the spin-polaron band with the
minimumof the bottomat the point (π/2, π/2) of theBrillouin zone,which is in a good
agreement with experimental data on cuprate superconductors. The calculation of the
spectral intensity whenmoving along the Brillouin zone demonstrates the modulation,
which can lead to the formation of the pseudogap.
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