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Abstract
In the framework of the cluster perturbation theory for the 2D Hubbard and Hubbard-Holstein models at low hole doping, we
have studied the effect of local and short-range correlations in strongly correlated systems on the anomalous features in the
electronic spectrum by investigating the fine structure of quasiparticle bands. Different anomalous features of spectrum are
obtained as the result of intrinsic properties of strongly correlated electron and polaron bands in the presence of short-range
correlations. Particularly, features similar to the electron-like Fermi-pockets of cuprates at hole doping p ∼ 0.1 are obtained
without ad hoc introducing a charge density wave order parameter within the Hubbard model in a unified manner with other
known peculiarities of the pseudogap phase like Fermi-arcs, pockets, waterfalls, and kink-like features. The Fermi surface
is mainly formed by dispersive quasiparticle bands with large spectral weight, formed by coherent low-energy exications.
Within the Hubbard-Holstein model at moderate phonon frequencies, we show that modest values of local electron-phonon
interaction are capable of introducing low-energy kink-like features and affecting the Fermi surface by hybridization of the
fermionic quasiparticle bands with the Franck-Condon resonances.

Keywords The Hubbard model · The Hubbard-Holstein model · HTSC · Cluster perturbation theory · Fermi surface ·
Spectral properties

1 Introduction

The physics of strongly correlated electron systems is
greatly influenced by many-particle correlation effects.
They result in complicated phase diagrams and exotic
properties of strongly correlated compounds. A significant
contribution to the formation of such effects is provided
by local and short-range correlations as the consequence
of Coulomb interaction’s local character. One of the
manifestations of correlation effects is the presence of
different anomalies in the electronic spectrum. Due to the
ability to investigate the electronic structure by means
of angle-resolved photoemission spectroscopy (ARPES),
anomalous properties of high-Tc cuprates, such as the
pseudogap and Fermi-arcs, are known [1]. Further ARPES
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studies of high-Tc cuprates, as well as other strongly
correlated compounds, revealed a variety of low-energy [2–
12] and also high-energy [13–17] kinks along with the so-
called waterfalls. Another anomalous property, an electron-
like pocket at the Fermi surface at hole doping p ∼ 0.1, has
been uncovered by the observation of quantum oscillations
[18, 19] in conjunction with the measurements of the Hall,
Seebeck, and Nernst coefficients [20, 21] in high-Tc hole-
doped cuprates. A change in the Hall coefficient’s sign has
been detected in YBa2Cu3Oy at p ≈ 0.08 [22], implying
a Fermi surface reconstruction. Hole-like pockets have also
been reported [23] to coexist with an electron pocket in
YBa2Cu3Oy .

At present, there is no consensus on the nature of all these
anomalies in the electronic structure of strongly correlated
systems. However, short-range correlations stemming from
Coulomb repulsion in correlated metals in the vicinity
of the Mott transition are known to produce significant
influence on the pseudogap and Fermi-arcs [24–26]. The
studies using the dynamical cluster approximation show
that metal-insulator transition proceeds in two stages with
a gap opening first at (π, 0) [27, 28]. Moving away from
the Fermi energy, we face low-energy kinks, which are
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usually observed at energies � 100 meV, and high-energy
kinks, at energies � 500 meV, accompanied by waterfalls.
There are a number of works in which low-energy kink-like
features have been modeled in terms of perturbation theory
[29–38] due to the interaction of electrons with phonons
and (or) spin fluctuations. In the paper [36], high-energy
kinks due to phonons have also been reported. However,
it appears that the presence of some special electron-
boson interaction is not necessary to observe kink-like
features in the electronic structure, as it was shown within
dynamical mean-field theory (DMFT) for the Hubbard
model [39]. This way, in the framework of DMFT +
� [40] and within DMFT simulations of the Hubbard-
Holstein model [41], both phononic and pure electronic low-
energy kinks have been observed. Low-energy anomalies
have been considered within diagrammatic quantum Monte
Carlo for the t-J-Holstein model [42]. Strong evidence in
support of the important role of local Coulomb interaction
in the formation of high-energy waterfall anomalies has
been obtained by dynamical cluster [43] and determinant
quantum Monte Carlo (DQMC) [17]. The whole picture
of the electronic structure’s features, such as Fermi-arcs,
kinks, and waterfalls, has been obtained within the cluster
DMFT [44] and cluster perturbation theory (CPT) [45,
46] studies of the Hubbard model, as well as within CPT
applied to the t-J model [47]. The influence of correlations
and spin fluctuations on the features of single-electron
spectrum have been studied within the Hubbard model and
the t-J models [48–50]. The comparison of the electronic
spectral function of the Hubbard and t-J models reveals
important influence of three-site correlated hoppings on the
high-energy electronic structure [48, 51]. Aside from one-
band models, features of electronic spectrum have been
recently studied within the three-band model of cuprates
using DQMC, exact diagonalization (ED), and CPT [52],
providing information about contribution from different
orbitals to the spectral function. Turning back to the Fermi
level, the Fermi surface’s reconstruction due to the charge
density wave (CDW) ordering at p ∼ 0.1 was suggested
as the mechanism of the nodal electron pocket’s formation
[53] and shown to produce coexisting electron and hole
pockets within the phenomenological mean-field model
[54] in agreement with the finding in the experiments
on quantum oscillations [23]. However, within a single-
electron approach, the presence of density waves is the only
mechanism that can lead to the Fermi surface reconstruction
of this type. As opposed to this, the quasiparticle bands in
the presence of short-range strong correlations behave in a
highly nontrivial way.

The aim of this paper is to study the role played by
local and short-range correlations stemming from electron-
electron and electron-phonon interactions on the formation
of anomalous features in the electronic structure of strongly

correlated electron systems within the 2D Hubbard and
Hubbard-Holstein models at hole doping. The Hubbard
model is the fundamental microscopic model to investigate
the role of correlations due to on-site Coulomb repulsion.
It can be obtained as the effective model of cuprates for
the excitation energy E < Et , where Et ≈ 2 eV is the
two-hole triplet state energy over the Zhang-Rice singlet
[55]. The Hubbard-Holstein model includes the interaction
of phonons with local electron density over the Hubbard
Hamiltonian.

We aim to obtain the fine structure of quasiparticle bands
contributing to the electron spectral function within CPT
[56, 57]. CPT provides a possibility to consider exactly local
and short-range correlations in the framework of a finite
cluster. Usually, CPT is based on the exact cluster ground
state and a few excited states obtained by the Lanczos
method [58]. In a strongly correlated system, even high-
energy states can be important to obtain the excitation
spectrum. Thus, we use full ED instead of the Lanczos
method, to calculate cluster’s Green’s functions. The side
benefit of full ED approach is the ability to calculate
the electronic structure without an artificial Lorentzian
broadening of the spectral function within a norm-
conserving approximation. However, implementations of
CPT based on Lanczos method are capable of treating
square clusters of 16 sites in the Hubbard model, while
the largest square cluster accessible by full ED is 9-site
one. Nevertheless, we will show that the spectral function
obtained within CPT implemented with 9-site with some
Lorentzian broadening is in a good agreement with the
results of CPT on a 16-site cluster, obtained with the same
broadening. Thus, we have a starting point to study the
fine structure of the spectrum. Working with the Hubbard-
Holstein model within the same approach, we use a 4-site
square cluster with 8 phonons. With respect to the Hubbard-
Holstein model, the dignity of CPT is its ability to treat
contributions from electron-electron and electron-phonon
interactions to the short-range and local correlations on an
equal footing.

This paper is organized as follows. In Section 2, we
provide information about the models under consideration
as well as a brief discussion of CPT for the convenience
of the reader. Sections 3 and 4 present our results on the
anomalous spectral features of the Hubbard and Hubbard-
Holstein models. In Section 5, we give concluding remarks.

2Models andMethod

The Hubbard model [59] is given by the Hamiltonian

H =
∑

i,σ

{
(ε − μ) ni,σ + U

2
ni,σ ni,σ̄

}
−

∑

ij,σ

tij a
†
i,σ aj,σ , (1)
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where ai,σ is the annihilation operator of an electron on a
site i, niσ = a

†
iσ aiσ , tij is the hopping integral, and U is the

on-site Coulomb interaction. The Hubbard-Holstein model
is obtained from Eq. 1 by adding the optical phonon energy
and local electron-phonon interaction terms [60, 61]

H ′ = ωph

∑

i

b
†
i bi − g

∑

i

ni

(
b

†
i + bi

)
. (2)

In Eq. 2, the phonon annihilation operators bi are
introduced, ωph is the phonon frequency in the units of
�, g is the electron-phonon coupling constant, and ni =
ni↑+ni↓. We introduce the dimensionless coupling constant
λ = 2g2/

(
ωphW

)
, where W = 8t is the noninteracting

bandwidth.
The first step in CPT construction is to cover the lattice

by translations of a cluster. The main idea of CPT is to
take into account short-range correlations explicitly while
considering long-range interactions in terms of perturbation
theory [62, 63]. In its present form, it was derived from
strong-coupling perturbation theory [57]. It was shown
[64] to be a limiting case of the self-energy functional
approach [65]. It is also convenient to implement CPT
by working within the formalism of the Hubbard X-
operators constructed from exact cluster eigenstates for two
reasons [66–69]. First, diagonal X-operators give the local
eigenstates, while off-diagonal describe Fermi- and Bose-
type excitations. That allows to rewrite the intercluster
interactions as a bilinear product of X-operators. Second, in
spite of large number of local eigenstates, 4Nc for a cluster
with Nc atoms, in the case of the Hubbard model, only
the small part of 42Nc local quasiparticles gives significant
contribution to the electron spectral function. This allows
to formulate a norm-conserving approximation. To control
the sum rule for the spectral weight function Aσ (k, ω),
we denote f = ∫

dωAσ (k, ω). Taking all excitations
into account, one obtains f = 1. For example, for a
2 × 2 cluster at half filling and U = 8t , considering
only near-neighbor hoppings, the modest number of 25
excitations provides f > 0.9999. Working with 3 × 3
cluster at low doping levels, it is usually required to
include less than 2000 excitations to obtain f > 0.997.
We introduce a two-dimensional index α = (p, q) that
numerates excitations with annihilation of an electron.
Then, we built Hubbard operators Xα = |p〉〈q| [70] on the
basis of cluster eigenstates obtained by full ED. X-operators
provide a natural formalism to represent an electron as
a composite quasiparticle: the annihilation operator of an
electron with spin σ on a site i is a linear combination of
X-operators, cσ i = ∑

α γσi (α) Xα , where γi (α) are the
annihilation operator’s matrix elements. Both Hamiltonians

under consideration can be rewritten as the sum of the
intracluster part and intercluster hopping:

H =
∑

f,n

EnX
nn
f +

∑

f,r>0

T
α,β
r Xα

f
†
X

β

f+r, (3)

where f is a cluster coordinate, En is the exact cluster
eigenstate, r is a vector connecting nearest clusters, and
T

α,β
r describes intercluster hopping of excitations.

Next, we define the Green’s functions Dα,β

(
k̃, ω

)
=

〈〈
Xα|Xβ†

〉〉

k̃,ω
, where k̃ is the wave vector defined

in the reduced Brillouin zone. The generalized Dyson
equation derived in terms of the Hubbard operators diagram
technique [71, 72] reads [73]:

D̂
(
k̃, ω

)
=

[
Ĝ0 (ω)

−1 − P̂
(
k̃, ω

)
T̂

(
k̃
)

+ �̂
(
k̃, ω

) ]−1

P̂
(
k̃, ω

)
, (4)

where

Tαβ

(
k̃
)

=
∑

r>0

(
T

αβ
r eik̃r − T

βα
r e−ik̃r

)
(5)

is the element of the hopping matrix and

G0
α,β (ω) = δα,β

ω − Eα + μ
(6)

is the exact local propagator, Eα = Eq − Ep, and μ is
the chemical potential. In Eq. 4, �̂ (q, ω) is the intercluster

self-energy and P̂
(
k̃, ω

)
is the strength operator. In the

Hubbard-I approximation for the intercluster hopping, one

has �̂
(
k̃, ω

)
= 0 and Pαβ

(
k̃, ω

)
= δαβF (α) =

δαβ (〈Xpp〉 + 〈Xqq〉). In this approximation, Eq. 4 reduces
to the CPT matrix equation [56], although in band
representation,

D̂
(
k̃, ω

)−1 = D̂0 (ω)−1 − T̂
(
k̃
)

, (7)

where D0
αβ (ω) = FαG0

αβ (ω).
Finally, the translation-invariant electron Green’s func-

tion is recovered following the paper [57]:

Gσ (k, ω) = 1

Nc

×
∑

αβ

∑

ij

γσ i (α) γσj (β) e−ik(ri−rj )Dαβ (k, ω),(8)

where Nc is the number of sites within a cluster and k is
defined in the original Brillouin zone.

Thus, the spectral function Aσ (k, ω) = − 1
π

ImGσ (k, ω)

is distributed among the bands of so-called Hubbard
fermions (or polarons), defined by the poles of Eq. 8,
and for a given wave number may be approximated by
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the Lorentzian distribution. In the Landau Fermi-liquid
theory, a quasiparticle is coherent when its damping is
small and spectral intensity is close to unity. Although
the imaginary part of the self-energy is zero in CPT
approximation, some qualitative information about the
degree of quasiparticle coherence/incoherence can be
gained from the spectral intensity. Single dispersive
quasiparticle bands with large spectral weight (LSW)
Aσ (k, ω) ∼ 0.5 can be interpreted as coherent parts of the
spectrum, while incoherent excitations are represented by
multiplicity of weakly dispersive bands with small spectral
weight (SSW) Aσ (k, ω) 	 0.5 as the result of a decay of
an electron. A Lorentzian broadening of spectral delta peaks
is often used in CPT. It allows to make a transformation
from a descrete set of quasiparticle bands to a continuous
energy distribution of Aσ (k, ω), like in an infinite system,
in order not to overemphasize the salient features of regions
with multiple SSW bands. Also, it allows to qualitatively
model the broadening of ARPES spectra, which depends on
different factors like finite resolution, averaging over energy
window, or temperature. However, in the regions consisting
of single LSW quasiparticles, important fine features can be
lost at the same time. So, we find it useful to discuss the bare
(without a Lorentzian broadening) CPT result, as well as
the representation in which a finite Lorentzian broadening
is used.

3 The HubbardModel

We now discuss our results on the spectral function of the
2D Hubbard t − t ′ − t ′′ −U model, where t , t ′, and t ′′ stand
for the hopping integrals between the first, the second, and
the third neighbors. The energy ω is measured in the units
of t . The U = 8t value of Coulomb repulsion is fixed. To
plot the results without a Lorentzian broadening, a stepwise
broadening of halfwidth 0.04t is given to the spectral lines
to make them clearly visible.

Figure 1b displays our results for the spectral function
plotted with a Lorentzian broadening δ = 0.16t at hole
doping p = 0 and only nearest hoppings taken into account
in comparison with the results calculated for the same
parameters within 4 × 4 cluster CPT in the paper [45] (see
Fig 1a). General agreement between panels a and b in Fig. 1
is seen. By comparing panels b and(c of Fig. 1, one can see
the correspondence between the broadened spectral weights
and the representation of the bare CPT result in Fig. 1c,
where ∼ 103 quasiparticle bands have been taken into
account (the spectral sum is f > 0.997 here and below). For
concreteness, we concentrate now on the low Hubbard band
(LHB). Particularly, the most important for the following
discussion is that in the (0, 0) − (π, π) direction the low
energy mode at ω ≈ −2t is present, and it is isolated

Fig. 1 The spectral weight distribution obtained within the CPT for
the 2D Hubbard model at p = 0, t ′ = 0, t ′′ = 0 using a 4 × 4 cluster
(adapted from the paper [45]), b, c 3×3 cluster. In b, the Lorentzian
broadening is δ = 0.16t ; in c, no Lorentzian broadening is used. In c,
only LHB is shown

from the more high-energy mode at −3.5t � ω � −2t

by the kink-like feature (see Fig. 1a, b). Around the (π, 0)

point, there is the flat mode. In Fig. 1c, it is seen that both
the low-energy mode and the flat mode are single LSW
quasiparticle bands and the low-energy kink-like feature is
due to the energy gap, which is seen right below the low-
energy mode in the bare CPT result. This kink-like feature
can be viewed as a point dividing the energy regions with
different properties of quasiparticle bands: the more high -
energy modes at −3.5t � ω � −2t in both (0, 0) − (π, π)

and (π, 0) − (0, 0) directions consist of several bands (see
Fig. 1c). Both in (0, 0)−(π, π) and (π, 0)−(0, 0) directions
the high-energy kink behavior at ω ∼ −3.5t with waterfall-
like features below is observed in Fig. 1b. Compared to the
results with a 4 × 4 cluster, the waterfall-like anomalies
in Fig. 1b have artificial kink-like features inside due to
the lack of relevant quasiparticle bands obtained with a
3 × 3 cluster. From considering Fig. 1c, it is seen that the
waterfall-like region −5t � ω � −3.5t of Fig. 1b is formed
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Fig. 2 a, b The spectral weight distribution in the LHB at p = 0.03,
t ′ = −0.2t , t ′′ = 0.15t a with δ = 0.16t and b without a Lorentzian
broadening. The dashed line indicates the Fermi level

by a large number of weakly dispersive SSW bands. So, in
Fig. 1b, the feature at ω ∼ −3.5t , which is reminiscent of
a high-energy kink, can be viewed as dividing the modes
consisting of several bands at ω ∼ −3t from the multiplicity
of SSW bands. Notably, a LSW band is present at ω ∼
−6t in Fig. 1c around (0, 0), resulting in a LSW in the
corresponding region (first noticed in the paper [74]) in
Fig. 1b . Also, at ω � −6t , the satellite mode is present in

Fig. 3 The same as in Fig. 2 at p = 1/9

Fig. 1b, formed by a number of weak dispersive bands (see
Fig. 1c).

Based on the comparison above, we conclude that the
main features of our results within a 3 × 3 cluster CPT are
in a good agreement with 4 × 4 CPT, and they can be useful
when an access to fine properties of quasiparticle bands
is needed. From general remarks concerning the electronic
structure of the 2D Hubbard model, we now turn to the
case more relevant to the pseudogap phase of cuprates
by considering non-zero hole doping and typical hopping
integrals t ′, t ′′, which are similar to the estimates made for

Fig. 4 Aσ (k, ω = 0) at various doping levels p plotted using two
different values of a Lorentzian broadening δ
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Fig. 5 a Spin and b charge
correlation functions calculated
within clusters with the specified
size and number of electrons n

La2−xSrxCuO4 at low doping [75]. We fix t ′ = −0.2t ,
t ′′ = 0.15t , for the following discussion, but the main
results are stable with respect to moderate variations of the
parameters.

From Fig. 2, which shows the spectral function at low
doping p = 0.03 when non-nearest hopping is taken into
account, it is seen that the flat mode is moved towards ω ∼
−t and becomes incoherent, while the coherent low-energy
band survives, as shown by presenting the momentum cuts
in (0, 0) − (π, π) and (π/2, 0) − (π, π) directions. Thus,
while the plot of the spectral function with a significant
broadening shows a behavior of a Fermi-arc, which grows
with doping (see Fig. 4b, d), in fact, the Fermi surface at
values of doping p � 0.075 is a pocket with a non-uniform
distribution of the spectral weight along the Fermi contour
(see Fig. 4a, c).

An interesting effect is seen with further doping: while
the Fermi level moves through the low-energy band towards
a nodal kink-like feature in Fig. 3a, the hole-like Fermi
pocket in the nodal direction undergoes a transition towards
an electron pocket, as it is seen from the electron-like
nodal dispersion near the Fermi level in Fig. 3b and the
evolution of the Fermi surface in Fig. 4. This way, the Fermi
surface undergoes a topological transition at p ≈ 0.075
(see Fig. 4e). The local electron-like character of dispersion
is not clearly seen in Fig. 3a, where the spectral peaks are
smeared out. In (π/2, 0) − (π, π) direction, a well-defined
quasiparticle band emerges at the Fermi energy. As a result,
a nodal electron pocket at the Fermi surface coexists with
two hole-like pockets, elongated along (0, 0) − (π, 0) and
(0, 0) − (0, π) directions, as it is shown in Fig. 4i, similar
to the results within the phenomenological model of CDW
ordering [54]. We note that Fermi surfaces of this type have
been obtained recently using CPT with 3 × 3 and 4 × 4

clusters within a t-J-type model (see the paper [76]). The
Fermi surface evolution, when plotted with a large value of
a Lorentzian broadening (see the right column of Fig. 4),
appears as the growth of an arc, which possibly explains
why electron and hole pockets are not commonly detected
by ARPES.

In our calculations, the existence of the nodal electron
pocket is due to the low-energy band consisting of a
single Hubbard fermion. By the construction of CPT, it
results from the effect of the short-range correlations on the
quasiparticle dispersion, without ad hoc introduced CDW.
Thus, the CDW argumentation may be an artifact resulting
from a single-electron band structure approach.1 Theory
of quantum oscillations in strongly correlated systems was
developed in the paper [77]. To further clarify the influence
of short-range correlations in our calculations, we study
intracluster spin correlation functions

S (r) = 〈
S+

0 S−
r

〉
, (9)

where S+
0 = a

†
0,↑a0,↓, S−

r = a
†
r,↓ar,↑, and charge

correlation functions

C (r) = 〈(n0 − 〈n0〉) (nr − 〈nr 〉)〉 . (10)

A site “0” in (9) and (10) is a site in the vertex of a square,
and r denotes a site belonging to the r-th coordinate sphere.
Figure 5 shows the correlation functions calculated within
a 3 × 3 cluster in comparison with the results on 4 × 4
cluster obtained with the ground-state Lanczos method. A
spin-liquid state, with

〈(
ni↑ − ni↓

)〉 = 0 and short-range
antiferromagnetic correlations decreasing with doping, is
realized within a cluster. At the same time, the charge

1A. Sherman, a remark during discussion of the CDW mechanism
of electronic pocket in hole-doped cuprates at the Superstripes-2016
conference in Ichia, Italy
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Fig. 6 The distribution of c2
m,

defined in Eq. 11, obtained with
fixed values of Nmax

ph from 4 to 9

correlations do not show a tendency to form a density
wave, only the contributions from the zeroth and the first
coordinate spheres are significant. The values of correlation
functions calculated within a 3 × 3 cluster are in a good
agreement with the trends in the results on a 4 × 4 cluster.

4 The Hubbard-Holstein Model

In this section, we present our results on the Hubbard-
Holstein model. As in the preceding section, we fix t ′ =
−0.2t , t ′′ = 0.15t , U = 8t . In our CPT calculations, we

Fig. 7 a, c, e The spectral
weight distribution in the LHB
plotted at doping p = 0.05
without a Lorentzian
broadening. b, d, f The
corresponding density of states
plotted with δ = 0.01t . In a, b,
and c–f, the results obtained
within the Hubbard model and
the Hubbard-Holstein model are
presented, respectively. c, d
ωph = 0.25t , λ = 0.039. e, f
ωph = t , λ = 0.12. The insets
show the density of states in the
vicinity of the Fermi level
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were restricted with a 2 × 2 cluster and 8 phonons. Consider
the ground-state cluster wave function written as:

|ψ0〉 =
∑

m,f,pm

cf,pm

∣∣ef

〉 ∣∣epm

〉 ≡
∑

m

cm |φm〉, (11)

where cf,pm are the coefficients of states of the electron-
phonon basis, which is a direct product of electron and
phonon sets of basis states.

∣∣ef

〉
are electron basis states of

the cluster,
∣∣epm

〉
are phonon basis states of the cluster with

m phonons. The equality on the right side of (11) introduces
the coefficient cm of the normalized m-phonon contribution
to the wave function ψ0: c2

m = ∑
f,pm

c2
f,pm

. Without electron-

phonon interaction, the only non-zero contribution is c0 =
1. The maximum of the distribution of coefficients cm,
defined in (11), generally shifts towards higher numbers
of phonons while increasing the electron-phonon constant
or lowering the frequency; this shift demonstrates the
polaronic effect in Fig. 6. Performing ED at fixed ωph,
we chose the maximal parameter λ at which the change

in the cluster’s ground-state energy does not exceed 10−3

while increasing the number of phonons Nmax
ph within the

cluster from 8 to 9. In Fig. 6, we show the convergence
of the distribution of c2

m with increasing Nmax
ph for two sets

of parameters that will be used in the following discussion,
ωph = 0.25t, λ = 0.039 and ωph = 1t, λ = 0.12.

In general, the effect of electron-phonon interaction on
the quasiparticle dispersion curves is their splitting into
polaron bands due to a hybridization with Franck-Condon
resonances [78] as demonstrated in the paper [79]. For
the first set of parameters, comparing the spectral weight
distribution and the density of states within the Hubbard
model (see Fig. 7a, b) and within the Hubbard-Holstein
model with a weak electron-phonon interaction λ = 0.039
(see Fig. 7c, d) at modest phonon frequency ωph = 0.25t

shows this effect at different energy scales of LHB: within
the in-gap states slightly above the Fermi level, at energies
−2.5t � ω � −0.5t , −4t � ω � −3t , and also in the
vicinity of Fermi level (as seen by comparing Fig. 8a, b).
In this case a kink-like behavior close to the Fermi level is
recognized in Fig. 8b, d. The Fermi surface is also affected

Fig. 8 a–d Aσ (k, ω) in the
vicinity of the Fermi level and e,
f Aσ (k, ω = 0) at doping
p = 0.05. a, c, e The results
obtained within the Hubbard
model and b, d, f within the
Hubbard-Holstein model with
ω = 0.25t , λ = 0.039 are
presented. In a, b, no Lorentzian
broadening is used. c, d and e, f
show the results with
broadening δ = 0.05t and
δ = 0.01t , respectively
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(see Fig. 8e, f) as it is formed by the weak polaronic band
when the phonons are present.

Considering the second set of parameters, ωph = t ,
λ = 0.12, it is seen from comparing panels a and b with
panels e and f of Fig. 7 that at such a high phonon frequency
even moderate electron-phonon coupling λ = 0.12t leaves
the low-energy electronic structure almost unaffected, while
the high-energy structure at ω � −t is heavily split into the
large number of polaronic bands. It can be interpreted that
the high-energy region becomes significantly incoherent. A
similar trend can be traced in the data obtained by quantum
Monte Carlo [80].

5 Conclusion

In this paper, CPT has been applied to the Hubbard and
Hubbard-Holstein t − t ′ − t ′′ − U models at low hole
doping. Based on full ED of a 3 × 3 cluster for the Hubbard
model and a 2 × 2 8-phonon cluster for the Hubbard-
Holstein model, we have obtained the fine structure of
quasiparticle bands of Hubbard fermions and polarons
in order to investigate in detail, how different spectral
anomalies arise in strongly correlated systems, when short-
range correlations from local Coulomb and electron-phonon
interactions affect the properties of such quasiparticle
bands. Although full ED allows to treat less interactions
than the ground-state Lanczos–based or renormalization
group–based [81] cluster solvers, it has an advantage when
one is interested in fine features of the electronic structure.
The full set of relevant Hubbard quasiparticle bands can be
obtained using a norm-conserving approximation without
a Lorentzian broadening (which is in fact an additional
approximation).

Having analyzed the obtained data on the Hubbard
model, we point at the existence of energy scales
with qualitatively different properties of quasiparticles.
Particularly important is the low-energy single LSW band,
which participates in the formation of anomalous spectral
features such as hole, electron Fermi pockets, and the
feature similar to the low-energy kink. Within our attempt
to analyze the electronic structure of the Hubbard-Holstein
model with equal consideration of electron-electron and
electron-phonon interactions, we observed that splitting
of fermion bands can cause low-energy kink-like features
and affect the degree of quasiparticle coherence in the
vicinity of the Fermi level at moderate phonon frequency
and low electron-phonon interaction. However, the kink-
like features from the Coulomb interactions are in general
more pronounced. We cannot claim that it proves a
pure electronic origin of the low-energy kinks found
experimentally, because in cuprates there are many phonon
modes interacting with electrons, and we have restricted our

consideration by only one mode. At high phonon frequency
and moderate electron-phonon interaction, we observe a
splitting of the high-energy spectrum into a large number
of polaron bands, while the low-energy part is almost
unaffected.

The results obtained in this paper, due to the construction
of the method, arise mainly from strong short-range
correlations. In particular, within the Hubbard model, we
observed the Lifshitz transition at p ∼ 0.08 leading to the
Fermi surface with an electron pocket, in agreement with
the results from high-field transport measurements, without
ad hoc introducing of density waves, in the same manner as
other anomalous features of the electronic structure.
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LeBoeuf, D., Laliberté, F., Hassinger, E., Ramshaw, B.J., Bonn,
D.A., Hardy, W.N., Liang, R., Park, J.H., Vignolles, D., Vignolle,
B., Taillefer, L., Proust, C.: Nat. Commun. 6, 6034 (2015)
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