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STUDY OF PECULIARITIES OF THE MICROWAVE ABSORPTION 

SPECTRUM OF NANOCRYSTALLINE THIN MAGNETIC FILMS  

B. A. Belyaev,1,2 N. M. Boev,1,2 A. V. Izotov,1,2 and P. N. Solovev1,2  UDC 537.621; 004.942 

Based on the micromagnetic model which takes into account the random distribution of the uniaxial magnetic 
anisotropy directions in crystallites of a nanocrystalline film, an effective method has been implemented for 
calculation of the magnetization dynamics in microwave fields. For a certain range of crystallite sizes, when 
the energy of the random magnetic anisotropy is comparable to the exchange energy, a significant change of 
the ferromagnetic resonance field, broadening of the resonance line, and the appearance of an asymmetry in 
the shape of the resonance curve were found. With an increase of the crystallite sizes, the resonance field first 
grows, then, it quickly decreases to its minimum, and then, it grows again to reach saturation. In this case, the 
steepness of the left slope of the broadening resonance curve first decreases faster than that of the right slope, 
leading to the symmetry breaking of the resonance curve shape, then, the curve becomes symmetrical again, 
and then, the steepness of the left slope becomes greater than that of the right slope. 

Keywords: micromagnetic modeling, nanocrystallites, random magnetic anisotropy, ferromagnetic resonance, 
microwave. 

INTRODUCTION 

Soft magnetic nanocrystalline materials are the object of increased interest among researchers due to the unique 
magnetic and electrical properties that distinguish them favorably from polycrystalline materials and even single 
crystals. As a rule, nanocrystalline alloys have a higher electrical resistivity, and therefore, a greater thickness of the 
skin layer at high frequencies. But the main advantages of the nanocrystalline alloys are the higher values of the 
saturation magnetization and high-frequency magnetic permeability [1, 2], which allows to use these materials in 
microwave devices.  

Thin films and multilayer structures of nanocrystalline magnetic materials are of particular interest for 
applications: they can be used as controlled media in microwave devices developed on the principles of integrated 
planar technology. In particular, thin magnetic films ( TMFs) with uniaxial magnetic anisotropy are used as sensitive 
elements in sensors of weak magnetic fields designed on the resonant microstrip structures [3, 4]. The possibility to 
vary the saturation magnetization and the value of the uniaxial magnetic anisotropy of TMF by changing the 
composition and technological fabrication conditions allows changing the magnetic permeability and the upper 
boundary of the operating frequency band over a wide range [5]. The relationship between the magnetic permeability 
and the frequency of ferromagnetic resonance (FMR) for thin films, called Acher’s law [5, 6], shows a clear advantage 
of planar magnetic materials compared to the bulk ones. 

One of the most important results obtained in the course of studying the nanocrystalline thin films was the 
experimental detection of complicated dependences of the magnetic microstructure, anisotropy, coercive force, and 
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permeability of the magnetic medium on the crystallite (grain) size D [7]. If the crystallite size exceeds the exchange 
correlation radius, then, the magnetization vector is oriented along the easy anisotropy axis of the corresponding 
crystallite. With a decrease in the crystallite size, the energy of the exchange interaction between the crystallites 
gradually becomes greater than the anisotropy energy. Therefore, the magnetic moments of the adjacent grains tend to 
align parallel to each other. In this case, a peculiar magnetic structure arises with spatial deviations of magnetic 
moments from a certain mean direction called in the literature the magnetization ripple. With a further decrease in the 
grain size, the amplitude of these deviations decreases and the nanocrystalline film becomes uniformly magnetized. 

The purpose of this work is to study the effect of the crystallite size D on the FMR in nanocrystalline thin films. 
For this purpose, a micromagnetic model of the nanocrystalline TMF was developed and an effective method for 
calculating its microwave absorption spectrum was implemented. A systematic numerical analysis of the TMF model 
was carried out, which made it possible to establish a number of features related to the effect of D on the substantial 
shift of the resonance field, as well as on the broadening of the FMR line and the appearance of a resonance curve 
asymmetry. 

1. MODEL OF NANOCRYSTALLINE TMF AND METHOD FOR CALCULATING THE MAGNETIZATION 
DYNAMICS 

To study properties of nanocrystalline thin magnetic films, we use the following expression for the free 
energy F: 
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Here, the first term describes the energy of an external magnetic field H (Zeeman energy), the second one describes the 
exchange interaction energy with the exchange stiffness constant A, the third term describes the energy of the 
demagnetizing field Hm, and the fourth term describes the energy of the overall for the film uniaxial magnetic 
anisotropy with a constant Ku and an easy axis unit vector n. The last term of the expression describes the energy of the 
uniaxial magnetic anisotropy K with a random direction of the easy magnetization axes in crystallites described by the 
unit vector l = l(r). The distribution of the magnetization is characterized by the vector M(r), whose modulus is 
a constant |M(r)| = Ms. 

When the model is discretized by the finite-difference method, TMF is divided into N identical discrete cells in 
the form of a parallelepiped with the volume V0 and magnetization vectors Mi, (i = 1, 2, ..., N), constant within each cell. 
In this case, expression (1) for the free energy can be written as [8] 

 0
1 1

1

2

N N

i i i ij j
i j

F V G
 

 
   

 
 H M M M , (2) 

where Gij is the 3×3 tensor describing the interaction between i and j discrete elements. The tensor Gij does not depend 
on the direction of the magnetization Mi and is determined only by the internal properties of the magnetic system under 

study. The tensor Gij is determined by the sum of tensors of the exchange interaction e
ijG  and magnetostatic interaction

m
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ijG  describing the common for the entire film and random uniaxial magnetic anisotropy, 

respectively. The elements of the symmetric tensors describing the exchange interaction and magnetic anisotropy are 
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2

2e
ij

s

J
G E

M
  (for neighboring i and j), 

2

2u ui
ij i j ij

s

K
G

M
  n n , 

2

2a i
ij i j ij

s

K
G

M
  l l , (3) 



 1800 

where J = A/d 
2 and d is the distance between the adjacent discrete elements, E is the 3×3 identity matrix, the sign 

denotes the tensor product, and δij is the Kronecker symbol. To calculate the components of the magnetostatic 

interaction tensor m
ijG , one usually uses either an approximation based on the allowance for the interaction of a pair of 

point magnetic dipoles [8], or an exact analytical expression obtained in [9]. It should be noted that the matrix elements

( )m m
ij i jG G r r  depend only on the vector of the difference between the centers of the cells i and j, and to calculate 

the demagnetization field Hm, as a rule, the convolution theorem is used [10]. 
The basic equation describing the dynamics of a magnetic system under the influence of the static and 

alternating external magnetic fields is the Landau – Lifshitz nonlinear differential equation [11] 
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Here, the first term of the right-hand side describes the precession of the magnetization of the i-th cell around the local 
effective magnetic field 
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the second term describes the damping in the system, γ = 1.76107 (rad/s)/Oe is the gyromagnetic ratio, and α is the 
damping parameter. 

Using the method of successive approximations, the solution is sought in the form 0 ( )i i i t M M m , 
eff eff eff

0 ( )i i i t H H h , where 0| ( ) | | |i it m M  and eff eff
0| ( ) | | |i it h H , M0i is the equilibrium direction of the i-th 

magnetic moment, which in accordance with [8], is determined from a system of linear inhomogeneous equations with 
the undetermined Lagrange multipliers νi: 
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In this case, the static and dynamic parts of the effective field are determined in accordance with (5) and (6) as 
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Considering only linear terms and assuming that eff
0 0[ ] 0i i M H , the equation of motion (4) takes the form 

[12] 
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in which the following notations are used: 
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Earlier, to solve the system of equations (8), a method widely used in micromagnetic modeling was considered 
[13]. This method is based on finding a solution in the form of expansion in the eigenvectors of normal magnetic 
oscillation modes [12–16]. In this work, to reduce the required RAM capacity of the computer and the calculation time, 
a more efficient method was implemented, which was first used to study two-dimensional thin films with a stripe 
structure [17] and individual bulk ferromagnetic particles of various shapes and sizes [18, 19 ]. 

With the help of substitution 0( ) i t
i it e m m  and 0( )rf i t

i it e h h , the system of differential equations (8) 

is reduced to a system of linear inhomogeneous equations 
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After that, such a system can be solved by standard numerical methods of linear algebra: for example, by the iterative 
method of conjugate gradients or the method of minimal residuals. 

It should be noted that due to the limitation |Mi| = Ms, of the total number of 3N equations (10), only 2N are 
linearly independent, which allows reducing the number of unknowns and the calculation time. To do this, in each 
discrete cell, we move on to the coordinate system, the z axis of which coincides with the equilibrium direction of 
magnetization in it. Then, in the new coordinate system, the components of the dynamic magnetization and the 
alternating field will be defined as 0 0i i iT m m  and 0 0i i iT h h , where the transformation matrix Ti has the following 

form given that the azimuthal and polar angles of the vector M0i are equal to φi and θi , respectively: 
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When moving to a two-dimensional problem in the new coordinate system, i.e. confining ourselves to considering only 
the x- and y-components of the vector and tensor quantities, we have 
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In this case, equation (10) takes the form 
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The resulting solution describing the magnetization dynamics allows, in particular, to determine the absorption 

energy of the high-frequency field of the nanocrystalline TMF [20]: 
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2. STUDY OF HIGH-FREQUENCY PROPERTIES OF NANOCRYSTALLINE TMF 

Using the results of the calculation of the TMF micromagnetic model, a computer program was written, with 
the help of which the features of the microwave absorption spectra of nanocrystalline films were studied. The studies 
were carried out on films representing monolayers of close-packed nanoparticles with a random distribution of the 
anisotropy axes. The numbers of particles were 128×128×1. The size of nanoparticles D corresponded to the size of 
discrete cells in the model and varied within 12–1000 nm. To eliminate the edge effects associated with the 
inhomogeneity of the internal magnetic field near the sample boundaries, we used two-dimensional infinite periodic 
boundary conditions for calculating the exchange and magnetostatic interaction energies [21]. For definiteness, the 
magnetic parameters of the samples under study were chosen in accordance with the well known nanocrystalline alloy 
Fe73.5Cu1Nb3Si13.5B9 [7], the saturation magnetization of which is Ms = 955 G (1.2 T), the exchange constant  
A = 110–6 erg/cm (110–11 J/m), the local uniaxial anisotropy field is Hk = 2K/Ms = 171.7 Oe (K = 8200 J/m3), and the 
damping parameter is α = 0.005. In this case, the magnetic anisotropy Ku common for the entire film was not taken into 
account. The external static magnetic field was applied in the film plane and ranged within 0–180 Oe, and the in-plane 
alternating magnetic field with a pump frequency f = 3 GHz was directed orthogonally to the static field. It is important 
to note that an analytical expression was used to calculate the components of tensor of the magnetostatic interaction 
between crystallites [9]. 

Figure 1 shows the results of the calculation of the microwave absorption spectra of nanocrystalline TMFs for 
some values of D. Curves 1–4 in Fig. 1a correspond to the resonance absorption lines for films with the crystallite sizes 
D = 12, 42, 56, and 75 nm, and curves 4–7 in Fig. 1b correspond to the FMR lines for the films with D = 75, 100, 178, 
and 1000 nm. It can be seen that the crystallite size of TMF has a strong influence on the shape and position of the 
resonance curve, and this effect, as shown by studies, is particularly significant for films, in which the crystallite size is 
in a certain “critical” range starting with a size D ~ 35 nm, at which the random magnetic anisotropy energy F 

a = –VK 
is equal to the exchange energy F 

e = –VJ.  
An analysis of the curves shows that an increase in the crystallite size leads to a change in the FMR field, 

a significant broadening of the resonance absorption line, and also the appearance of an asymmetry in the shape of the 
resonance curve. Note that for a film with the minimum crystallite size (D = 12 nm), the exchange energy is more than 
8 times higher than the uniaxial random magnetic anisotropy energy, the shape of its resonance curve is close to the 
symmetric one, and the resonance field HR and the FMR line width ΔHR almost coincide with the resonance field 
H0 ≈ π (f/γ)2 /Ms ~ 95 Oe and the FMR line width ΔH0 ≈ 4παf/γ ~ 10.7 Oe obtained for an isotropic uniformly 
magnetized TMF. However, for a film with D = 100 nm, in which the exchange energy, on the contrary, is more than 
8 times less than the random magnetic anisotropy energy, the resonance field is shifted by δH = HR – H0 equal to  
~–12 Oe and the FMR line broadens by the value δΔH = ΔHR – ΔH0 equal to ~120 Oe. At the same time, the 
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Fig. 1. Microwave absorption spectrum of a nanocrystalline thin magnetic film for various 
values of the crystallite size D, nm: 12 (1), 42 (2), 56 (3), 75 (4), 100 (5), 178 (6), and 1000 (7). 
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asymmetry of the resonance line shape δΔH± defined as the difference between the left ΔH– and right ΔH+ “half-widths” 
of the FMR line (δΔH± = ΔH– – ΔH+) is ~ 40 Oe for the film with D = 100 nm. It should be noted that to calculate the 
values of HR, ΔHR, ΔH–, and ΔH+, we used the approximation of the microwave absorption spectra obtained using the 
so-called asymmetric Lorenz resonance curve proposed in [22]. 

Figure 2a shows the dependence of the root-mean-square deviation of the inhomogeneous magnetization angle 
<φ> of a nanocrystalline film on the average direction of the magnetization in TMF constructed for various values of 
the crystallite sizes. The values of <φ> characterizing the state of the magnetic microstructure of the film were obtained 
for the external static magnetic field equal to the resonance field H = HR. It can be seen from the figure that with 
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Fig. 2. Dependence of the root-mean-square deviation of the inhomogeneous magnetization 
angle on the average direction (a), resonance displacement (b), broadening (c), and asymmetry 
of the resonance line (d) on the size of the TMF crystallites. 
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increasing D, a monotonic, almost linear increase in the root-mean-square deviation <φ> is observed up to D ~ 150 nm 
in the “critical” range. For D > 180 nm, <φ> remains almost constant. 

In contrast to this behavior of <φ> (D), the dependences of the resonance field shift δH(D) (Fig. 2b), the 
broadening of the FMR line δΔH(D) (Fig. 2c), and the asymmetry of the resonance curve δΔH±(D) (Fig. 2d) have 
a pronounced non-monotonous character. Thus, the shift of the resonance field δH first increases with increasing 
crystallite size, reaching its maximum δH ~ 10 Oe at D ~ 56 nm, then, at D ~ 75 nm, the shift of the FMR field changes 
the sign to the opposite one, reaching a minimum of δH ~ –15 Oe at D ~ 180 nm, and in the range of D ~ 300–1000 nm, 
the shift reaches the saturation δH ~ –10 Oe. 

The dependence of the broadening of the FMR line (Fig. 2c) increases in the “critical” range of the crystallite 
sizes, demonstrating a sharp, almost linear increase in δΔH in the range D ~ 40–90 nm and reaching a maximum at D ~ 
100 nm. The line width ΔHR ~ 130 Oe at this point is an order of magnitude larger than the width ΔH0 of the FMR line 
of an isotropic magnetic film with a uniform structure. With a further increase in the crystallite size, δΔH slightly 
decreases and at D > 300 nm, it reaches saturation δΔH ~ 100 Oe. 

The behavior of the dependence δΔH±(D) characterizing the asymmetry of the FMR line shape is interesting 
(Fig. 2d). In the range D ~ 40–90 nm, it behaves similarly to the dependence δΔH (D) demonstrating a sharp increase 
and also reaches its maximum at D ~ 100 nm. However, then, it rapidly decreases to zero at D ~ 200 nm (in this case, 
the FMR line becomes symmetric), and then, it changes the sign and decreases monotonically. In other words, for small 
sizes of crystallites in TMF, the steepness of the left slope of its resonance curve is less than that of the right slope, and 
for large sizes of crystallites, vice versa. 

CONCLUSIONS 

Thus, to study high-frequency properties of nanocrystalline magnetic films, a micromagnetic model has been 
developed that takes into account the random distribution of the uniaxial magnetic anisotropy directions in crystallites. 
In addition to the Zeeman energy and energy of uniaxial magnetic anisotropy, the model takes into account the energies 
of the exchange and magnetic dipole (magnetostatic) interaction of magnetic moments. On the basis of this model, 
an effective method has been implemented for numerical analysis of the magnetization dynamics of nanocrystalline 
films in microwave fields, which made it possible to significantly reduce the RAM capacity of the computer and also 
significantly reduce the calculation time. 

The performed studies allowed us to find features in the ferromagnetic resonance spectra associated with the 
influence of the crystallite sizes D on the parameters of the resonance curve. In particular, it was found that in a certain 
“critical” range of the crystallite sizes, where the energy of random magnetic anisotropy begins to exceed the exchange 
energy, a significant change in the ferromagnetic resonance field, a multiple increase in the width of the resonance line, 
and the appearance of a resonance curve asymmetry are observed. It is shown that with an increase in the crystallite 
size, the resonance field first grows, reaching a maximum, then, it rapidly decreases to its minimum, and then, it grows 
again to reach saturation. In this case, the steepness of the left slope of the broadening resonance curve first decreases 
faster than that of the right slope, leading to the symmetry breaking of the resonance curve shape, and then, the curve 
becomes symmetrical again, and the steepness of the left slope becomes greater than that of the right slope. 

The conducted studies are, firstly, of great importance for the physics of magnetic phenomena, since the 
detection of new effects always makes it possible to better understand the nature of the observed features in the 
microwave absorption spectra of ferromagnetic materials. Secondly, the results obtained in this work are of great 
interest for technologists working on the problem of creating nanocrystalline magnetic films with given high-frequency 
properties. 

This work was supported by the Ministry of Education and Science of the Russian Federation, project 
No. RFMEFI60417X0179. 



 1805

REFERENCES 

1. J. Petzold, JMMM, 242–245, 84–89 (2002). 
2. M. Yamaguchi, K. H. Kim, and S. Ikedaa, JMMM, 304, 208–213 (2006). 
3. A. N. Babitskii, B. A. Belyaev, N. M. Boev, et al., Instruments and Experimental Techniques, 59, No. 3, 425–

432 (2016). 
4. B. A. Belyaev, N. M. Boev, A. V. Izotov, et al., Russ. Phys. J., 61, No. 8, 1367–1375 (2018). 
5. A. N. Lagar’kov, S. A. Maklakov, et al., J. Commun. Technol. Electron., 54, No. 5, 596–603 (2009). 
6. O. Acher and A. L. Adenot, Phys. Rev. B, 62, 11324–11327 (2000). 
7. G. Herzer, JMMM, 157/158, 133–136 (1996). 
8. B. A. Belyaev, A. V. Izotov, and An. A. Leksikov, Phys. Solid State, 52, No. 8, 1664–1672 (2010). 
9. A. J. Newell, W. Williams, and D. J. Dunlop, J. Geophys. Res., 98, 9551–9555 (1993). 

10. B. Van de Wiele, F. Olyslager, L. Dupre´, and D. De Zutter, JMMM, 322, 469–476 (2010). 
11. A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnets [in Russian], Nauka, Moscow (1973). 
12. B. A. Belyaev and A. V. Izotov, Phys. Solid State, 55, No. 12, 2491–2500 (2013). 
13. A. V. Izotov and B. A. Belyaev, Russ. Phys. J., 53, No. 9, 900–905 (2011). 
14. M. Grimsditch, L. Giovannini, F. Monotcello, et al., Phys. Rev. B, 70, 054409 (2004). 
15. K. Rivkin and J. B. Ketterson, JMMM, 306, 204–210 (2006). 
16. M. D’aquino, C. Serpico, G. Miano, and C. Forestiere, J. Comput. Phys., 228, 6130–6149 (2009). 
17. N. Vukadinovic, O. Vacus, M. Labrune, et al., Phys. Rev. Lett., 85, 2817–2820 (2000). 
18. S. Labbe and P.-Y. Bertin, JMMM, 206, 93–105 (1999). 
19. C. Vaast-Paci and L. Leylekian, JMMM, 237, 342–361 (2001). 
20. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media, 2-nd ed. [in Russian], Nauka, 

Moscow (1982). 
21. K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, J. Phys. D: Appl. Phys., 41, 175005 (2008). 
22. A. L. Stancik and E. B. Brauns, Vibrational Spectrosc., 47, 66–69 (2008). 

 


	INTRODUCTION
	1. MODEL OF NANOCRYSTALLINE TMF AND METHOD FOR CALCULATING THE MAGNETIZATION DYNAMICS
	2. STUDY OF HIGH-FREQUENCY PROPERTIES OF NANOCRYSTALLINE TMF
	CONCLUSIONS
	REFERENCES

