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PHYSICS OF MAGNETIC PHENOMENA 

TWO-MAGNON RELAXATION PROCESSES IN 

NANOCRYSTALLINE THIN MAGNETIC FILMS 

A. V. Izotov,1,2 B. A. Belyaev,1,2 P. N. Solovev,1,2 and N. M. Boev1,2  UDC 537.621; 004.942 

Numerical analysis of the micromagnetic model was used to reveal the ‘resonance’ feature of relaxation 
processes in nanocrystalline thin magnetic films. This feature manifests itself in the form of sharp broadening 
of the ferromagnetic resonance (FMR) line at a certain frequency f1 depending on magnetic characteristics of 
the film, and is observed only in films the thickness of which exceeds some threshold value dmin. Sharp 
broadening of the FMR line is accompanied by significant shift of the resonance field, whereas the shift value 
changes the sign at frequency ~ f1. It was shown analytically that the nature of observed effects is associated 
with the two-magnon process of spin waves scattering on quasi-periodic magnetic microstructure – 
magnetization ‘ripple’. Obtained expressions for the threshold value of film thickness dmin and frequency of 
maximum broadening of FMR line f1 agree well with the results of numerical computation of micromagnetic 
model.  

Keywords: micromagnetic simulation, nanocrystallites, random magnetic anisotropy, ferromagnetic resonance, 
microwave frequencies, two-magnon relaxation process. 

INTRODUCTION 

It is known that thin magnetic films (TMFs) are widely used as a medium for recording of digital information 
on hard drives, however there are current studies aiming to create magnetic random-access memory on films [1]. In 
high-frequency magnetometers of weak magnetic fields, TMFs are used as sensing elements [2, 3], they are also the 
main elements in spintronics devices [4]. Maximum achievable parameters of such devices on TMFs are determined by 
dynamic magnetization characteristics that directly depend on relaxation processes. That is why a lot of attention is 
presently paid to studying the relaxation mechanisms and possibilities of controlling the relaxation processes in thin 
magnetic films [5]. 

It is obvious that the width of ferromagnetic resonance (FMR) line of any magnetic material is primarily 
determined by its intrinsic damping coefficient. However, there are also other extrinsic mechanisms of magnetization 
relaxation, among which the dominant contribution into high-frequency power absorption and broadening of FMR line 
in thin magnetic films is made by the processes of two-magnon scattering [6]. These processes are accompanied by 
damping of spin waves (magnons) during interaction with non-uniform internal magnetic fields that can emerge in 
magnetic medium for different physical reasons. For instance, the authors of [7, 8] study the effect of random local 
anisotropy on relaxation in polycrystalline thin films, and the authors of [9, 10] study the effect of random distribution 
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of inhomogeneities and roughnesses on the surface of films. There are also studies focusing on the possibilities of 
controlling magnetic relaxation in TMFs by creating artificial magnetic inhomogeneities in them [11–14]. 

In thin nanocrystalline films, due to exchange interaction and magneto-dipole interaction of crystallites, 
magnetic moments form a wave-like quasi-periodic structure with a period depending both on magnetic film parameters 
and on the value of the applied external field [15, 16]. This non-uniform magnetic microstructure called the ‘ripple’ of 
magnetization increases damping of spin waves and can lead to a significant broadening of FMR line, as well as 
a resonance field shift, which was first shown by Ignatchenko and Degtyarev [17]. The goal of the present paper is to 
study the effect of non-uniform magnetic microstructure on relaxation in nanocrystalline thin films, using 
a micromagnetic model for numerical computation of the high-frequency susceptibility [18, 19]. 

1. NUMERICAL MODELING 

For the sake of simplicity, research was done on films that are monolayers of densely packed nanoparticles of 
D0 size with random orientation of anisotropy axes. The focus was on the micromagnetic model of film with thickness 
of d = D0 and area of 1024×1024 discrete cells, the size of which corresponded to the size of nanoparticles and varied 
within the range of 12–100 nm. Analytical expression from [20] was used to calculate the tensor component of 
demagnetization coefficients conditioned by magneto-dipole interaction between nanoparticles. Two-dimensional 
periodic boundary conditions were applied to exclude edge effects associated with inhomogeneity of internal magnetic 
field near the boundaries of samples, when calculating the energies of exchange and magneto-dipole interactions [21]. 

For the sake of certainty, magnetic parameters of studied samples were selected in accordance with the well-
known nanocrystalline alloy Fe73.5Cu1Nb3Si13.5B9 [22], the saturation magnetization of which is Ms = 955 G (μ0Ms = 
1.2 T), the exchange stiffness constant is A = 110–6 erg/cm (110–11 J/m), the damping parameter of spin waves is 
α = 0.005, and the field of local uniaxial anisotropy is Hk = 2K/Ms = 171.7 Oe (K = 8200 J/m3). However, it was 
assumed that the magnetic anisotropy of the entire film is absent. External static and alternating magnetic fields were 
applied in the film plane and were directed orthogonally to each other. Numerical implementation of the method of 
undetermined coefficients for solving the linearized system of Landau-Lifshitz equations was used to calculate high-
frequency magnetic susceptibility of films [18]. 

As was already noted, magnetic inhomogeneities associated with the stochastic magnetic microstructure have 
a strong effect on the spectrum of high-frequency absorption of nanocrystalline thin films. Their effect leads not only to 
the shift of FMR field and broadening of the resonance line, but also to emergence of shape asymmetry of the resonance 
curve [18]. It is obvious that resonance field HR and line width ΔH of FMR obtained by numerical computation of 
micromagnetic model can be written in the form of sums  
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where the first terms of the right part of each of the two expressions characterize the resonance line of uniform FMR of 
the film in the absence of non-uniform magnetic microstructure, while the second terms show the shift of the resonance 
field H2m and broadening of FMR line H2m as a result of two-magnon scattering of spin waves on inhomogeneities. 

The resonance field H0 satisfies the equation 0 0 0 02 ( 4 )sf H H M       , where γ = 1.76107 rad/(sOe) is 

gyromagnetic ratio. The line width of uniform FMR is determined by the well-known expression 0 04 /H f    . 

According to the theory of two-magnon relaxation processes developed by Arias and Mills for ultra-thin films 
[9], the frequency dependence of the broadening of FMR line ΔH2m is described by the expression 

 
2 2

00
2m 2 2

0 0

( / 2) / 2
arcsin arcsin

4 ( / 2) / 2

M M

s M M

f f fH
H

H M f f f

 
    

   
, (2) 



 2315

widely used in practice to interpret experimental dependencies ΔH(f0). Here 2M sf M  , and Г is coefficient 

characterizing ‘intensity’ of magnetic inhomogeneities. As one can see from (2), the dependence ΔH2m(f0) is a function 
monotonously increasing until some saturation without any features. 

However, as numerical computation of the micromagnetic model of TFM showed, in the case of 
nanocrystalline films with a thickness over some threshold value at a certain frequency f1 depending on film parameters, 
one observes a sharp increase in high-frequency power absorption and as a consequence – a sharp broadening of FMR 
line. As an example on Fig. 1 for two values of the film thickness d = 12 and 24 nm solid lines indicate the 
dependencies ΔH2m(f0) obtained by numerical computation of the high-frequency susceptibility of nanocrystalline thin 
films. Dashed lines indicate the dependencies built according to the formula (2). One can see that for the film with 
thickness of d = 12 nm the theory put forward by Arias and Mills describes rather well the obtained dependence 
ΔH2m(f0). However, for the film with thickness of 24 nm the broadening of FMR line ΔH2m(f0) has a sharp peak at 
frequency f1 ≈ 10.75 GHz, whereas at high frequencies one observes a rather good agreement of micromagnetic 
computation with the theory by Arias and Mills. 

With an increase in film thickness, the revealed ‘resonance’ feature of two-magnon relaxation is maintained, 
whereas the relaxation contribution ΔH2m to FMR line width quickly increases and the ‘resonance’ frequency f1 
monotonously decreases (Table 1). From the table one can see that for the 24 nm thick film, due to two-magnon 
relaxation processes, the width of FMR line increases approximately 1.5 times, while for the 100 nm thick film it 
increases by more than an order of magnitude. One should note that with the increase in film thickness the asymmetry 
of FMR line shape increases in a monotonous manner. As one expected, the broadening of FMR line by means of the 
two-magnon mechanism of magnetization relaxation by value H2m is simultaneously accompanied by a significant 
change in resonance field by value H2m in relation to field H0 corresponding to the field of film FMR without 

TABLE 1. Dependencies on Film Thickness of the Frequency of Maximum FMR Line 
Broadening f1 due to Two-Magnon Relaxation Mechanism on Magnetization ‘Ripple’, the 
Value of Broadening H2m, as well as the Resonance Field H0 and the Line Width H0 for 
Films in the Absence of ‘Ripple’ 

d, nm f1, GHz H2m, Oe H0, Oe H0, Oe 
24 10.75 16.86 1121 38.4 
32 6.65 25.74 452 23.7 
42 4.66 35.01 225 16.6 
56 3.46 47.6 129 12.5 
75 2.89 82.2 89 10.4 

100 3.26 123.7 111 11.6 
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Fig. 1. Frequency dependencies of FMR line broadening ΔH2m obtained by numerical 
micromagnetic simulation of the high-frequency susceptibility of nanocrystalline thin films 
with thickness of d =12 nm (1) and 24 nm (2). Dashed lines are dependencies according to 
the formula (2). 
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magnetization ‘ripple’. This fact is confirmed by the dependence H2m(f0) presented in Fig. 2. One can see that with the 
increase in frequency f0 addition to the resonance field has a positive sign, but somewhere around frequency 
f1 = 3.26 GHz it changes the sign, while the dependence H2m(f0) has two extreme points. 

2. THEORETICAL MODEL 

To explain the nature of revealed effects associated with behavior of magnetic relaxation in nanocrystalline thin 
films, the authors considered the two-magnon model of spin waves scattering on magnetic inhomogeneities emerging 
due to non-uniform magnetic microstructure in TMF – magnetization ‘ripple’. It is important to note that the main 
distinctive feature of nanocrystalline thin magnetic films is small size of crystallites compared to the effective radius of 
exchange and magneto-dipole interaction [23]. That is why the presence of the magnetic coupling between crystallites 
leads to averaging and partial suppression of the random magnetic anisotropy of individual crystallites. However, such 
suppression of the local anisotropy usually is not complete, which leads to deviations of the magnetization vector 
М = Msm in relation to some average direction М0 = <M>. This is why a peculiar magnetic structure emerges with 
spatial deviations of magnetization near some average direction (Fig. 3), called magnetization ‘ripple’ in research 
literature [15, 16]. 
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Fig. 2. Frequency dependencies of the resonance field shift H2m (curve 1) and the 
broadening of FMR line ΔH2m (curve 2) obtained by numerical micromagnetic simulation 
of high-frequency susceptibility of the 100 nm thick nanocrystalline film. 
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Fig. 3. Model of thin magnetic film and schematic image of longitudinal magnetization 
‘ripple’. Magnetic correlated region is marked with an ellipse. 
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The most rigorous and consistent static theory of such fine magnetic microstructure was developed by 
Hoffmann [15]. Hoffmann, based on electronic microscopy results, developed a model of non-interacting between each 
other magnetic correlated regions formed in the film. The size and shape of such regions depend on the radius of the 
exchange and magneto-dipole interaction, on the crystallite size and the value of applied magnetic field. In the general 
case such region coupled by magnetic interaction (magnetic correlated region) is an ellipsoid strongly stretched in the 
direction perpendicular to direction of the average magnetization М0 (Fig. 3). In the linear approximation [15], the 

length of ellipsoid semi-axis ( ||R ) along the average direction of magnetization is || /R D H , where D = 2A/Ms. 

Using averaging of the magnetic anisotropy of individual crystallites, with a random orientation of anisotropy 
axes, within the magnetic correlated region, Hoffmann derived an expression for dispersion of the transverse component 
of magnetization, as well as the most probable main period length of longitudinal magnetization ‘ripple’: 

 ||2 2 /R R D H     . (3) 

Quasi-periodic magnetization structure with a period λR forms quasi-periodic magnetic fields of demagnetization with 
the same period in the thin nanocrystalline film. This is equivalent to formation in the film of magnetic inhomogeneities 
with a characteristic ‘size’ ||R  and wave number: 

 ||2 / 1/ /R Rk R H D     . (4) 

A distinctive feature of these inhomogeneities is that their size depends not only on magnetic parameters of the film, but 
also on the value of applied external field.  

Within the theory of two-magnon relaxation processes [6, 7, 9, 24, 25], magnetic inhomogeneities, including 
those that are also associated with non-uniform stochastic magnetic structure, are considered as perturbation of intrinsic 
magnetic oscillations (spin waves) of the uniform sample. Inhomogeneities violate orthogonality of intrinsic 
magnetization oscillations and lead to coupling between them. This causes energy transfer from the considered type of 
oscillations (for instance, uniform FMR) into non-uniform types of oscillations, i.e. to emergence of additional 
dissipation, as well as shift of resonance frequencies [6, 7, 9]. 

Let us write dispersion equation of spin waves for the model of uniform thin magnetic film (Fig. 3) [9]: 

 2 2[ 4 ][ 4 sin (1 )]k s k s k kH Dk M N H Dk M N           . (5) 

Here Dk2 is the field of exchange interaction for a spin wave with the wave vector k (k = |k|), H is the value of planar 
external magnetic field coinciding with the direction of equilibrium magnetization М0, φk is the angle between the 
direction of spin wave propagation and equilibrium magnetization М0, Nk is the demagnetizing factor that depend on the 
wave number k. In approximation of thin film, magnetization of which insignificantly changes throughout its thickness, 
this factor is of the form [16] 
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Dispersion dependence (5) is graphically represented on Fig. 4. Here ω0 shows the frequency of uniform FMR with k = 
0, and curves with φk = 0 and 90° respectively represent the lower and upper boundaries of the spin wave spectrum. One 

can see that dispersion curves at crit
k k    cross the line 0. This means that the frequency of uniform FMR coincides 

with frequencies of the group of spin waves, for which 0 < ki < kmax, while the presence of a non-uniform internal 
magnetic field (magnetic inhomogeneities) with the wave number coinciding with ki ensures the transfer of energy of 
uniform thin film excitation into spin wave energy with the wave number ki. The so-called two-magnon scattering of 
spin waves on inhomogeneities occurs.  
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The maximum wave number of degenerate states kmax is determined from the condition 

 max 0( , , 0)k kH k     . (7) 

It is obvious that the largest scattering of spin waves on magnetic inhomogeneities of magnetization ‘ripple’ with the 
wave number kR (see formula (4)) will be observed upon the condition of equality kmax = kR. That is why the field value 
H1, at which maximum of FMR line broadening will be observed, is determined from the condition 

 1 0( , , 0)k R kH k     . (8) 

To find the analytical solution to this equation, it is necessary to simplify the expression for demagnetization factor Nk 
determined by formula (6). The authors of classical publications [7, 9] on the theory of two-magnon processes in thin 
films use an approximation for ultra-thin films kd << 1, according to which 1 / 2kN kd  . However, as will be 

shown below, the scattering of spin waves on inhomogeneities of stochastic magnetic structure is possible only for films 
having thickness over a certain threshold value. Whereas the value kR d is of order 1, and Nk is better approximated with 

the expression 1 /kN kd e  . Then equation (8) turns to quadratic equation in relation to variable 1x H : 
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From the condition of the existence of solution to equation (9) minimum film thickness 
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at which the effect of magnetization ‘ripple’ on two-magnon relaxation processes becomes a determining factor. 
Minimum thickness dmin for the used magnetic parameters of numerical model, according to (10), is dmin ≈ 19.7 nm. The 
resulting value conforms well to the numerical simulation results presented in Fig. 1.  

One should note that equation (9) has an accurate solution, but its approximate formula has the simplest 
analytical form: 
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Fig. 4. Dispersion dependencies of spin waves for different directions of their propagation φk. 
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Directly from (11) and taking (4) into account we get the value kR d ≈ 1.36, as well as expression for resonance 
frequency ω1, at which the maximum broadening of FMR line will be observed: 

 1 1 1( 4 ) 2s s
e e

H H M M D A
d d

           . (12) 

On Fig. 5 the theoretical dependence f1(d) = ω1(d)/2π obtained with the help of approximate formula (12) is 
indicated by dashed curve 1, while solid curve 2 reflects the results of accurate solution of equation (9). One can see 
that the biggest difference between accurate and approximate solutions is observed near the threshold film thickness 
dmin. On the same figure circle markers indicate dependence f1(d) obtained on the basis of numerical computation of 
micromagnetic model that shows good agreement with an accurate solution to equation (9). 

However, one should note the emergence of an increasing difference of computational experiment results 
(computation of micromagnetic model) and solution to equation (9) for ‘thick’ films with d > 80 nm. For such films the 
maximum broadening of FMR line is observed at relatively low excitation frequencies, that is in the region of small 
magnetic fields H (see table). In this case the linear approximation used by Hoffmann when deriving the expression for 
λR (3) for the film located in small magnetic fields becomes too rough. Meanwhile, it is obvious that in the theoretical 
model it is necessary to take into account the impact of non-linear terms, when calculating internal non-uniform 
magnetic fields considerably increasing in weak external fields due to increase in magnetization dispersion in the film 
[15, 16]. 

CONCLUSIONS 

In this paper, the effect of magnetic microstructure of magnetization ‘ripple’ on two-magnon relaxation 
processes in nanocrystalline thin magnetic films was studied. Numerical computation of the high-frequency magnetic 
susceptibility using a micromagnetic model of TMF showed that magnetization ‘ripple’ exerts considerable impact on 
relaxation in nanocrystalline films, but only in the case of thicknesses exceeding some threshold value. In particular, it 
was established that the broadening of FMR line has a sharp peak at a certain frequency f1 associated with the thickness 
and magnetic parameters of the film. Meanwhile, the considerable shift of resonance field of FMR is observed, and the 
shift value changes the sign at frequency ~ f1. It is important to note that for films having thickness below the threshold 
value, the dependence of FMR line broadening on frequency shows monotonous increase to some saturation, and this 
dependence is well described by classical theory by Arias and Mills [9]. 
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Fig. 5. Dependence of frequency f1 = ω1/2π, at which one observes the maximum broadening 
of FMR line, on the thickness of nanocrystalline thin magnetic film. Circle markers are the 
result of numerical computation of micromagnetic model, curve 1 is calculation according to 
approximate formula (12), curve 2 is accurate solution to equation (9). 
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To explain the nature of revealed distinctive features of magnetic relaxation in nanocrystalline thin films, the 
authors performed an analytical calculation of the film model, where one takes into account two-magnon scattering of 
spin waves on magnetic inhomogeneities emerging due to non-uniform magnetic microstructure of magnetization 
‘ripple’. As a result, an expression was obtained for calculation of the threshold value of film thickness, above which 
the sharp broadening of FMR line is observed at a certain frequency f1. The formula for calculation of the frequency f1 
was also obtained. The largest scattering of spin waves on magnetic inhomogeneities of magnetization ‘ripple’ is 
observed in the case of equality of wave numbers of the ‘ripple’ and spin waves, that is why the maximum broadening 
of FMR line occurs only at a certain frequency. Note that the main results of analytical calculation of the considered 
TMF model conform well to the results of numerical analysis of the micromagnetic model.  

This research was done with support of the Russian Ministry of Education and Science, task 
No. 3.1031.2017/PCh. 
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