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perovskite (C4H9NH3)2PbCl4
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ABSTRACT The mechanochemical route is a facile and fast
way and has received much attention for developing versatile
advanced functional materials. Herein, we reported a me-
chanochemical synthesis for incorporating divalent manga-
nese ions (MnII) into a two-dimensional (2D) hybrid
perovskite (C4H9NH3)2PbCl4. The mild external stimuli ori-
ginating from the grinding at room temperature enabled the
formation of MnII-doped 2D hybrid perovskites, and rapidly
changed the luminescence characteristics. The photo-
luminescence analyses show that the violet and orange emis-
sions are attributed to (C4H9NH3)2Pb1–xMnxCl4 band-edge
emission and the T1→

6A1 transition of Mn
2+ resulting from an

efficient energy transfer process, respectively. Site preference
and distribution of the doped Mn2+ cations on the locations of
Pb2+ were analyzed. The formation energy calculated by the
density functional theory (DFT) indicates that the Mn2+ ions
can rapidly enter the crystal lattice due to the unique 2D
crystal structure of the hybrid perovskite. Such a case of me-
chanochemical synthesis for the 2D hybrid perovskite moti-
vates many novel emerging materials and the related
applications.

Keywords: 2D hybrid perovskite, mechanochemical, Mn-dop-
ing, luminescence, phosphor

INTRODUCTION
Two-dimensional (2D) organic−inorganic hybrid halide
perovskites have been an important class of high-

performance semiconductors and received significant
attention in recent years due to their impressive structural
diversity and the enormous potential in the fields like
solar cells, photodetectors, lasers and light-emitting
diodes [1–8]. Among hybrid semiconductors, the 2D
layered hybrid perovskite quantum well materials
(CnH2n+1NH3)2(CH3NH3)m–1PbmX3m+1, (X=Cl, Br, I; m=1,
2...; n=1, 2...) have attracted extensive attention, because
the well width and the barrier width can be changed by
altering m and n, respectively [9–12]. This layered
structure is packed by one or more sheets of corner-
shared PbX6 octahedra and bilayers of organic cations
alternating along the c axis [3]. The excitons within the
octahedral planes are isolated by the organic layers which
act as a dielectric spacer forming confining layers, leading
to high oscillator strengths, high exciton binding energies,
and fast radiative decay rates [8,9,13,14]. These features
are highly beneficial to the applications in the field of
lighting and displays. Here we aimed to determine the
luminescent properties of 2D hybrid perovskites
(C4H9NH3)2PbCl4 (m=1, n=4). Up to now, the analogous
series have been extensively explored for solar cells and
photodetectors [7,8,15–16]. Despite some research on the
intrinsic optical performance of 2D perovskites, such as
(C6H11NH3)2PbBr4 [17], (C6H13N3)PbBr4 [18],
(CH3CH2NH3)4Pb3Br10–xClx [12], and others [1,9,13,19],
little attention has been paid to the luminescence
properties of 2D layered hybrid perovskite doped with
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transition metal ions (i.e., Mn2+, Ni2+, Co2+) [14]. Doping
Mn2+ ions in low-dimensional semiconductor materials
in quantum confinement regime provides fascinating
optical properties, due to the interaction of the quantum
confined charge carriers of the host with the dopant ions
[20–22]. Herein, we attempted to use (C4H9NH3)2PbCl4-
based bulk 2D layered perovskites as the active
semiconductor host with incorporating Mn2+ dopant
ions for energy transfer. Interestingly, the luminescent
characteristics of Mn2+ were rapidly generated by only
some mild external stimulus, such as room-temperature
grinding, in MnII-based 2D chloride perovskites. The
result shows that we developed a facile and effective
mechanochemical synthesis for incorporating manganese
ions into 2D organic-inorganic hybrid lead-halide
perovskites. Nowadays, the mechanochemical synthesis
has been considered to be a candidate for such a purpose,
because high yields may be achieved in short times,
without solvents, and generating small amounts of
residuals [23]. This is an efficient and environment-
friendly method that has been intensively studied [24,25].
Our strategy opens up a new way to achieving high-
performance fluorescence based on the facile incorpora-
tion of the luminescent activators in the pre-synthesized
hosts.
Therefore, considering the intriguing luminescence in

MnII-based 2D hybrid perovskites, (C4H9NH3)2PbCl4 is
designed and measured by powder X-ray diffraction
(PXRD) structural refinement, microstructure observa-
tion and elemental analysis, fluorescence analysis, UV-
visible absorbance/reflection and the density functional
theory (DFT) calculation. As expected, they exhibit
quickly violet and orange emissions only by the mild
grinding stimuli which are ascribed to
(C4H9NH3)2Pb1–xMnxCl4 band-edge emission and the
Mn2+-based d–d transition (4T1→

6A1) due to the
exciton-to-Mn2+ energy transfer, respectively. Meanwhile,
the formation energies of the different phases were
calculated and compared to take a deep insight into the
essence of this phenomenon to further ascertain the
validity of experiments. This fluorescence through
mechanochemical synthesis shows potential applications
in mechano-sensors, optical recording devices or fluor-
escent biomarkers.

EXPERIMENTAL SECTION

Materials and synthesis
PbCl2 (99.9%, Aladdin), MnBr2·5H2O (99.5%, Sino-
pharm), C4H9NH2 (n-butylamine 99.9%, Aladdin), C7H8

(toluene 99.5%, Sinopharm), C4H10O (diethyl ether
99.7%, Sinopharm), CH3OH (methanol 99.8%, Sino-
pharm), C3H6O (acetone 99.5%, Sinopharm), HCl (33%
in water by weight, Sinopharm), N,N’-dimethylforma-
mide (DMF 99.5%, Aladdin). All chemicals were used as
received.
Precursor C4H9NH3Cl: n-Butylamine (10 mL) was

added into 25 mL methanol in a 100-mL 3-neck flask,
and maintained at 0°C, using an ice-water bath. An
appropriate amount of HCl aqueous solution (HCl:
13 mL, 33 wt%) was added dropwise to the above
solution under vigorous stirring. Then the mixture was
stirred at room temperature (RT) for about 3 h. The
solution was then heated at about 70°C until all the
methanol and water in the solution were removed. Here a
white-solid product was washed repeatedly with ethyl
ether, and after filtration the white solid was dried at 60°C
for 24 h in a vacuum oven.
Synthesis of (C4H9NH3)2PbCl4: The as-prepared

C4H9NH3Cl (2 mmol) and PbCl2 (1 mmol) were dissolved
into 2 mL DMF and heated to 90°C. Toluene was added
to the hot clear solution until the solution began to
become cloudy. The heat was removed and the solution
was naturally cooled to RT. This leads to the formation of
lamellar white crystals in copious amounts. After
standing for 5 h, the supernatant was removed and the
crystals were washed repeatedly with acetone or diethyl
ether. The (C4H9NH3)2PbCl4 crystal was filtered and dried
under vacuum at 60°C for 12 h.
Synthesis of (C4H9NH3)2Pb1–xMnxCl4: MnBr2·5H2O was

used as the Mn2+ source, and preheated to remove the
crystal water at 120°C. A desired amount of the above
(C4H9NH3)2PbCl4 was mixed with MnBr2 (the amount of
Mn salt added was decided by the relative mole percent of
Pb) in an agate mortar. The powder was thoroughly
ground for several minutes and used for the further
characterizations.

Characterization
The PXRD data were collected by using a D8 Advance
diffractometer (Bruker Corporation, Germany) at 40 kV
and 40 mA with monochromatized Cu Kα radiation
(λ=1.5406 Å). The scanning rate for phase identification
was fixed at 8° min−1 with a 2θ range from 5° to 50°, and
the data for Rietveld analysis was collected in a step-
scanning mode with a step size of 0.02° and 5 s counting
time per step over a 2θ range from 5° to 120°. Rietveld
refinements were performed by using TOPAS 4.2
software.
The morphology observation was conducted by a
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scanning electron microscope (SEM, JEOL JSM-6510)
and the elemental composition was determined using
energy dispersive X-ray spectroscopy (EDS) that was
attached to the SEM. Transmission electron microscopy
(TEM) was performed on a JEM-2010 operated at
120 keV on 200 mesh carbon coated nickel grids and
EDS was performed on a probe aberration corrected
microscope, JEOL JEM-ARM200CF, at 200 kV.
The room-temperature photoluminescence (PL),

photoluminescence excitation (PLE) spectra and lumines-
cence decay curves were carried out using a FLSP9200
fluorescence spectrophotometer (Edinburgh Instruments
Ltd., U. K.). The absorption spectra were measured on a
UV-vis-NIR spectrophotometer (SolidSpec-3700 Shimad-
zu) with BaSO4 serving as the reference standard. The
photoluminescence quantum yields (PLQYs) were
recorded by a commercialized PLQY measurement
system from Ocean Optics with excitation from a 365-
nm LED.

Computational methods
All calculations were carried out using the Vienna ab
initio simulation package (VASP) with projector aug-
mented wave (PAW) potentials [26,27]. DFT calculation
was performed at a single point at the generalized
gradient approximation of Perdew-Burke-Ernzerhof

(GGA-PBE) [28]. The structure relaxations were carried
out with a 450 eV plane-wave cutoff. The self-consistent
total-energy difference and the convergence criterion for
the forces on the atoms were set to 10−4 eV and
0.05 eV Å−1, respectively. For k-point integration within
the first Brillouin zone, 6×6×2 Monkhorst-Pack grid for
(C4H9NH3)2PbCl4 was selected. Based on the static states
mentioned above, we calculated the corresponding band
structures, density of states (DOSs) and formation energy
for both undoped and Mn doped (C4H9NH3)2PbCl4. In
band structures and DOSs, the zero energy point was set
to the Fermi level of the pure (C4H9NH3)2PbCl4. The Mn-
doped materials were corrected by aligning the electro-
static potential (Vav) of C atoms located far from the
defects to the Vav for the same element in the pure
(C4H9NH3)2PbCl4 [29].

RESULTS AND DISCUSSION
As illustrated in Fig. 1a–c, a typical experiment for
synthesizing the 2D perovskites consists of three steps:
precursor synthesis (Fig. 1a), self-assembly (Fig. 1b) and
crystallization (Fig. 1c). The crystallinity of the product is
affected by the purity of precursor and crystallization
time, and especially the toluene content plays a key role in
the crystal quality of the sample. In addition, the synthesis
results are repeatable. The PXRD patterns reflect only the

Figure 1 (a–c) Illustrations of the three-step synthesis process including the precursor synthesis (a), self-assembly (b) and crystallization (c), and the
crystallization method is related with the crystal quality of the targeted product. (d) Crystal structure of the 2D layered hybrid perovskite derived from
the 3D APbX3 lattice along the <100> direction, and the interlayer catenoid organic ligand plays a key role in the formation of layered perovskite. (e)
Grinding time dependent fluorescence images in MnII-based 2D hybrid perovskite, showing that the luminescent characteristics of Mn2+ can be
rapidly generated only by grinding at RT.
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diffraction peaks of (00L) (L=2, 4, 6, 8, 10, 12 and 14)
crystal planes due to distinct preferred orientation, as
shown in Fig. 2a, which also reveals the layered structure
[14,15].
The preferred orientations were eliminated by the

introduction of amorphous glass. The diffraction peaks of
all crystallographic planes were obtained, which indicates
that we have the opportunity to obtain the structural
information by Rietveld refinement. The refinement
results (Fig. 2c) reveal that (C4H9NH3)2PbCl4 belongs to
the orthorhombic system with a polar space group of
Pbca at RT (Table 1). (C4H9NH3)2PbCl4 adopts the 2D
perovskite structure (Fig. 1d). Structurally, the alternating
stacking of organic chain molecules and inorganic
functional groups which are linked together by hydrogen
bonds induces the formation of 2D layered perovskite
structure. Due to the presence of organic molecules,
mixed perovskite materials have more opportunities to
achieve mechanical and structural modifications [30,31].
Accordingly, we tried to gain some attractive phenomena
or characteristics through routine mechanochemical
synthesis, such as grinding, heating and irradiation.

Herein, as shown in Fig. 1e, a designed amount of
MnBr2 was added to the perovskite crystals and then
ground at RT. It is incredible that the sample rapidly
exhibited orange-red fluorescence with continuous
grinding when it was irradiated by an ultraviolet lamp

Figure 2 (a) The diffraction peaks on the (00L) crystallographic planes exist in the samples without treatment, which resulted from the preferred
orientations. By adding a certain amount of amorphous glass, the preferred orientations were successfully eliminated. (b) PXRD patterns of the
(C4H9NH3)2Pb1–xMnxCl4 samples with different Mn

2+ doping concentrations, and the characteristic peaks of (002) planes which systemically shift to
higher angles as Mn content increases. (c, d) The refined data are dependable by the qualified Rwp and χ2 factors, showing that (C4H9NH3)2PbCl4
belongs to the layered perovskite and Mn2+ occupies the Pb2+ sites.

Table 1 Main parameters of refinement of the two samples of
(C4H9NH3)2PbCl4 and (C4H9NH3)2Pb0.8Mn0.2Cl4

Compounds (C4H9NH3)2Pb1–xMnxCl4
x (%) 0 20

Sp.Gr. Pbca Pbca

a (Å) 7.989 (1) 7.989 (2)

b (Å) 7.860 (1) 7.882 (2)

c (Å) 27.979 (4) 27.825 (6)

V (Å3) 1,756.8 (4) 1,752.0 (6)

Z 4 4

2θ-interval (º) 5–120 5–120

Rwp (%) 11.47 10.50

Rp (%) 8.68 7.87

χ2 1.38 1.28

RB (%) 2.22 2.16
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with the emission wavelength of 365 nm. According to
the DFT calculation, the crystal formation energy of
MnBr2 and MnCl2 is −2.531 and −3.396 eV, respectively,
indicating that high energy is needed to destroy MnCl2.
Therefore, MnBr2 is a proper dopant source of Mn

2+.
It is well known that the mechanochemical synthesis

lies not only in fundamental research but also in potential
applications such as smart sensors, fluorescent biomar-
kers and deformation detectors. In this work, it is
essential to unravel the nature of this phenomenon of
mechanochemical synthesis 2D layered perovskite in
depth. Benefitting from PXRD refinement, the crystal-
lographic information of perovskite (C4H9NH3)2Pb1–x-
MnxCl4 can be obtained after sufficient grinding, thereby
confirming the incorporation of Mn2+ ions. As shown in
Fig. 2d, taking the crystal structure of (C4H9NH3)2PbCl4
as the starting model, the Pb/Mn ratio in the sample
x=0.2 was refined taking into account linear restriction
occ (Pb) + occ (Mn) = 1. As we expected, the smaller cell
volume of Mn-doped sample in comparison with that of
host material is in a good agreement with smaller ion
radii (IR) of Mn2+ (CN=6, 0.67–0.83 Å) than Pb2+

(CN=6, 1.19 Å). The average bond length d(Pb–Cl)aver
(Table S2) also decreases with increasing Mn doping
concentration. Chemical formula from refinements were
(C4H9NH3)2PbCl4 and (C4H9NH3)2Pb0.82(1)Mn0.18(1)Cl4

which clearly showed that the Mn2+ ions entered the
Pb2+ sites after grinding. Moreover, the synthesis of
(C4H9NH3)2Pb0.5Mn0.5Cl4 with high Mn2+ doping con-
centration was also performed. As shown in Fig. S1, the
diffraction peaks of PbBr2 appear in the PXRD pattern of
(C4H9NH3)2Pb0.5Mn0.5Cl4 at the high doping concentra-
tion of manganese. PbBr2 can form relatively strong
chemical bonds along with the substitution of Mn2+ for
Pb2+ in the (C4H9NH3)2PbCl4, without the substitution of
Br− into the (C4H9NH3)2PbCl4 lattice.
In addition, Fig. 3a, b show the SEM images of

(C4H9NH3)2PbCl4 crystal with the largest particle size up
to 100 μm. Fig. 3f, k present the morphology of the
samples after grinding, showing that the particles
agglomerate. Moreover, the composition uniformity of
(C4H9NH3)2Pb1–xMnxCl4 was checked by elemental
mapping. As shown in Fig. 3c, d, g–i and l–n, the
manganese element is homogeneously distributed in
these doped samples. Moreover, surface accumulation
or phase segregation is not found. The average atomic
ratios of Pb/Cl determined by EDS (Fig. 3e, j and o) are in
accordance with that in the molecular formula 1:4. This
further demonstrates that we developed an effective facile
approach for incorporating Mn2+ into 2D organic-
inorganic hybrid perovskite. Fig. 3p gives the optical
microscopy photograph of (C4H9NH3)2Pb0.98Mn0.02Cl4

Figure 3 (a, b, f, k) Typical SEM images showing the layered morphology of (C4H9NH3)2PbCl4 crystals (a, b), and the agglomeration states after
grinding for (C4H9NH3)2Pb0.95Mn0.05Cl4 (f) and (C4H9NH3)2Pb0.8Mn0.2Cl4 (k). (c, d, g–i, l–n) Elemental mapping images demonstrate the homo-
geneous distribution of Pb, Cl and Mn in different samples. (e, j, o, t) listed the EDS results consistent with the chemical constituents of samples
(C4H9NH3)2PbCl4, (C4H9NH3)2Pb0.95Mn0.05Cl4 and (C4H9NH3)2Pb0.8Mn0.2Cl4. (p) Optical microscopy photograph of (C4H9NH3)2Pb0.8Mn0.2Cl4
microcrystal particles with 365 nm UV excitation. (q, r) TEM images showing the layered perovskite sample (C4H9NH3)2PbCl4 after grinding with
nanoscale size; (s) HRTEM image of (224) and (206) crystallographic planes of (C4H9NH3)2PbCl4 crystals.
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with 365 nm UV light source excitation and exhibits the
excellent luminescence properties which will be further
discussed later.
To further demonstrate the morphology and structure

evolution of (C4H9NH3)2PbCl4, the TEM and the high
resolution TEM (HRTEM) imaging were carried out, as
shown in Fig. 3q–s. The size of the as-ground
(C4H9NH3)2PbCl4 was determined to be about 15 to
20 nm, indicating that 2D perovskite can be easily ground
into nanoparticles. The solid diffusion reaction is mainly
controlled by grain boundary diffusion, and the diffusion
rate would be fast in nanoscale particles [32,33].
Meanwhile, the powder diffraction results (Fig. 2c, d)
show that the crystal structure of the ground sample still
belongs to 2D layered perovskite. The HRTEM results
reveal lattice fringes with the planar spacing of 0.2591 and
0.3036 nm that corresponds to the (224) and (206) lattice
planes of (C4H9NH3)2PbCl4, respectively. As shown in
Fig. 3t, we comparatively measured the chemical
composition of Pb and Cl by TEM equipped with a
windowless link EDS analyzer, consistent with the
chemical ratio in the formula of (C4H9NH3)2PbCl4.
To clarify the mechanism for Mn incorporation into

the Pb site as observed experimentally, we performed the
DFT calculations to obtain impurity formation energy of
Mn2+ ions at the host (C4H9NH3)2PbCl4. We have
constructed a 4×4×1 supercell model for the layered
perovskite crystal, based on the results of Rietveld
refinement for the PXRD patterns of (C4H9NH3)2PbCl4.
Furthmore, the impurity formation energy (Ef) of a
particular substitutional dopant is given by Ef=E(doped)-
E(pure)+μPb-μMn (1), where E(doped) and E(pure) are the
total energies of Mn-doped (C4H9NH3)2Pb1–xMnxCl4 and
pristine (C4H9NH3)2PbCl4, respectively. The chemical
potentials μMn and μPb are those of the substitutional
Mn and Pb, respectively [34].
The calculated results are summarized in Table 2, and

the formation energy Ef (eV) of (C4H9NH3)2Pb0.82-
Mn0.18Cl4 is −3.22 eV, indicating that the doped
compound is easy to form and more stable than the
pure one. Therefore, Mn2+ can enter the Pb sites at RT.
This can also be a reasonable explanation for the above
phenomenon, that is, the luminescent features can be
rapidly changed only by room-temperature grinding in
MnII-based 2D hybrid perovskite.
Then, we systematically studied the optical properties

of (C4H9NH3)2Pb1–xMnxCl4. As can be seen from the
normalized absorption and emission spectra in Fig. 4a,
the (C4H9NH3)2Pb1–xMnxCl4 (x>0) samples exhibit a
narrow emission and a broad emission band peaking at

~405 and ~615 nm at the exciting wavelength of 365 nm.
Meanwhile, the ratio of the narrow emission to the broad
emission decreases with increasing Mn2+ content and the
corresponding Commission Internationale de L'Eclairage
(CIE) chromaticity diagrams calculated from the emis-
sion spectra of samples are shown in Fig. 4b. Especially, as
shown in Fig. S3a, b, the pure (C4H9NH3)2PbCl4 has trap
emissions in the wavelength region of 450–650 nm and
755–785 nm. And the fluorescence intensity is very weak
due to a large number of defects. The trap emissions
almost disappeared with the incorporation of Mn2+.
Simultaneously, as shown in Fig. 4c, the band-edge
emission spectrum of the host (C4H9NH3)2Pb1–xMnxCl4
overlaps with one side of the excitation spectrum of Mn2+,
proposing that the samples have the possibility of energy
transfer. Herein, to determine if the energy transfer
between Mn2+ and the host is responsible for the light
emission, the luminescence decays were monitored at
λem=405 and 615 nm. The fluorescence decays of band
gap transition and Mn2+ 4T1→

6A1 transition under
365 nm excitation as a function of the Mn2+ doping
concentration in (C4H9NH3)2Pb1–xMnxCl4 (x=0.01–0.20)
are exhibited in Fig. 4d and e.
A double exponential decay process was observed with

different x in (C4H9NH3)2Pb1–xMnxCl4 (x=0.01–0.20), and
the curves were well fitted by I=A1exp(–t/τ1)+
A2exp(–t/τ2) [35], where I is the luminescence intensity,
t is the time after excitation, τi (i=1,2) represents the
decay time of i component, and parameters A1 and A2 are
the fitting constants. Moreover, the average lifetime (τ)
can be determined using the calculation below: τ=(A1τ1

2

+A2τ2
2)/(A1τ1+A2τ2) [34,35].

As shown in Fig. 4f, the lifetime of band gap transition
decreases continuously with the increase of Mn2+

concentration. The lifetime decreases to 4.682 ns at
x=0.20 compared with that at x=0.01 (5.448 ns),
suggesting the energy transfer exists between the host
and Mn2+ [14,36–38]. It is confused to explain that the
lifetime of Mn2+ decreases with the increase of Mn2+

concentration. We may attribute this to concentration

Table 2 Total energies (eV) of (C4H9NH3)2PbCl4 and (C4H9NH3)2-
Pb0.82Mn0.18Cl4. The chemical potentials (eV) of Mn and Pb

Models Total energy (eV)

(C4H9NH3)2PbCl4 −788.77

(C4H9NH3)2Pb0.82Mn0.18Cl4 −793.941

Chemical potential (eV)

Mn −9.076

Pb −7.124
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quenching. The efficient energy transfer from excitons to
Mn2+ relies on the exchange coupling of dipoles, similar
to the case of Mn-doped halogenation perovskite
quantum dots [22]. Especially, we conjecture that the
peak at 405 nm is due to band-edge emission which
originates from band gap transition of the host itself. The
orange-red emission at 615 nm results from an internal
4T1 to

6A1 transition of the Mn2+ dopants excited by
energy transfer from the host (C4H9NH3)2Pb1–xMnxCl4. In
addition, the PLQYs of the (C4H9NH3)2Pb1–xMnxCl4.
(x=0.01, 0.05, 0.10, 0.15, 0.20) were measured upon
365 nm excitation, and the corresponding values are
15.5%, 16.2%, 16.8%, 19.4%, 27.9%.
The absorption spectra of (C4H9NH3)2Pb1–xMnxCl4 are

shown in Fig. S2a–f. The exciton absorption peaks are
observed at the absorption edge in 2D hybrid perovskites
[39,40]. Considering the exciton absorption, the optical
band gaps of (C4H9NH3)2Pb1–xMnxCl4 (x=0, 0.01, 0.05,
0.10, 0.15, 0.20) are calculated to be about 3.51, 3.46, 3.41,
3.36, 3.32, and 3.30 eV (see the detail in the Supplemen-
tary information). Additionally, the electronic band
structures and DOS of (C4H9NH3)2PbCl4 and

(C4H9NH3)2Pb0.8Mn0.2Cl4 calculated with DFT are illu-
strated in Fig. 5a–d. The structural models used for the
calculation are based on the PXRD refinement. The
calculations predict a directed band gap (Eg) of 3.12 eV,
with the conduction band minimum (CBM) and valence
band maximum both located at the k-point of U. When
Mn doping concentration is 20%, the band gap decreases
to 3.07 eV. Fig. 5c displays the calculated total and partial
DOSs of (C4H9NH3)2PbCl4, indicating that the top of the
valence band is dominated by the orbitals of Cl while the
CBM are mainly constituted by the orbitals of Pb. After
Mn2+ incorporation, localized energy levels from Mn2+

appear above the valence band and just at the CBM as
shown in Fig. 5d, which induces the possible additional
transition. Since the energy level of Mn is located just at
the CBM, photo-generated electrons in the semiconduc-
tor could easily jump from the CBM to Mn. This process
together with the energy transfer mentioned above causes
the efficient luminescence of Mn2+. Fig. 5e illustrates the
schematic process of Mn2+ entering the crystal lattice of
2D layered perovskite (C4H9NH3)2Pb1–xMnxCl4, and the
schematic luminescence process in (C4H9NH3)2Pb1–x-

Figure 4 Optical properties of the samples. (a) Normalized absorption and PL spectra of (C4H9NH3)2Pb1–xMnxCl4 (x>0) with varying Mn
2+ contents.

The band-edge emission intensity of the host decreases with increasing Mn2+ content, while the orange Mn2+ emission increases with increasing
dopant concentration. (b) CIE coordinates of (C4H9NH3)2Pb1–xMnxCl4. (c) The excitation spectrum of Mn2+ (λem=615 nm) and the emission spectrum
of the host (λex=365 nm) at the same coordinate system. PL decay curves of corresponding (C4H9NH3)2Pb1–xMnxCl4 (x>0) samples recorded at
λex=365 nm, (d) λem=405 nm and (e) λem=615 nm. (f) Dependence of the lifetime on different Mn

2+-doping concentration.
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MnxCl4 is described in Fig. 5f. Briefly, the violet and
orange emissions of (C4H9NH3)2Pb1–xMnxCl4 are attrib-
uted to band-edge emission and Mn2+ transition from 4T1
to 6A1 due to an efficient energy transfer, respectively.
The 615 nm orange-emitting (C4H9NH3)2Pb1–xMnxCl4
phosphor can be used in white light emitting diode
(WLED) device with a commercially available 365 nm
LED chip.

CONCLUSIONS
In summary, we obtained a lamellar 2D perovskite
(C4H9NH3)2PbCl4 crystal, and incorporated Mn2+ ions
into the 2D structures by a facile mechanochemical
synthesis approach with grinding the mixtures at RT. The
structure refinement suggests that Mn2+ ions occupy the
Pb2+ sites in (C4H9NH3)2Pb1–xMnxCl4. The negative
formation energy (−3.22 eV) indicated that the Mn2+

ions can enter the lattice rapidly through molecular
diffusion in ambient atmosphere due to the unique
crystalline structure of the 2D hybrid perovskite. The
fluorescence of (C4H9NH3)2Pb1–xMnxCl4, corresponding
to emissions at 405 and 615 nm, is attributed to
(C4H9NH3)2PbCl4 band-edge emission and Mn2+
4T1→

6A1 transition due to an efficient energy transfer.
This work opens up new possibilities to design and
prepare complicated or doped 2D hybrid perovskites with
the aid of the unqiue exchange strategy between cations

which could be used for emerging opotoelectronic
applicaions.
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MnII掺杂二维杂化钙钛矿(C4H9NH3)2PbCl4的机械化学合成及其发光性能研究
周国君1, 郭少强2, 赵静1, Maxim Molokeev3,4,5, 刘泉林1, 张俊英2*, 夏志国1*

摘要 简单和高效的机械力化学合成方法在先进功能材料的合成领域备受关注. 本论文通过机械力化学合成手段, 将二价锰离子(MnII)成
功掺杂于二维层状钙钛矿(C4H9NH3)2PbCl4中. 研究发现, 仅通过室温研磨便能观察到二维杂化钙钛矿中, 迅速出现MnII的橙红色荧光. 其
中, 掺杂的MnII占据了Pb的格位, 其荧光特性源于(C4H9NH3)2Pb1–xMnxCl4的带边发射和MnII的4T1→

6A1跃迁之间的能量传递; 与此同时, 利
用第一性原理计算了钙钛矿(C4H9NH3)2Pb1–xMnxCl4掺杂前后的形成能, 从理论上证明了具有特殊结构的二维杂化钙钛矿使得Mn2+易于
替代Pb2+. 鉴于机械化学合成方法在二维层状钙钛矿中不仅易掺杂且光谱可调的优势, 将为新材料领域的进一步开发和应用提供新的机
遇.
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