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ABSTRACT: We report the discovery of the zero thermal expansion (ZTE) effect in BPO4, a famous deep-ultraviolet (DUV)
optical material with cristobalite-like structure. It is revealed that BPO4 has a linear ZTE coefficient of −0.16(5) MK−1 along the
c-axis as temperature increases from 13 to 300 K, which originates from the subtle counterbalance between the rotation-induced
expansion and contraction effects among BO4 and PO4 groups. BPO4 is a unique DUV cristobalite-like material exhibiting the
linear ZTE behavior.

For the optical apparatus operated in complex environ-
ments with high temperature-fluctuation, the “heated-

expansion and cooled-contraction” effect in optical materials
has always been a thorny issue to keep the measurement
accurate. Zero thermal expansion (ZTE) materials, in which
the size along a specific direction remains constant as
temperature varies, could provide an efficient solution to this
problem.1−7 However, optical materials are required to have
good optical transmittance, especially in the short wavelength
region (e.g., in the deep ultraviolet (DUV) region, λ < 200
nm), since the diffraction limit for an optical device is
proportional to the wavelength λ. Recently, increasing number
of DUV optical devices have been developed,8,9 but the
discovery of ZTE materials with transparent window down to
DUV region still remains challenging.
Cristobalite-like compound family includes a large amount

of members, such as the high-temperature phase SiO2,
10

PON,11 and NaAlSiO4-serise.
12,13 In these compounds the

quasi-rigid tetrahedral anions are connected with each other by
sharing the corner atoms to generate the three-dimensional
framework structure, while the interstices are empty or
occupied by small-radius cations. These materials usually
possess excellent optical transmittance in the UV and visible
regions, owing to the strong covalent interaction within the
tetrahedral anions. Moreover, the rotation of the rigid
tetrahedra is the dominant temperature-induced structural
modification, which would be possible to achieve the
compromise between the thermotropic expansion and
contraction and thus give rise to the ZTE behavior along
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some specific direction in the cristobalite-like compounds.
However, the majority of these materials dissatisfy the volume
ZTE criterion proposed by Evans,14,15 i.e., the opening angles
between rigid units should be large enough so that the rotation
of these units can be accommodated to keep the cell size
unchanged, and therefore have not attracted much attention.
In this work, we discover a unique linear ZTE behavior

below room temperature in a cristobalite-like material BPO4
using the variable-temperature X-ray diffraction (VTXRD).
The mechanism for this ZTE behavior is investigated by the
first-principles calculations in combination with the variable-
temperature Raman spectra (VTRS). We further predict that
BPO4 has ultrastable optical performance in DUV region
during the ZTE temperature range.
The crystal structure of BPO4 is displayed in Figure 1. It

crystallizes in a uniaxial I4̅ space group with a cristobalite-like

structure.16,17 Each boron (or phosphorus) atom is coordi-
nated with four oxygen atoms to form the [BO4] (or [PO4])
tetrahedron. By sharing the corner oxygen atoms, [BO4] and
[PO4] tetrahedra are alternatively connected to one another
with the ∠B−O−P angle of 139°, giving rise to the three-
dimensional open framework structure. The tetrahedral
interstices provide large freedom degree for the rotation of
[BO4] and [PO4] tetrahedra as temperature varies.
The VTXRD measures on BPO4 revealed that no new peaks

emerge or vanish below room temperature, and all the patterns
can be indexed as the I4̅ space group (Figure S1). BPO4 is
thermodynamically stable without phase transition, superior to
some other cristobalite-type materials.18−20 The VTXRD cell
parameters manifest a strong anisotropy of thermal expansion
behavior (Figure 2 and Table S1). As temperature increases
from 13 to 300 K, the cell parameter a(b) elongates by 0.13%
with the fitted thermal expansion coefficient 4.54(35) MK−1

(Figure 2a). In comparison, the cell parameter c almost keeps
constant and only changes by less than 0.01% with the fitted
thermal expansion coefficient −0.16(5) MK−1, which can be
categorized as a typical linear ZTE behavior. The linear ZTE
along c-axis is also demonstrated by the observation that the
diffraction peaks of (002) plane hardly move as temperature
varies (Figure 2b). In fact, BPO4 has weak linear thermal
expansion even under higher temperature: it exhibits a pretty
small thermal expansion along the c-axis with the magnitude
∼2/MK between 298 and 1173 K.21 However, it should be
emphasized that the magnitude of the thermal expansion

coefficient along c-axis above room temperature belongs to the
range of normal thermal expansion, which cannot be classified
to ZTE behavior.
The VTRS were collected to further confirm the mechanism

of the linear ZTE behavior of BPO4. It is because the thermal
expansion property is tightly correlated with the anharmonicity
of lattice vibrations, which can be characterized from the
variation of the phonon frequency with respect to temper-
ature.5,25−27 As shown in Figure 3b, for all measured
temperatures there are seven principal peaks observed in the
Raman spectrum (Modes I−VII in Figure 3b and Table S4).
Six of them (Modes I and III−VII) are significantly softened as
temperature increases, while the frequency of the mode around
459 cm−1 (Mode II) exhibits very small shifting with respect to
temperature, indicating its key role in the linear ZTE behavior
in BPO4. The first-principle simulations ascribe this mode to
the transversal vibration of bridged oxygen atoms, and the
vibrational direction is almost parallel to the (a, b) plane and
perpendicular to the c-axis (insert in Figure 3b). According to
the transverse vibration mechanism,28,29 the enhanced
amplitude of rotation perpendicular to the c-axis between the
rigid [BO4] and [PO4] tetrahedra would result in a contraction
effect of c-axis, which would counterbalance the elongation

Figure 1. Structure of BPO4 viewed along (a) (110) and (b) (011)
directions. [BO4]and [PO4] groups are represented by purple and
blue tetrahedra, respectively. The B−P distance is highlighted by
black dash line. The opening of ∠B−O−P angle is represented by
green arrow, and the rotation between the neighboring [BO4] and
[PO4] tetrahedra is represented by yellow arrows, respectively. Both
effects result in the inclination of B−P distance.

Figure 2. Thermal expansion behavior of BPO4: (a) evolution of cell
parameters with respect to temperature. The insert displays the spatial
distribution of thermal expansion coefficient plotted by PASCal
software; (b) diffraction peaks for (002) plane in VTXRD patterns
under different temperatures. The most intuitive way to investigate
the mechanism of the thermal expansion behavior is to trace the
variation of bond lengths and angles with respect to the temperature.
However, the tiny temperature-induced modification of atomic
positions for light boron, phosphorus, and oxygen atoms is difficult
to be distinguished using the data collected by laboratory XRD
apparatus.22 Therefore, the temperature-dependent bond lengths and
angles were determined by the first-principles stimulations, which
have been widely adopted to study the thermal-expansion property of
materials.23,24 The calculated results are listed in Figure 3a and Tables
S2 and S3. Clearly, the lengths of B−O and P−O bonds almost keep
constant (both elongate by less than 0.01%) as temperature varies
from 13 to 300 K, indicating the rigidity of [BO4] and [PO4]
tetrahedra. Meanwhile, the ∠B−O−P angle increases by 0.18%, more
than one order larger than those of B−O and P−O bonds. This
confirms that the thermal expansion of BPO4 is predominantly
originated from the rotation between the quasi-rigid [BO4] and [PO4]
tetrahedra. In fact, the variation of cell parameters is exclusively
determined by the B−P distance and its orientation with respect to
specific axis. As temperature increases from 13 to 300 K, the opening
of the ∠B−O−P angle makes the B−P distance increase from 2.737
to 2.739 Å, which should result in the positive thermal expansion for
all the three axes. However, the angle between the B−P distance and
c-axis increases from 54.541° to 52.579°, which leads to the thermo-
contraction along the c-axis. These expansion and contraction effect
counterbalance with each other, giving rise to the linear ZTE behavior
along c-axis (as depicted in the inset in Figure 1a).
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effect originated from the other normal modes and eventually
give rise to the ZTE behavior along this direction. Therefore,
the linear ZTE behavior of BPO is originated from the
anisotropic rotation along the thermal principal axes between
the rigid [BO4] and [PO4] tetrahedra, consistent with the
conclusion deduced from the variation of temperature-
dependent bond length and angles.
Remarkably, BPO4 has excellent optical transmittance in the

DUV region with the shortest absorption cutoff of 136 nm
among all known cristobalite-type materials.30−32 The first-
principles calculation about the band gap, refractive index, and
birefringence demonstrates that the values of these optical
properties almost remain constant for the whole ZTE
temperatures (Figure 4 and Table S5). This suggests that
BPO4 would be able to generate the ultrastable optical output
when exposed to high temperature-fluctuation environments.

In summary, the thermal expansion behavior below room
temperature of BPO4 with cristobalite-type was studied by
variable-temperature X-ray diffraction, and the linear ZTE
behavior between 13 and 300 K was discovered. Variable-
temperature Raman spectrum and first-principles lattice
vibration assignment verified that the linear ZTE behavior is
mainly originated from the strong anisotropy of the temper-
ature-induced rotation between the neighboring rigid [BO4]
and [PO4] tetrahedra. Benefitted from the linear ZTE and
excellent optical performance, BPO4 would find potential
application in many highly precise optical facilities operated in
high temperature-fluctuating environments, such as space

telescope, deep-sea optical sensor, and ultrafine optical grating
in cryogenic condition.
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