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ABSTRACT: We present a new atomistic model for plasmonic
excitations and optical properties of metallic nanoparticles,
which collectively describes their complete response in terms of
fluctuating dipoles and charges that depend on the local
environment and on the morphology of the composite
nanoparticles. Being atomically dependent, the total optical
properties, the complex polarizability, and the plasmonic
excitation of a cluster refer to the detailed composition and
geometric characteristics of the cluster, making it possible to
explore the role of the material, alloy mixing, size, form shape,
aspect ratios, and other geometric factors down to the atomic
level and making it useful for the design of plasmonic particles
with particular strength and field distribution. The model is
parameterized from experimental data and, at present, practically
implementable for particles up to more than 10 nm (for nanorods even more), thus covering a significant part of the gap
between the scales where pure quantum calculations are possible and where pure classical models based on the bulk dielectric
constant apply. We utilized the method to both spherical and cubical clusters along with nanorods where we demonstrate both
the size, shape, and ratio dependence of plasmonic excitations and connect this to the geometry of the nanoparticles using the
plasmon length.

■ INTRODUCTION

Plasmonic excitations of metal elements can generate very
strong electric fields in their vicinity through the interaction
with electromagnetic radiation, leading to the possibility to
detect signals of single molecules. There is a delicate
requirement for matching the frequency of the incident light
with that of the oscillating surface electrons, which depends
ultimately on electronic structure and indirectly also on the
size, shape, and material of nanostructured particles. It still
remains a great challenge to design active plasmonic
nanomaterials with arbitrary size, composition, and structure
where the structures have the dimension of a few nanometers.
Classical electrodynamics methods serve in general as viable
approaches for prediction of the optical properties, including
plasmonic generation1−3 for larger particles where a variety of
approaches, including the finite difference time domain
(FDTD) method4,5 and the finite element method (FEM),6

frequently have been used for both time- and frequency-
domain calculations. Furthermore, Mie theory1 is frequently
used for scattering problems involving nanoparticles that are

sufficiently large proving that the concept of a classical
dielectric constant remains valid. Other classical electro-
dynamics methods, such as the discrete dipole approximation2

and the T-matrix method,3 have also been widely used for
calculation of optical properties of nanospheres, nanodisks,
nanorods, and other complex geometrical configurations. The
efficiency of these methods has been confirmed many times,
and nevertheless, they tend to lose accuracy for small particles
with a diameter below 10 nm. Corrections for these models
that take into account quantum size effects7 improve the
results;8,9 however, they still use dielectric constants of bulk
materials, obtained empirically,10 and do not consider the
discrete atomic structure of the nanoparticles. It is thus
obvious that the dielectric constant will vary in size and
become unpredictable for small clusters with broad plasmon
resonances or for clusters with more complex shapes. Here, the
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particle size can be smaller than the mean free path of the
conduction electrons, and the surface to volume ratio can
become so large that a significant deviation from a nonlocal
bulk-value description of the dielectric constant can be
expected. It is clear that there is a breaking point in size
where quantum mechanics-based descriptions, accounting also
for electronic structure, are necessary and where classical
electrodynamics becomes too crude. Full quantum methods,
such as the time-dependent density functional theory
(TDDFT), can be useful for calculating the absorption spectra
of a small cluster of noble metals with the number of atoms N
≈ 10−300 using TDDFT when the cluster displays some
higher symmetry.11−16 However, due to obvious scaling
limitations, such calculations cannot be performed for a large
number of atoms.
For calculations of optical properties of intermediate-sized

particles with 102−105 atoms and a diameter of a particle of d
< 10 nm, an atomistic approach where the polarizabilities can
be obtained from the atoms of the particle could fill an
important gap in the description of nanoparticle plasmons
between the quantum and classical extremes. Here, the
classical dipole approximation can be applicable to construct
the total polarizability (or the dielectric constant) from a set of
interacting complex polarizable atomic dipoles. However, still
for the polarizabilities as such, fixed constants are typically used
for each type of element, obtained either from bulk
measurements or electronic structure calculations. This
neglects, for example, any charge rearrangement that takes
place in the real cluster on formation or by molecular
sensitization. An elaborate model yet very simple compared to
quantum chemical calculations to deal with this is the so-called
interaction model.17 In the simplest form, it is a set of atomic
polarizabilities that interact in accordance with classical
electrostatics without an external electric field. One of the
significant drawbacks of an interaction model is, however, that
the atoms on the surface and inside of the cluster do not differ
very much. The model has been significantly expanded by
inclusion of a damping term of the internal electric field18,19

and has been extended also to compute for the frequency
dependence of the dipole polarizability20,21 and to an atomistic
discrete interaction model (DIM).22,23 The discrete interaction
models have been successfully applied to study the polar-
izability of organic molecules and metallic clusters, to model
electrostatic interactions in molecular dynamics simulations,
and to describe a heterogeneous environment in hybrid
quantum mechanics/classical mechanics calculations; see, for
example, ref 23. However, despite the atomistic nature, the
DIM has limited capabilities to describe the dependence of the
polarizability of the surface topology of the metallic nano-
particles, and furthermore, it cannot be used to study the
polarizability of composite nanoparticles. Recently, Chen et
al.24 developed a coordination-dependent discrete interaction
model (cd-DIM), which attempts to overcome these
limitations of the original DIM. The new cd-DIM has been
successfully applied to study optical properties of ligand-coated
silver nanoparticles. Here, we propose an extended discrete
interaction model (ex-DIM), which goes beyond the cd-DIM
and enables a robust description of the polarizability of
nanoparticles with different geometries. In the following theory
section, we will describe our new extended discrete interaction
method and compare it with the discrete interaction model
and coordination-dependent discrete interaction model by
Jensen et al.22,25 and Chen et al.,24 respectively, emphasizing

the strengths and weaknesses of the models. We then discuss a
different parameterization scheme based on experimental
results and not on TDDFT as has otherwise been done with
similar atomistic models. The interplay of parameters and how
these parameters should be optimized and chosen are also
discussed.
We demonstrate the size, shape, and aspect ratio depend-

ence of surface plasmon resonances (SPRs) for silver spherical
and cubical clusters and nanorods. We, here, theoretically and
numerically show the inverse proportionality between the
plasmon length and the SPR and not direct proportionality as
proposed by Ringe et al.26 Furthermore, we show that, for
nanorods with the same diameter, the longitudinal localized
surface plasmon resonance (LLSPR) and transverse localized
surface plasmon resonance (TLSPR), measured in nanometers,
are proportional to the aspect ratio and red and blue shifts,
respectively. Furthermore, we show that the slope of the SPRs
depends on the diameter of the nanorod and the polarizability
per atom increases linearly with the aspect ratio in nanorods.
Finally, we conclude and give an outlook of future develop-
ments and applications.

■ THEORY
We split the description of our extended discrete interaction
model into two parts: a theoretical foundation and detailed
description of the ex-DIM presented in this section and a
parameterization scheme of the ex-DIM along with applica-
tions in the following section.

Extended Discrete Interaction Model. Similar to the
original DIM suggested by Jensen et al.,20,22 our extended
discrete interaction model aims to describe the polarizability
and optical properties of metallic nanoparticles by representing
the nanoparticle as a collection of interacting atomistic charges
and dipoles. The starting point of both models is a Lagrangian
function with an energy expression for interacting fluctuating
charges and dipoles in an external electric field subject to a
charge equilibration constraint.
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In eq 1, the first term is the self-interaction energy of
fluctuating charges, the second term is the interaction energy
between fluctuating charges, the third term is the self-
interaction energy of fluctuating dipoles, the fourth term is
the interaction energy between fluctuating charges and dipoles,
the fifth term is the interaction energy between fluctuating
dipoles, the sixth term is the interaction energy between
fluctuating charges and the external potential, the seventh term
is the interaction energy between fluctuating dipoles and the
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external field, and the last term is a charge equilibration
condition expressed via the Lagrangian multiplier λ. Here, qi is
the fluctuating charge assigned to the ith atom, μi is the
fluctuating dipole assigned to the ith atom, cii is the ith charge
self-interaction tensor, αii is the ith dipole self-interaction
tensor, Tij

(0), Tij
(1), and Tij

(2) are the electrostatic interaction
tensors, Vext is the external potential, the Eext is the external
electric field, qtot is the total charge of the nanoparticle, and N
is the number of atoms in a nanoparticle. Tij

(0), Tij
(1), and Tij

(2)

are for the ex-DIM, shown in more detail in Appendix A. The
fluctuating charges and dipoles are determined by minimizing
the energy E[{μ, q}]. According to Jensen et al.,22 this
minimization problem can be recast into a problem of solving a
set of linear equations
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where the column vector μ is the collection of μi dipoles, the
column vector q is the collection of qi charges, and λ is a
Lagrangian multiplier associated with charge equilibration
condition. The matrix elements of A, C, and M are defined as
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Equation 2 can be solved by inversion of the left-hand side
matrix for small- and medium-size nanoparticles or by the
iterative approach, such as the conjugate gradient method for
large-size nanoparticles in an external field and potential. In the
calculations presented here, we solve the linear equations by
inversion for each frequency since we do not apply an external
field. After that, the fluctuating charges and dipoles determined
by the polarizability of the nanoparticle can be directly
obtained by computing the second derivative of E[{μ, q}] with
respect to external field Eext. According to Jensen et al.,22,24 the
polarizability of a nanoparticle can be defined as

Ei

N
inp

ext∑α
μ

=
∂

∂ (4)

The above-described scheme for determination of the
polarizability of a nanoparticle is generic and has been
employed in the original, coordination-dependent, and
extended discrete interaction models.18−21,27,28 The differences
between these models originate from the functional form used
to describe the fluctuating charges and dipoles and from the
parameterization of the self-interaction and electrostatic
interaction tensors. To lay the foundation for our extended
discrete interaction model, we first consider the parameter-
ization of the DIM and cd-DIM. In the original DIM, the self-
interaction tensors (cii and αii) are parameterized using
atomistic capacitance and polarizability derived from bulk-
material properties, and the electrostatic interaction tensors
(Tij

(0), Tij
(1), and Tij

(2)) are computed using normalized Gaussian
charges and dipoles with parameterization using TDDFT. In
the cd-DIM, the fluctuating charges are excluded from the
energy expression E[{μ, q}], the self-interaction tensor (αii)
between dipoles is parameterized using a coordination

number-dependent atomistic polarizability derived via the
Clausius−Mossotti relation,29 and the electrostatic interaction
tensor (Tij

(2)) is computed by the same way as in the DIM. In
order to extend these models and achieve a description of
more complex surface topologies, we spatially spread in our
model the Gaussian dipoles and charges in a way that they
explicitly depend on their local chemical environment. Here,
suggestively, the scheme of Grimme,11 originally proposed for
the computation of dispersion corrections in DFT calculations,
can be used for evaluating atomic coordination numbers. The
atomic coordination number fcn

i is then computed as

f e1i

i

N

j i

N
k k R R r
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( ( )/ 1) 1i j ij1 2

cov cov∑ ∑= [ + ]
≠

− + − −

(5)

where Ri
cov and Rj

cov are the scaled covalent radius of the ith and
jth atoms, respectively, rij is the distance between the ith and
jth atoms, and k1 and k2 are empirical parameters equal to 16.0
and 4.0/3.0, respectively.30 In the case of fluctuating charges
and dipoles, the normalized Gaussian charge distribution
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used in the DIM and cd-DIM can be replaced with the
coordination number-dependent Gaussian charge distribution
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The coordination number-dependent dipoles are obtained
from coordination-dependent Gaussian charges by taking their
gradient, that is, μ(r; fcn, C) = − ∇rG(r; fcn, C). Here, a is the
fixed exponent of the Gaussian charge distribution centered on
the atom with the position vector C, and b is the coordination
number scaling factor, which defines the coordination number-
dependent spread of the Gaussian charge distribution.
This constitutes the general form of the extended DIM.

However, before taking on its full implementation, it is
necessary to scrutinize the calculation of its most important
parameters, namely, the self-interaction tensors cii and αii.
Here, we adopt a scheme based on the concept of plasmon
length26 as described in the section below.

Modeling Capacitance and Polarizability. The param-
eterization of the self-interaction tensors, cii and αii, in the ex-
DIM is central since these tensors play the dominant role in
defining the behavior of the nanoparticle polarizability.
Furthermore, in the case of dynamic polarizabilities, the
frequency dependence is solely defined by these tensors.
Similar to the DIM and cd-DIM, we use in the ex-DIM a
diagonal isotropic form for the self-interaction tensors, that is,
cii, kl = δklc and αii, kl = δklα for k, l = x, y, z. Here, we will
employ a different strategy based on the plasmon length26 to
parameterize the cii and αii tensors.
Starting from the self-interaction tensor via the Clausius−

Mossotti relationship for a spherical particle

f f R( ) with
6 ( )

( ) 2ii kl kl i,
3 0

0
α ω δ

π
ε ω ε
ε ω ε

= =
−
+α α (8)

where Ri is the radius of the ith atom, ε(ω) is the frequency-
dependent dielectric constant of the material, and ε0 is the
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dielectric constant of the environment. In the DIM,25 eq 8 is
approximated as

( 0)ii kl i s kl, , ,α αω = = (9)

L L N( 0) ( ( ) ( , ))ii kl i s kl, , , 1 2α αω ω ω> = + (10)

where αi, s, kl is the static polarizability and L1(ω) and L2(ω, N)
are two separately normalized frequency-dependent Lorentzian
functions. The resonance frequency ωi,2(N) in L2(ω, N) is
size-dependent

N A N( ) (1 / )i i,2 ,2
1/3ω ω= + (11)

where N is the number of particles and ωi,2 and A are two fitted
parameters. In this way, the size-dependent frequency is
inversely proportional to the radius for spherical particles. The
problems here are the discontinuity going from the static to the
dynamic case due to the separately normalized Lorentzian
functions and that the size-dependent resonance frequency in
L2(ω, N) does not take into account the geometry of the
particle.
The cd-DIM24 modifies the radius of eq 8 to a coordination

number-dependent radius Ri( fcn) and dielectric constant ε(ω,
fcn, r)

f f R f
f r

f r
( ) with

6
( )

( , , )

( , , ) 2ii kl kl i,
3

cn
cn 0

cn 0
α ω δ

π
ε ω ε
ε ω ε

= =
−
+α α

(12)

Here, ε(ω, fcn, r) is described by the sum of the experimental
dielectric constant εexp and the size-dependent Drude equation
minus the Drude function for spherical particles

f r f r( , , ) ( , , ) ( )cn exp Drude
size

cn Drudeε ω ε ε ω ε ω= + − (13)

where the plasma frequency in the size-dependent Drude
function is modified by the coordination number. By using an
effective coordination number, there is a smooth transition
from the inside to the outside of the coordination sphere.
Both the DIM and cd-DIM should be able to describe the

size dependence of spherical and sphere-like particles if
properly parameterized. For shapes far from a spherical
symmetry, such as nanorods with a large aspect ratio, the
functional shape in the DIM and cd-DIM does not appear to
be appropriate. We are therefore interested in developing a
method that can take into account both the surface effects and
geometry effects of nanoclusters.
We here extend the DIM where
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is the static polarizabilty αi, s, kl
31 multiplied by a normalized

Lorentzian function of L(ω, P) and the relative shift in radius
from the bulk radius is determined by the coordination
number. In this parameterization scheme, the chemical
environment enters the definition of the αii tensor via Ri( fcn)
defined as
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which regulates the radii of the atom depending on the
coordination number. For Ag, we use r1 = 1.65 Å and r2 =
Ri, bulk = 1.56 Å, which are the surface and bulk radii,

respectively.24 L(ω, P) regulates the geometric dependence via
the size-dependent resonance frequencies of three size-
dependent Lorentzian oscillators

L N L P L P L PP( , ) ( ( , ) ( , ) ( , ))x x y y z zω ω ω ω= + + (16)

where each Li(ω, Pi) depends on the plasmon length Pi in the
ith direction and the frequency ω with the common
normalization factor N ensuring that the Lorentzian oscillators
are normalized in the static limit of ω = 0. With a size-
dependent Lorentzian oscillator in each direction, it is possible
to describe more complicated geometric structures with
multiple plasmon resonances without having a new functional
dependence for each distinct geometry and thereby make the
ex-DIM more universal. The Lorentzian oscillator is chosen as

L
P i

1
( )i

i i
2 2ω ω γω

=
− − (17)

where γ describes the broadening of the spectra and ωi(Pi) is
the size-dependent resonance frequency, which enables the
geometric description of the plasmon excitations. With the
choice of the Lorentzian oscillator in eq 17, the normalization
constant becomes
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2 2 2
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ω ω ω
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(18)

The choice of the Lorentzian oscillator in eq 17 and the
common normalization in eq 18 will in this way give the higher
peak for the lower incident frequency, which, for nanorods,
corresponds to the long side. The size-dependent resonance
frequency ωi(Pi) can be written as

P A f N i( ) (1 ( , ))i i aω ω= + · (19)

where ωa and A are atom-specific fitted parameters for the bulk
resonance and size dependence, while f(N, i) is a function of
the number of atoms and dimension along the ith direction
measured in units of atom i. f(N, i) must then in the bulk and
atomic limits fulfill

f N i f N ilim ( , ) 0 lim ( , ) 1
N i N i, , 1

= =
→∞ → (20)

which can easily be accomplished using a single parameter,
namely, the plasmon length Pi

f N i
P

( , )
1

i
=

(21)

where the plasmon length Pi is defined as the maximum
distance between any atoms along the ith direction plus the
radius of each of the endpoint atoms. This use of the plasmon
length is consistent with the experimental work from
Tiggesbaümker et al.32 We here notice that the SPR cannot
be directly proportional to the plasmon length as defined by
Ringe et al.26 since, in the bulk limit, the SPR would incline to
minus infinity. Performing a Taylor expansion of eq 21, the
first order is linear in the plasmon length, and therefore the
linear dependence on the plasmon length as observed by Ringe
et al.26 is consistent with a sample of clusters of a limited size
range. For spherical clusters, eq 21 reduces to the usual size
dependence for classical models, also seen in the DIM and cd-
DIM, but for rods, discs, and other shapes far from spherical,
there is a distinct difference where the ex-DIM can have up to
three distinct plasmon resonances.
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The cii tensor responsible for the self-interaction energy in
charge transfer processes is in the DIM modeled as

c c L( ) ( )i i s, 1ω ω= (22)

using the same size-independent Lorentzian function as in eq
10 for the polarizability in the DIM and a fitted parameter ci, s
for the “static atomic capacitance”. In the cd-DIM, the charges
and hence the charge transfer and capacitance are completely
removed.
In the ex-DIM, we adopt a simplified two-parameter

parameterization scheme
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
c f f c d

R f

R
L Pwith 1

( )

(12)
( , )ii kl kl c c i s

i

i
, ,

cnδ ω= = +
(23)

where c is the “static atomic capacitance” parameter, similar by
its physical origin to the capacitance used in the DIM, d is a
scaling factor for the coordination number dependence of the
capacitance, set to 0.1, and L(ω, P) is the Lorentzian oscillator
defined in eq 16. Here, we stress that, in our parameterization
of the cii tensor, the frequency dependence is exactly the same
as for the polarizability.
The outlined parameterization scheme of our ex-DIM not

only satisfies the above given principal conditions for our
model, physical limits, and geometric dependencies but also
enables rapid reparameterization of the ex-DIM for new types
of composite nanoparticles or/and their environments.

■ PARAMETERIZATION OF THE EXTENDED
DISCRETE INTERACTION MODEL AND
APPLICATIONS

Similar to its predecessors, the extended discrete interaction
model is an empirical approach, and thus its accuracy and
applicability are defined by the quality of its parameterization.
Here, we outline the basic ideas behind the parameterization of
the ex-DIM and discuss the optimization of the parameters for
nanoparticles. As the ex-DIM aims to describe static and
dynamic polarizabilities of metallic nanoparticles accurately,
the goal of the parameterization is to obtain a set of parameters
with which the SPRs are computed using eq 4 as close as
possible to established benchmark values for a selected set of
nanoparticles. We here optimize the model using a training set
of spherical clusters and compare the results to both the
experimental values and a validation set of larger clusters to
ensure that the model gives reliable results for all cluster sizes.
Afterward, we investigate if the redshift observed in the Au
clusters by Ringe et al.26 when going from more spherical
clusters to cubical clusters also is present for Ag clusters.
Finally, we turn our attention toward silver nanorods to show
that both the longitudinal and transverse SPRs can be
accurately predicted using the ex-DIM.
Parameterization of the ex-DIM Model. As discussed in

detail in Appendix B, parameterizing the ex-DIM using
TDDFT data from small silver clusters encounters problems
with the magic number of atoms, limited size of clusters, and
the more physical problem of not having real SPR. Therefore,
trying to optimize the parameters minimizing the difference in
the polarizability between a small set of clusters calculated
using TDDFT and a given parameter range does not appear to
be a viable approach. We have therefore instead opted to
optimize the parameters in the ex-DIM directly from
experimental results. For this, we have used the systematic
size-dependence investigation of silver clusters performed by

Scholl et al.33 The aim therefore is not to reproduce the
absolute polarizability of small TDDFT calculations but to
predict the SPR of larger clusters with different geometry.
Even though there have been significant advances in

geometry optimization of metal clusters, the problem still
remains to be hard and not applicable for larger metal clusters
due to a multitude of local minima close-lying in energy.34−36

For all clusters and nanorods, we therefore start from a perfect
lattice where all atoms have the same distance to their nearest
neighbor and then cut out the nanoclusters with the desired
structure. From the 310 Ag-atom cluster, the average distance
to the closest neighbor is 5.28 au with a minimum and
maximum distance of 5.17 and 5.41 au. Similar distances are
seen for the other optimized clusters,35 and we have therefore
fixed the closest neighbor at 5.27 au in our lattice. Since the
surface topologies of all measured nanoparticles with the same
radius are slightly different, we try to capture this effect by
having several clusters with the same plasmon length but a
different number of particles in our optimization. This is
possible since there are only small variations in the SPR with
respect to small changes in the surface topology for sphere-like
clusters. In the optimization, we do not use faceted clusters nor
clusters with surface defects such as bumps or holes.
In order to reduce the number of parameters needed to be

fitted and make the method easier to extend to other elements,
we make use of experimental or theoretical literature values or
make argued choices for parameters that affect the peak
position of SPRs. The polarizabilities (α) are taken from
Schwerdtfeger and Nagle,31 which for silver are 55 au. The
value of the capacitance parameter c, as shown in Appendix C,
has very little influence on the overall polarizability and peak
position as long as c is outside areas of numerical instability.
For the optimization of sphere-like clusters, we have fixed the
value at 0.0001 au since all systems appear to be numerically
stable with this choice.
The Lorentzian broadening γ should be small compared to

the incident frequency and, not surprisingly, should show no
significant influence on the position of the SPR as seen in
Appendix D. During optimization, γ has been fixed at 0.016 au,
which gives what we deemed a reasonable broadening of the
peak(s) with FWHM compared to that extrapolated from data
by Ringe et al..26 While the SPR(s) does not shift with γ except
when two close-lying double peaks merge, the width and
height of the SPR(s) are significantly influenced thereby
making it difficult to get a good set of parameters when
optimized together with α for a small set of small clusters.
Despite being optimized with γ = 0.016, there is no problem
adjusting this parameter later or making γ size-dependent to
obtain different peak heights since the placement of the
SPR(s) is not affected by small changes in γ.
The only parameters that need to be fitted are therefore the

size-dependent resonance frequency ωa and the size-depend-
ence factor A. These two parameters are the decisive
parameters in determining the SPR. Systematic investigations,
like the one performed by Scholl et al.,33 are therefore essential
for an accurate fit of ωa and A. Due to the scarce amount of
data and because of what appear to be outliers in the data, we
decided to perform some data pruning and base our parameter
fit on the pruned data. By plotting the energy of the SPR as a
function of the inverse plasmon length, we can fit a simple
linear function as shown in Figure 1.
From the fit in Figure 1, the bulk limit for the SPR for Ag

will be 3.25 eV in our model and will show a slow variation of
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the SPR as a function of the inverse plasmon length. With the
definition of the plasmon length in eq 21, the inverse plasmon
length cannot exceed the inverse diameter of an atom, and the
SPR is therefore finite.
By choosing a representative set of spherical clusters with a

plasmon length of 1.4−3.8 nm, an optimal resonance
frequency, ωiPi in eq 19, which exactly reproduces the SPR
from the fit in Figure 1, for every cluster can be found (Figure
2). The optimal resonance frequency is here reproduced with a

deviation of 10−6−10−5 of the SPR compared to experiments.
We here use several spherical clusters with the same plasmon
length but with different surface topologies to simulate slightly
different surfaces. So while the radius in the 459, 555, and 603
clusters is the same, the number of atoms and the surface
topology are not. We here find that ωa = 0.0794 au and A =
9.41 au.
Inserting the fitted ωa and A values and recalculating the

clusters from the fit along with a test set of larger clusters with
276−11,849 atoms and a 2−7 nm diameter, we are able to
reproduce the SPR from the fit of the experimental values as
seen in Figure 3.

As seen from Figure 3, we are able to reproduce the SPR of
any sphere-like cluster irrespective of size with an error limited
by the experimental error. To ensure that the behavior of the
polarizabilty is correct for all frequencies, we calculated the
polarizability-dependent frequency for 200 points in the 3.0−
4.6 eV region.

Comparison between the ex-DIM, DIM, and cd-DIM
with Mie Theory. Since all three models have been applied to
bare sphere-like silver clusters, it would be natural to compare
them to the experimental data since the cd-DIM has been
compared to the same data before24 and the ex-DIM is
parameterized from the experimental data. The extracted data
from the DIM and cd-DIM have therefore been plotted against
the experimental data and ex-DIM calculations as shown in
Figure 4. From the plotted data, it is evident that, for the
truncated octahedrons, the DIM shows no discernible trend,
while for the icosahedra, there is a redshift of approximately 0.2
eV with size but only for the range of 147−1415 atoms (1.8−
3.4 nm); thereafter, there is no shift. The cd-DIM does show a
redshift in the plasmon length with increasing size but only by

Figure 1. Linear fit (ax + b) of experimental data with error bars from
Scholl et al.33 The purple points are the pruned data, and the green
line is the fit of the pruned data with coefficients of a = 0.670796 ±
0.05917 and b = 0.119511 ± 0.0006792. The blue points are data
excluded from the pruning, and the yellow-orange line is a fit of all
data with coefficients of a = 0.822497 ± 0.1057 and b = 0.119488 ±
0.001297.

Figure 2. Optimum ωi(Pi), which reproduces the plasmon peak at the
fitted experimental values from Figure 1 for a given cluster. Fitting the
optimum ωi(Pi) to eq 19, we find that ωa = 0.0794 au and A = 9.41
au. The 1409 and 1433 atom clusters, also included in the fit, are
located between or underneath the 1481 and 1505 atom clusters.

Figure 3. Plasmon peak as a function of the inverse plasmon length
for the clusters used for the fit in Figure 2 and a test set with larger
clusters calculated with the fitted ωa and A values compared to the
experimental fit and pruned data. The 1481 and 1505 atom
recalculated clusters are located between or underneath the 1409
and 1433 atom clusters.

Figure 4. Comparison between the ex-DIM, DIM,25 and cd-DIM,24

Mie theory, and experiment for bare silver clusters.33 For the DIM,
the TO clusters are truncated octahedrons and Ih are icosahedral
clusters. The diameter for the DIM clusters are estimated from the
clusters used in the ex-DIM. The 1481 and 1505 atom recalculated
clusters are located between or underneath the 1401 and 1433 atom
clusters.
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approximately 0.097 eV for the 2−10 nm clusters, while the
experimental data give a redshift of 0.38 eV in that region. The
limit of the cd-DIM therefore deviates significantly from the
experimental results and the results of the ex-DIM. While
Chen et al.24 give an arbitrary shift of 0.2 eV to the
experimental data to compensate for solvent effects, this does
not change the fact that the shift in the SPR in the cd-DIM is
only approximately a quarter of what it should be according to
experiments.33

The poor performance of the DIM and cd-DIM for sphere-
like clusters is most likely not due to methodological issues but
rather due to the parameterization. This can be understood
since the ex-DIM and DIM in the spherical cases are very
similar except for the surface atoms, and a better fit of
parameters should therefore be possible. For the DIM,25

Jensen and Jensen reported puzzling parameters. While the
resonance frequency ωi,1 = 0.0747 is similar to ωa = 0.0794 in
the ex-DIM, the broadening γi,1 = 0.0604 is of the same size as
the resonance frequency ωi,1, which is very unusual in
Lorentzian and other oscillator models and a sign of something
that has gone wrong in the parameterization. We here notice
that Jensen and Jensen22 use a capacitance parameter, c = 3.45,
which is right in the region of numerical instability in the ex-
DIM as shown in Appendix C. In cd-DIM, the size-dependent
Drude function does not appear to be optimized for silver at all
even though Karimi et al.37 had no problems fitting a similar
function for gold.
Mie theory1 is known to be in good agreement with

experiments for medium and large particles but not so for small
particles. As seen in Figure 4, Mie theory underestimates the
size dependence of small silver clusters when compared to
experiments even when Mie theory is size-corrected based on
the electron effective mean free path.38

Silver Cubes. Ringe et al.26 showed that Au cubes are
redshifted up to 0.2 eV in comparison to more sphere-like
clusters with the same plasmon length. Because of differences
in dielectric constants39 between Au and Ag, the SPR in Ag
nanoparticles has a more acute size dependence than that of
their Au counterparts.40,41 As seen from Figure 5, we predict
that the more acute size dependence translates into a larger

shape dependence of the SPR as the Ag cubes are redshifted at
approximately 0.6 eV in comparison to the Ag spheres in the
region examined here, which is in line with the findings of
Gonzaĺez et al.42 The size dependence of the cubes and
spheres is here shown to be reasonably similar.

Silver Nanorods. While a small red shift in the SPR with
increasing cluster size is seen for sphere-like particles, very
significant red shifts can be observed for nanorods depending
on the aspect ratio. This very large red shift can be used to
tune the SPR to a given region, thereby making nanorods
versatile sensors. The SPR for nanorods is, however, split into
two due to the cylindrical symmetry and excitation of collective
oscillations of conduction electrons of nanorods, and two
peaks are seen in the UV−vis spectrum. The SPR along the
short transverse axis (TLSPR) is typically very slightly
blueshifted in comparison to that of a spherical cluster with
the same plasmon length, while the SPR along the long
longitudinal axis (LLSPR) can be redshifted much below what
can be done by increasing the size of a spherical cluster.
Furthermore, the polarizability for the redshifted peak is also
greatly enhanced with an increasing aspect ratio, here defined
as the ratio between the plasmon length in the longitudinal and
transverse directions.
Since tunable nanorods are of great application interest, we

have examined a series of nanorods to elucidate the interplay
between the aspect ratio and diameter with respect to the SPR.
We have constructed a series of nanorods where each end is a
half-sphere connected by a cylinder. The nanorods are
designated as Ag(x, y) where x is the plasmon length of the
longitudinal axis and y is the plasmon length of the transverse
axis in nanometers as shown in Figure 6. Ag(y, y) is, with this

definition, a sphere with an effective diameter of y. We here use
nanorods with a diameter from 2.23 to 6.18 nm, a length of up
to 14.06 nm, and an aspect ratio of up to 5.4 and containing up
to 16,567 atoms. For all figures, we calculate the polarizabilty
at 400 different frequencies. In Figure 6, we clearly see that
only the top layer of atoms has a coordination number below
11−12, and, as expected, the atoms with the lowest
coordination number are on the edges. This means that only
the surface atoms are directly affected by the changes
introduced by the coordination numbers.
The red shift of the LLSPR for the Ag(x, 2.23) and Ag(x,

4.20) nanorods calculated with the ex-DIM is clearly visible
from Figures 7 and 8. Due to the emergence of a double peak
in Figure 7, the slight blue shift of the TLSPR is not as visible
as in Figure 8. As seen in Figure 9, the red shift of the LLSPR
in nanometers is directly proportional to the aspect ratio and
the difference in the LLSPR changes with the diameter of the

Figure 5. Comparison of the SPR for sphere and cubes with different
plasmon lengths. The greater red and blue shifts seen for the 665 and
1687 atom cubical clusters, respectively, are due to double peaks
where the most red- and blueshifted peaks have the highest
polarizability. With a larger γ value, both outliers will be shifted to
be more in line with the rest of the cubes. The 1481 and 1505 atom
recalculated clusters are located between or underneath the 1401 and
1433 atom clusters.

Figure 6. Longitudinal and transverse plasmon length and
coordination numbers for the Ag(12.09, 4.20) nanorod, which
contains 8743 atoms.
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nanorod. The dependence on the diameter of the nanorod can
also be seen from the slope of the fit for the Ag(x, 2.23), Ag(x,
4.20), and Ag(x, 6.18) nanorods, which are 139 ± 4, 150 ± 3,
and 162 ± 7, respectively. The increasing slope of the LLSPR
with the diameter is also observed for gold nanorods.43,44 The

slight blue shift of the TLSPR is best seen for the Ag(x, 4.20)
and Ag(x, 6.18) nanorods and is also approximately linear. The
experimental results of Jakab et al.45 in which the average width
of the nanorods varies from 55 to 59 nm indicate that the red
shift is directly proportional to the aspect ratio and with a
slight increase in the slope compared to our results. The large
red shift in comparison to our results is due to the differences
in the refractive index in the surrounding medium. Here, our
results refer to nanorods on an ultrathin carbon film,33 while
the experimental results were obtained in a 0.1 M KNO3

aqueous solution.
The relative polarizability and peak width between the

LLSPR and TLSPR in Figures 7 and 8 are seen to increase
significantly with an increasing aspect ratio. The polarizability
per atom in Figure 10 is seen to increase linearly with the
aspect ratio, and only minor changes are seen with respect to
the diameter of the nanorod. Both the LLSPR and the
absorbance can in this way be controlled by the aspect ratio
and the diameter of the nanorods. The polarizability thus
depends substantially on the geometry. For applications of
nanorods, the refractive index of the surrounding medium
must also be carefully considered.

Figure 7. Polarizability as a function of the incident energy for Ag(x, 2.23) nanorods with different longitudinal plasmon lengths.

Figure 8. Polarizability as a function of the incident energy for Ag(x, 4.20) nanorods with different longitudinal plasmon lengths.

Figure 9. LLSPR, TLSPR, and fit of the LLSPR as a function of the
aspect ratio for different nanorods. For the Ag(x, 2.23) nanorods, the
TLSPR becomes a double peak (see Figure 7), and here, only the
right TLSPR is included. These are compared to the experimental
LLSPR in a 0.1 M KNO3 aqueous solution.

45
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■ OUTLOOK AND DISCUSSION
Motivated by the wide applicability of small plasmonic
nanoparticles with a size between 1 and 15 nm and by the
need to bridge this length gap between the classical and
quantum theories to describe plasmon generation, we have
presented in this work an extended discrete interaction model
(ex-DIM) to simulate the geometric and environmental
dependence of plasmons of this size. The frequency-dependent
dielectric function is obtained from the Clausius−Mossotti
relation as a sum of three Lorentzian oscillators and with
Gaussian charge distributions and atomic radii that vary with
the coordination number. The three frequency-dependent
Lorentzian oscillators depend on the plasmon length in the x,
y, and z directions with the plasmon length defined as in the
work of Ringe et al.26

We here show both theoretically and numerically that the
SPR is inversely proportional to the plasmon length and not
proportional. We also show that, due to the limitations of
applicable quantum calculations (N.B. TDDFT) and due to
the interplay of parameters that fit an atomistic model for
metal clusters, the use of absolute polarizabilities from TDDFT
is not a viable approach. Instead, we show that the model can
be parameterized from experiments33 with a numerical
accuracy of the same order as the experimental accuracy.
Furthermore, we show that certain parameters such as the
broadening and capacitance do not influence the peak position
of the SPR to any appreciable extent and that reasonable values
for these parameters can be chosen without fitting. We see
almost no effect of the capacitance below a given value, while
above that value, the system may become numerically unstable
in contrast to some earlier work on fitting atomic capacitance
parameters.
Having parameterized the model to a set of spherical

clusters, we show that not only the training set but also the
validation set with larger clusters are all very close to the
experimental results unlike the DIM22,25 and cd-DIM24 results.
To demonstrate the capabilities of the ex-DIM, we also
performed a set of calculations on cubes and nanorods. For the
cubes, we show that the SPR is redshifted in comparison to a
spherical cluster with the same plasmon length, which is in line
with the findings of Gonzaĺez et al.42 and the experimental
findings of Ringe et al.26 for Au clusters with the difference that
the geometric dependence for Ag appears to be larger than that
of Au. For the nanorods, we show a significant red shift for the
longitudinal resonance and a very slight blue shift for the
transverse resonance with the aspect ratio. By calculating
several series of nanorods with different diameters and aspect

radii, we show that the red shift is directly proportional to the
aspect ratio and that the slope in all series of nanorods of
different diameters shows a slight dependence on their
plasmon length in the transverse direction similar to that
seen for Au nanorods.43,44 We compare these results to
experiments and find that differences in the refractive index of
the surroundings only appear to give a constant shift for the
LLSPR.45 Furthermore, we show that the polarizability per
atom increases linearly with the aspect ratio, thereby making it
possible to control both the peak position and the polar-
izability of the SPR for nanorods.
Our ex-DIM is flexible and versatile and brings wide

ramifications, for instance, in the design of small plasmonic
nanoparticles in mixed or alloyed systems with particular
geometries in metal particle organic hybrids where the organic
part receives comparable parameterization as the metal part in
heterogeneous environments and in external fields. Work is
ongoing to capitalize on these expectations.

■ APPENDIX A

Electrostatic Interaction Tensors
Similarly to the DIM and cd-DIM, our ex-DIM uses Gaussian
electrostatics to describe the interaction of fluctuating charges
and dipoles. However, in our model, normalized Gaussian
charge distributions are explicitly dependent on the coordina-
tion number of the atom with which it is associated (see eq 7),
and thus the electrostatic interaction tensors, Tij

(0), Tij
(1), and

Tij
(2), have more complex forms compared to the ones used in

the DIM or cd-DIM. Assuming that we have two Gaussian
charge distributions, G(r; fcn, C) and G(r ’ ; f ’cn, D) centered
on the ith and jth atoms with position vectors C and D, the
electrostatic interaction tensor Tij

(0) between these charges can
be computed as
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Following Mayer,46 the higher-order electrostatic interaction
tensors, Tij

(1) and Tij
(2), can be obtained by taking the derivatives

of Tij
(0) with respect to the ith atom coordinates, that is
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The above given expressions for interaction tensors can be
easily reduced to the ones used in the DIM if one replaces the
coordination number-dependent Gaussian exponents, acn and
acn′ , with appropriate effective radii (see eqs 11−13 in Jensen’s
work22).

Figure 10. Polarizability per atom as a function of the aspect ratio.
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■ APPENDIX B

Surface versus Bulk Plasmon Resonance in Small Silver
Clusters
The accurate estimation of the electronic and spectral
properties, such as static dipole polarizability, ionization
potential, and electron affinity, and atomization energy and
absorption and emission cross sections, is still a major
challenge for small silver clusters.15,47−49 The important
property of silver clusters is that they can be considered at
the same time as bulk metal particles and surface-active
systems depending on the size of these species. Indeed, the
electronic properties and spectra of small silver clusters (till
120 atoms that approximately correspond to the diameter of a
spherical nanoparticle approximately 1.6 nm) are well
described by the so-called shell model50 that explains the
strongly nonlinear behavior of these species with respect to the
position of absorption maxima, static polarizability, ionization
potential, and electron affinity parameters.47,51 Particularly, it
has been found that silver clusters with a magic number of
atoms (8, 18, 34, 58, and 92) show a localized maximum value
of the plasmon-like absorption energies at approximately 4.1
eV.51,52 These numbers actually correspond to the fully filled
states of 1s, 1p, 1d, 1f, 1g, and 1h electronic shells. Some
previously published DFT calculations confirm such behav-
ior51,15 demonstrating that s valence electrons are distributed
in delocalized orbitals in the following sequence of electronic
shells: 1s2, 1p6, 1d10, 2s2, 1f14, 2p6,1g18, 2d10, 3s2, 1h22, etc. It
means that small silver clusters absorb light due to excitations
of s electrons delocalized over the whole volume of the cluster,
which explains that this band can be assigned as plasmon-like
resonance or so-called bulk resonance, different from the
commonly known SPR by a physical meaning. It is reasonable
to suggest that the position of the bulk resonance should be
weakly sensitive to the size and shape of the nanoparticle. Even
for large silver nanoparticles, the bulk core (if we consider a
cage model of the particle) still possesses similar localization
and energy of s electrons as a small cluster, while the energy of
the SPR expectantly depends significantly on the shape,
curvature, type, and defects of the surface. Scholl et al.33 clearly
defined both types of resonances (bulk and surface) for
spherical silver nanoparticles of the size of 2−23 nm from
electron energy-loss spectroscopy by directing the electron
beam to different zones of the particles from the edge through
the bulk. Based on such focused excitation, surface and bulk
resonances can be selectively observed in the range of 4.1−3.8
and 3.8−3.2 eV, respectively. One can see that the energy
variation is more pronounced for the surface resonance, a
tendency which is clearly size-dependent, while the bulk
resonance is less size-dependent. The energy values are in a
good agreement with our TDDFT/cam-B3LYP/Lanl2DZ53−55

calculations for small metal clusters of Agn (n = 18−34) and
with other previously published results.
An applicability of long-range corrected (LC) functionals for

the correct simulation of optical transitions for small silver
clusters in the gas phase was shown in few recent
publications.51,56 Particularly, LC hybrid functionals signifi-
cantly reduce the occurrence of spurious states in the optical
absorption spectra while maintaining the intensity of plasmon-
like features of the spectra for larger silver clusters.56

The final spectra calculated using the long-range corrected
cam-B3LYP functional for the nine Agn (n = 18−34) clusters
(Figure 11, black curves) all exhibit an absorption peak at

approximately 4 eV in good agreement with the experimental
data for Ag18, Ag20, and Ag30 clusters (Figure 11, red
curves).52,57 For these three cases, the main computed
absorption peak is blueshifted at approximately 0.2 eV relative
to the experimental curves, which can be attributed to the
matrix effect16,51 (experimental spectra were measured for the
clusters isolated in the noble gas matrix). Such a blue shift
accords with that published in ref 51 (0.17 eV, estimated from
direct comparison between the experimental spectra measured
in a neon matrix at 6 K and TDDFT/ωB97x gas phase
calculations). Visualization of Kohn−Sham molecular orbitals
on Figure 12 responsible for the main most intensive electronic
transition (black peaks under the spectral curves, Figure 11)
clearly shows the delocalization of the valence and conductive s
electrons mixed with the localized d functions over the whole
volume of the studied clusters. It proves the “bulk” nature of
the predicted resonance peak. Increasing of the cluster size
greatly complicates the calculations of the bulk resonance
position and its parameters because the number of excited
states that lie lower than 4 eV significantly increases with the
cluster that grows without additional symmetry constraints.
For instance, for the Ag34 cluster, at least 250 excited states
should be calculated for correctly reproducing the bulk
plasmon resonance peak (here using Casida’s transition-
based approach).58 One alternative way to solve this limitation
and to simulate the optical absorption spectra of Ag clusters up
to 561 atoms is a TDDFT time-evolution formalism proposed
by Yabana et al.59 and realized by Weissker et al. using the real-
space code Octopus.13,60,61 However, it does not principally
solve the size limitation of TDDFT approximation with respect
to silver clusters even using the less computationally expensive
LDA approximation or applying symmetry constraints. More-
over, the small silver clusters are very unstable even in the
presence of a coverage shell of organic ligands, something that
complicates the investigation of their optical properties and

Figure 11. Absorption spectra of the Agn (n = 18−34) clusters
calculated by the TDDFT/cam-B3LYP/Lanl2DZ method in the gas
phase (black curves and black peaks correspond to the vertical
electronic transitions) compared with experimental data (red curves
were taken from refs 52 and 57). The Gaussian line shape with a full
width at half maximum of 0.2 eV was used for the calculated spectra
convolutions.
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comparison between the theoretical end experimental spec-
tra.48,62−64 In this context, the different models for the
frequency-dependent permittivity of silver particles look more
promising for the explanation of surface and bulk plasmon
resonances of real-size systems (up to 20,000 atoms within our
coordination-dependent discrete interaction model that
correspond to the approximate size of the spherical nano-
particles of approximately 12 nm).

■ APPENDIX C

Capacitance Parameter
Since there is no known connection between the capacitance
parameter c and any measurable atomic quantity, this
parameter should in principle be fitted as attempted by
others.20,22,27,28 We, however, found that the capacitance
parameter could not be fitted from a set of spherical clusters
since there was no discernible difference in the frequency-
dependent polarizabilty for values in the range of 105 to 10−8

except in the region of 10 to 10−2 where the method showed
numerical instability as shown for a 1481 atom silver cluster in
Figure 13.
Due to the numerical instability from 10 to 10−2 and the

otherwise numerical insensitivity outside this region, we have
chosen to use 0.0001 au as the value of the capacitance
parameter c in the fitting. It is, here, a bit surprising that the
value of the capacitance parameter c does not seem to matter
for clusters with only one type of atom and the exclusion of the
interaction energy between fluctuating charges does not alter
the polarizabilty either as seen in Figure 13. Due to the
numerical instability, the polarizability can take negative values
as seen for c = 1 in Figure 13, which looks more like the real
part of a complex resonance.
For nanorods, we observe a similar picture though the region

with numerical instability is larger and stability is only seen

from c = 0.001 and below (see Figure 14). While the
capacitance term in eq 1 does not seem to be important for

nanoclusters consisting of only one type of element, we expect
it to be more important for composite materials, different
close-lying metallic clusters, and clusters in external electro-
magnetic fields or with coordination number-dependent
Gaussian charge distributions though further investigations
along those lines are needed for definite conclusions.

■ APPENDIX D

Gamma Parameter
While the γ parameter in the Lorentzian function in eq 17 does
not affect the position of the SPR, provided that γ is small in
comparison to ω, the smoothing effect of γ, however,
influences the absolute polarizability significantly. Since we
do not fit our model to the absolute polarizability from
TDDFT calculations but instead the SPR to experimental
values, the γ value is instead chosen.

Figure 12. Doubly occupied (Occ.) and unoccupied (Unocc.)
molecular orbitals pairs that correspond to the main electronic
configuration of the most intensive electronic transition in the
absorption spectra of Agn (n = 18−34) clusters calculated by the cam-
B3LYP/Lanl2DZ method (the contour value of the isosurface is 0.015
au).

Figure 13. Polarizabilty of a 1481 atom silver cluster with different
values for the capacitance parameter c. Since all curves with c = 0.001
or smaller are all on top of each other, not all curves are directly
visible. For the no capacitance curve, the interaction energy between
fluctuating charges has been omitted. All curves have been calculated
with the fitted parameters ωa and A.

Figure 14. Polarizabilty of the Ag(6.18, 2.23) nanorod with different
values for the capacitance parameter c. The values 6.18 and 2.23 are
designated to the longitudinal and transverse plasmon lengths in nm,
respectively. For the no capacitance curve, the interaction energy
between fluctuating charges have been omitted. All curves have been
calculated with the fitted parameters ωa and A. All curves calculated
with the capacitance parameter c below 0.001 or omitted are
overlapping each other. The range of the polarizability for c = 1 has
been cropped in order to better present the rest of the curves.
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In Figure 15, the polarizability of a 1481 atom spherical
cluster with different γ values in the 0.002−0.030 au range. In

the 0.002−0.006 au range, several peaks are visible, and the
SPR is clearly a double peak, but from approximately 0.010 au
and above, the double-peak SPR becomes a smooth single
peak. For the very small γ values, the SPR is therefore shifted
slightly but remains constant at 0.010 au and above.
Furthermore, the absolute polarizability increases more than
fourfold from γ at 0.030 to 0.002 showing that γ would be a
very sensitive parameter if the absolute polarizability was fitted
to TDDFT calculations. While the polarizability drops, the
FWHM, of course, increases significantly.
For nanorods, the effect of γ is similar to that of spheres. As

seen for the Ag(6.18, 2.23) nanorod in Figure 16, the TLSPR

for lower γ values is a clear double peak, while larger γ values
smooth the two peaks. In order to have a γ value that still can
show some structure and have a FWHM that is reasonably
consistent with the experimental values from Ringe et al.,26 we
have chosen γ = 0.016 au.
While we here show absolute and not normalized polar-

izabilities, it is obvious that, because the γ parameter is not
fitted but chosen, only the relative or normalized polar-
izabilities should be interpreted. We here show the absolute
values in order to demonstrate how the polarizability increases
with the number of atoms and the geometry of the cluster.
Since the polarizability in the range tested here does not affect

the position of the SPR, it is possible to later fit either a γ value
or size-dependent function for γ if experimental data is found
without having to fit ωa and A again.
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