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Inducing magnetism in non-magnetic a-FeSi2 by
distortions and/or intercalations†

Vyacheslav Zhandun, *a Natalia Zamkova,a Pavel Korzhavyib and Igor Sandalova

By means of hybrid ab initio + model approach we show that the lattice distortions in non-magnetic

a-FeSi2 can induce a magnetic state. However, we find that the distortions required for the appearance

of magnetism in non-magnetic a-FeSi2 are too large to be achieved by experimental fabrication of thin

films. For this reason we suggest a novel way to introduce magnetism in a-FeSi2 using ‘‘chemical

pressure’’ that is, intercalating the a-FeSi2 films by light elements. Theoretical study of the distortions

resulting from intercalation reveals that the most efficient intercalants for formation of magnetism and

a high spin polarization are lithium, phosphorus and oxygen. Investigation of the dependency of the

magnetic moments and spin polarisation on the intercalation atoms concentration shows that the spin

polarization remains high even at small concentrations of intercalated atoms, which is extremely

important for modern silicate technology.

I. Introduction

The modern semiconductor industry is mainly based on
silicon.1 The development of spintronics demands new magnetic
materials that are compatible with silicon. These facts motivate a
search for transition metal silicides which are either magnetic or
close to magnetic instability. The ability of iron to form a vast
variety of magnetic compounds with silicon, both in the bulk and
in the epitaxially stabilized forms, makes it especially attractive.
These compounds are already used in micro- and optoelectronics,
and also in photovoltaics.2–6 Iron disilicide, a-FeSi2, is unstable
and non-magnetic in the bulk form. For these reasons it was not in
the front line of the list of candidates for application. The situation
changed after publications7–9 in which it was shown that the film
and nanoparticles of a-FeSi2 can be stabilized epitaxially. More-
over, this causes it to become magnetic. The nature of this
phenomenon is not understood.

We assume that certain lattice distortions can cause magnetism.
The experimental data for films7 and nanoparticles8,9 of a-FeSi2, as
well as the theoretical analysis,10 support this point of view. Why
this may favor magnetic moment formation can be seen from the
second-order admixture of neighboring-atom (nAt) states with
the d-electron bands. Indeed, an itinerant magnetism arises
due to peaks in the densities of electron state. These peaks

originate either from the presence of narrow bands, or from flat
areas on the Fermi surface. If a band has a large bandwidth and
does not contain sufficiently narrow DOS peaks in the vicinity
of the Fermi energy, a Stoner-like criterion for magnetism is not
fulfilled and a magnetic moment (MM) is not formed. There-
fore, any mechanism which favors a decrease of width in the
effective d-band will also favor the formation of magnetism. An
increase of the distance between an Fe atom and nAt decreases
the hopping matrix element tFe–nAt(k) and, therefore, the effec-
tive width of the d-band decreases too, thus making the
fulfilment of the Stoner’s criterion easier.

Earlier discussions were focused on the effect of the in-plane
distortions caused by the misfit strains.10 Recent experimental
data11 suggest that out-of-plane distortions in a-FeSi2 nano-
particles also arise. The observed magnetic moments are quite
small7,11 B0.2 mB. Theoretical analysis of the formation of
magnetism in iron silicides10 shows that the small lattice
distortions which arise during film fabrication may cause small
moments. It is reasonable to assume that a further increase of
these distortions may increase the magnetic moments. In all
these experiments the distortions arise due to and in the vicinity
of the interface. It is highly desirable to create distortions which
are not linked to the interface, but are caused by other reasons. We
suggest to exploit the fact that the crystal structure of iron
disilicide, a-FeSi2, has a cavity formed by the Si planes. Sufficiently
small atoms can be intercalated into this cavity and cause distor-
tions which, in turn, induce magnetism.

In the present work we investigate such a possibility by
inspecting the intercalation of a-FeSi2 with different light
elements. We use an ab initio (VASP, DFT-GGA, see 2) approach
along with a hybrid ab initio and a model developed in ref. 10 and 12.
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b Kungliga Tekniska Högskolan, SE-100 44 Stockholm, Sweden

† Electronic supplementary information (ESI) available. See DOI: 10.1039/
c9cp02361e

Received 26th April 2019,
Accepted 3rd June 2019

DOI: 10.1039/c9cp02361e

rsc.li/pccp

PCCP

PAPER

http://orcid.org/0000-0003-0744-4205
http://crossmark.crossref.org/dialog/?doi=10.1039/c9cp02361e&domain=pdf&date_stamp=2019-06-18
http://rsc.li/pccp


13836 | Phys. Chem. Chem. Phys., 2019, 21, 13835--13846 This journal is© the Owner Societies 2019

The results of DFT-GGA calculations are mapped onto the
multiorbital model suggested in ref. 12. The mapping is based
on the idea to exploit the Hohenberg–Kohn theorem, equaliz-
ing the charge densities generated by the Kohn–Sham equations
and obtained from the Hartree–Fock equations for the model
Hamiltonian. Due to the success of the Kohn–Sham approach in
description of real materials, we treat the corresponding charge
density as a ‘‘genuine’’ one and find the parameters of the model
Hamiltonian from the minimization of difference between the
Kohn–Sham and the model Hartree–Fock charge densities.

The consideration of the model allows us (i) to find out if the
critical line separating magnetic from non-magnetic states
exists on its phase diagram or not; and (ii) if yes, to reveal which
of the model parameters controls the point of the real-material
position with respect to this critical line. Further this knowledge is
used for the ab initio modeling of the situation where the critical
parameter is changed into the desired direction.

The paper organised as follows. In Section II, we provide the
details of the ab initio and the model calculations. The effect
of the lattice distortions in a-FeSi2 on the magnetic moment
formation in both approaches is described in Section IIIA.
Section IIIB presents the results of the calculations for a-FeSi2

with intercalated atoms. Section IV contains the conclusions.

II. Calculation details
A. Ab initio part

All ab initio calculations presented here have been performed using
the Vienna ab initio simulation package (VASP)13 with projector
augmented wave (PAW) pseudopotentials.14 The valence electron
configuration 3d64s2 is taken for the Fe atoms, and 3s23p2 is taken
for the Si atoms. The calculations are based on density functional
theory (DFT) in the generalized gradient approximation (GGA),
where the exchange–correlation functional is chosen within the
Perdew–Burke–Ernzerhof (PBE) parametrization.15 Throughout all
calculations, the plane-wave cutoff energy was 500 eV, and the Gauss
broadening with a smearing of 0.05 eV was used. The Brillouin-zone
integration was performed on a 15� 15� 8 Monkhorst–Pack grid16

of special points. The optimized lattice parameters and atomic
coordinates were obtained by minimizing the total energy.

B. Model part

In ref. 12 we suggested to combine the ab initio and model
calculations by means of the following scheme. First, we
perform ab initio calculations of electronic and magnetic pro-
perties within the framework of DFT-GGA. Then we map the
DFT-GGA results onto the multiorbital model suggested in
ref. 12. The details of model calculations are described in
ref. 12. Here we give only the Hamiltonian and the general
parameters of the model. We use the set of the Kanamori
interactions17 between the d-electrons of Fe (five d-orbitals
per spin). The crystal structure contains neighboring Fe ions;
for this reason the direct interatomic d–d-exchange and
d–d-hopping have to be included. The Si p-electrons (three
p-orbitals per spin) are modeled by atomic levels and interatomic

hopping. Both subsystems are connected via d–p-hopping. Thus,
the Hamiltonian of the model is:

H ¼ HFe þHFe�Fe
J 0 þHSi

0 þHhop; (1)

where

HFe ¼ HFe
0 þHFe

K
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The Hamiltonian of the interatomic exchange and hopping
parts is
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where

n̂d
nms � d†

nmsdnms; n̂d
nm = n̂d

nmm + n̂d
nmk; ŝd

nm � sagd
†
nmadnmg;

n̂p
nms � p†

nmspnms. (4)

Here p† ( p) are the creation (annihilation) operators of
p-electrons of Si and d† and d stand for d-electrons of Fe ions;
n is the complex lattice index (site, basis); m labels the orbitals;
the indices s, a, g are spin projections; s are Pauli matrices; U,
U0 = U� 2J and J are the intra-atomic Kanamori parameters; J0 is
the parameter of the intersite exchange between the nearest Fe

atoms. Finally, Tmm0
n;n0 ; t

mm0
n;n0 t 0ð Þmm0

n;n0 are hopping integrals between

Si–Si, Fe–Fe and Fe–Si atomic pairs, respectively.
The dependencies of hopping integrals on the wave vector k

were obtained from the Slater and Koster atomic orbital
scheme18 in the two-center approximation using a basis set
consisting of five 3d orbitals for each spin on each Fe atom and
three 3p orbitals for each spin on each Si atom. Then, within
the two-center approximation, the hopping integrals are expressed
in terms of the Slater–Koster parameters ts� (dds), tp� (ddp) and
td � (ddd) for Fe–Fe hopping and ts � (pds), tp � (pdp) for Fe–Si
and Si–Si hopping. In calculations of the model phase diagrams
(maps) for magnetic moments we neglected the weak d-bonds
(td = 0) for Fe–Fe hopping and kept fixed the relations tp = ts/3
for the nearest neighbors (NN) Fe–Si (ts � tFe–Si) and tp = ts/2 for
the next nearest neighbors (NNN) Fe–Fe (ts � tFe–Fe) and Si–Si
(ts � tSi–Si) and tp = ts/2. We assume that hopping integrals
depend on the distance R between the ions exponentially:

t(R) = tmax exp(�gDR), (5)

Paper PCCP



This journal is© the Owner Societies 2019 Phys. Chem. Chem. Phys., 2019, 21, 13835--13846 | 13837

where tmax = t(Rmin) and DR = R � Rmin (Å). We have found the
parameters g1 = 0.89 Å�1 for tFe–Fe, g2 = 0.93 (Å�1) for tFe–Si

10 and
g3 = 0.94 Å�1 for tSi–Si.

We should note that, although according to Harrison19

this contribution should scale with the atom–atom distance,
d, as d�2, the concrete form of the scaling becomes non-
essential for small distortions (3%), especially because the fit
has been performed to the results of the ab initio calculations.
For this reason we choose the exponential form for the scaling
of the hopping matrix element as a more appropriate choice for
the discussion of magnetism.

To determine the parameters of the model, we used the
method of self-consistent mapping, described in detail in ref. 10
and 12 and in Appendix A (see the ESI†). Following10,12 the model
parameters can be found from minimization of the difference
Y = [rGGA(k,s) � (rmodel(k,s); U, U0, J)]2 between the ‘‘genuine’’
electron density [rGGA(k,s)] and the model one (rmodel(k,s);
U, U0, J) with respect to interaction parameters U, U0, J.10,12

Since the Hartree–Fock equations have to be solved self-
consistently for each set of model parameters, we simplified
the problem further and, instead of minimization of function Y
(i.e., the differences of the model and VASP electron spin
densities in each point of space), we’ve chosen to fit the
number of d-electrons, the magnetic moments and partial
d-densities of state (d-DOS) for Fe atoms (see eqn (5) in ref. 10).
We perform several attempts during the fitting procedure: (1) as an
initial guess for the fitting procedure we choose as the occupation
numbers obtained within the ab initio approach as well as the
ferromagnetic configuration of magnetic moments; (2) we start as
with zero values of the Slater–Koster parameters as well as with
arbitrary parameters. Then, we conduct fitting and choose the
parameters which provide the best agreement. Note that all
obtained sets give qualitatively the same results. During the fitting
of the densities of state we primarily focus on the energy interval
near the Fermi energy [�3.0; 2.0] eV.

The model parameters for the undistorted a-FeSi2 providing
the best fit to the ab initio calculation were obtained in ref. 10:
on-site parameters U = 1 eV, J = 0.4 eV, eSi = 6 eV, eFe = 0 and the
hopping integrals tFe–Fe = �0.7 eV, tFe–Si = 1.0 eV, tSi–Si = 1.75 eV.
On-site parameters during all model calculations were kept
fixed. In the rest of the paper all hopping parameters are
given in eV.

III. Results and discussion
A. The effect of lattice distortions on magnetism formation

The compound a-FeSi2 has a tetragonal unit cell (space group
P4/mmm) with the lattice parameters a = b = 2.7 Å and c = 5.13 Å.
Its structure is shown in Fig. 1a. In the undistorted a-FeSi2 the
iron atoms are located at (0,0,0), optimized fractional coordi-
nates of the Si atoms are (0.5,0.5,0,272) and (0.5,0,5,0.728). As
seen from Fig. 1a there is a cavity between the Si atoms in the
structure due to the large distance between Si atoms along the
tetragonal c-axis (RSi–Si = 2.4 Å). The calculated equilibrium
distance between Fe–Si atoms RFe–Si = 2.36 Å. Our DFT-GGA

calculations confirm that the ground state of a-FeSi2 is non-
magnetic metal.20 The full densities of electron state (DOS) of
a-FeSi2 are shown in Fig. 2a. The peak in the DOS in the
vicinity of the Fermi energy is mainly due to the eg d-electrons
(Fig. 2b, black line).

It is interesting to note that according to the electron
localization function20 (Fig. 1b) the electron cloud forms elongated
regions of strongly delocalized electrons between the planes of the
silicon atoms. These regions look like channels. One may expect
that (a) the effective single-electron wave function of these
electrons is close to a simple plane wave Bexp(ikr) along the
c-axis and (b) these channels can be a source for an anisotropy
of conductivity. For this reason we call them ‘‘conducting
channels’’. However, the question of whether these particular
states have their energies in the vicinity of the Fermi surface or
not is, at the moment, still open. Furthermore, we are not aware
of any experimental inspection of this question. These ‘‘channels’’
are elongated areas of delocalized electrons, shown in Fig. 1b
in blue.

While a-FeSi2 in the bulk form is non-magnetic, there are
several experimental studies where ferromagnetism is found
in thin films7 and nanoparticles.8,9 Recently11 nano-sized
grains of [001]-faceted a-FeSi2 have been synthesized on a
silicon substrate. Magnetic measurements indicated the exis-
tence of a small magnetic moment (MM), B0.2 mB per Fe atom.
According to experimental data11 the spacing between Fe layers
along the tetragonal axis in the obtained nano-grains is changed
compared to that in the bulk; it is larger between the layers which
are close to the substrate surface and decreases further from
the substrate and then again increases. This behavior is a
manifestation of Friedel’s oscillations of the density of electron
gas near a surface or interface (see ref. 21 and 22). It is well-known
fact that the positions of minima in electron density and, respec-
tively, in energy, are very sensitive to the variation of the boundary
conditions. In addition to this, stresses of B1.2% arise in the
plane perpendicular to the c axis, which are caused by mis-fitting
with the silicon substrate. These stresses induce an increase of the
distance R(Fe–Fe) between the iron atoms in this plane.

Fig. 1 (a) The crystal structure of a-FeSi2; (b) the electron localization
function (ELF) for a-FeSi2. The degree of the electron localization on the
color map spans from fully delocalized at the blue and green end, to the
yellow and red for localized electrons. ‘‘Channels’’ of strongly delocalized
electrons are located in the middle plane perpendicular to the c-axis. The
blue balls stand for the Fe atoms, the grey ones are for the Si atoms.
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In our earlier work10 we have shown that ferromagnetism
can be induced by external stresses as well as by insertion into
the structure of additional atoms of iron or silicon. Contrary to
this suggestion,8,9 which explains the appearance of magnetism
in nanoparticles of a-FeSi2 by the formation of Fe clusters, the
results of our theoretical analysis, together with experimental
results,11 indicate that the stresses alone may switch on the
mechanisms of the MM formation in a-FeSi2. The reaction of
the magnetic subsystem to different types of distortions still
remains unclear. The expectation we are going to inspect is that
the MMs in a-FeSi2 must be sensitive to changes in the distance
between layers of iron and/or silicon.

These experiments11 demonstrated that the magnetic pro-
perties of a-FeSi2 do depend on the interlayer distance RIL. It
remains unclear, however, to what extent this factor is impor-
tant for the formation of a magnetic moment in this com-
pound. We performed ab initio calculations for the model
supercell 1 � 1 � 4 with different RIL (from 5.13 Å to 5.4 Å)
between the Fe planes along the tetragonal axis. The stress
arising from the substrate is modeled by a 1.2% increase of the
distance between the in-plane iron atoms (RFe–Fe = 2.73 Å)
compared to that in the bulk a-FeSi2 (RFe–Fe = 2.70 Å). The
optimization of the supercell with respect to the atomic coor-
dinates results in a change of the interlayer distances between
the Fe and Si planes (on average by about 3%) compared to

those in the bulk. These changes induce MMs of about 0.2 mB

on the Fe atoms in accordance with experimental data.
The partial contribution to the DOS from eg-electrons of Fe

for this model supercell is shown by the green (on-line) curve in
Fig. 2b. The lattice distortion of the parent a-FeSi2 shifts the
eg-electron peaks in the spin-up and spin-down DOS relative to
each other and increases the spin polarization by about 70% in
the model supercell. The latter is one of the most important
characteristics for spintronic applications. An increase of the
lattice parameter up to RFe–Fe = 2.8 Å leads to further amplifica-
tion of these peaks in the DOS and to the strong increase of the
spin polarization (Fig. 2b, red line).

Thus, the ab intio calculations indicate that an increase of
merely the distance between in-plane Fe atoms results in the
appearance of small magnetic moments. In order to obtain
moments of at least C0.3 mB per atom, the lattice parameter of
a-FeSi2 has to be increased by B5% (RFe–Fe = 2.8 Å), while an
increase of the moment to B0.7 mB per atom requires an
increase of the iron–iron distance up to B3 Å, i.e., approxi-
mately, by 10%! Although distortions always arise when an
a-FeSi2 film is experimentally synthesized on an Si substrate, it
never reaches such a large value. The experiment,11 however,
shows that the MM B 0.2–0.3 mB per atom arises in nano-
particles of a-FeSi2 at a smaller misfit strain, B1.2%. This fact
implies that nsome other mechanisms of moment formation
can possibly be switched on by or during synthesis of a-FeSi2

films. The simplest ones are just other, different types of
distortions. There are several types of bulk-a-FeSi2-lattice dis-
tortions which may cause the appearance of magnetism in our
model supercells. It can be either an increase of the distance
between Fe atoms in the plane, or a change of the distance RSi–Si

between silicon atoms, or even the distance RFe–Si between iron
and silicon atoms. Below we examine these possibilities in
detail.

A convenient tool for this is the mapping of the results,
obtained by the first-principle calculations, to the multiple-
orbital model described in ref. 10 and 12 and briefly outlined in
Section IIB. According to the results,10 the main parameter
which controls MM formation is the hopping integral tFe–Fe

between the in-plane Fe atoms (Fig. 3). The blue point on Fig. 3
shows the values of hopping integrals (tFe–Fe = �0.7 eV,
tFe–Si = 1.0 eV, tSi–Si = 1.75 eV) which provide the best fit to
the ab initio charge density for bulk a-FeSi2.

The parameters for Fe–Si hopping tFe–Si and Si–Si hopping
tSi–Si seem intuitively to be non-relevant to MM formation.
As will be seen below, this expectation is not supported by
calculations. Via the self-consistent solution of the model
equations for the population numbers of orbitals and the
magnetization within the Hartree–Fock approximation, we
obtained the MM map in the coordinates tFe–Si vs. tSi–Si at the
fixed value of tFe–Fe = �0.7 eV (Fig. 4a). The latter value
corresponds to the equilibrium Fe–Fe distance RFe–Fe = 2.7 Å
for bulk a-FeSi2. Note that a decrease of the distance between
silicon atoms, RSi–Si, increases the distance between the Fe and
Si atoms, and vice versa (Fig. 1a). As seen from the map
in Fig. 4a, there is no magnetism at the equilibrium distance

Fig. 2 (a) Full DOS for a-FeSi2; (b) eg-DOS of a-FeSi2 (black line), supercell
with RFe–Fe = 2.73 Å (green line), supercell with RFe–Fe = 2.8 Å (red line). Zero on
the energy axis is the Fermi energy. The positive and negative values of DOS
correspond to the spin-up and spin-down states, respectively.
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RFe–Fe = 2.7 Å in undistorted a-FeSi2. However, a decrease of the
hopping integral tFe–Si with a simultaneous increase of tSi–Si

leads to the arising of the magnetism at the same distance
RFe–Fe. As seen from the upper left corner of the map Fig. 4a, a
large MM B 1–1.1 mB can be achieved by a decrease of
the distance between Si atoms which causes a change of the
hopping integral magnitudes. So, hopping integrals tSi–Si E 3.1
and tFe–Si E 0.5 correspond to distances RSi–Si E 1.6 Å and
RFe–Si E 2.6 Å. And, vice versa, an increase of the Si–Si distance
(a decrease of tSi–Si and increase of tFe–Si) leads to a decrease of
the MM to B0.1–0.3 mB.

Thus, the analysis of the model within the Hartree–Fock
approximation shows that the ferromagnetic state in a-FeSi2

may be induced by: (a) the increase of the distance between
iron atoms (Fig. 3); and (b) the change of the distance between
NN (nearest neighbors) silicon and iron atoms, and between silicon
atoms (Fig. 4a). An application of both types of changes
expands the area of existence of the ferromagnetic solutions.
This is illustrated by Fig. 4b, which displays the map of MMs
evaluated at tFe–Fe = �0.65 eV. This corresponds to RFe–Fe = 2.78 Å,
according to eqn (5); i.e., to the misfit strain B3%. At this distance
the magnitudes of the MM, M B 1.0 mB, arise at smaller hoppings
(Fig. 4b) tSi–Si E 2.7 (RSi–Si E 1.8 Å) and tFe–Si E 0.65 (RFe–Si E 2.5 Å).

In order to confirm the model findings we performed
ab initio calculations of the moment dependence on the dis-
tances between silicon atoms in a-FeSi2. Fig. 5 displays the
comparison of the results of model and ab initio calculations
for the dependence of the MM at iron atoms on the silicon–
silicon distance RSi–Si at equilibrium and the expanded RFe–Fe

distances between in-plane iron atoms. Similar to the model result,
a decrease of RSi–Si causes a sharp increase of the MM. Note that a
slight increase of RSi–Si also may induce MM, but in this case the
moment is small. An increase of the distance between iron atoms
leads to the appearance of a large moment at the same distance
RSi–Si. Fig. 5 confirms that the results of the model and the ab initio
calculations are in qualitative agreement with each other.

The analysis performed in this part can be summarized as
follows. Both the model and ab initio calculations indicate
that the ferromagnetism in a-FeSi2 can be induced by different
types of lattice distortions: not only by an increase of the
in-plane distance between iron atoms, but also by a change of
the distance between layers along the tetragonal axis. The
latter alters iron–silicon and silicon–silicon interatomic dis-
tances (see Fig. 5). The decisive parameter for MM formation
is the iron–iron distance in the plane perpendicular to the
tetragonal axis c (Fig. 3 and 4). However, in order to obtain
moments large enough for practical applications, the required
misfit strain has to be made quite large, B10–15%. Such big
magnitudes can hardly be achieved experimentally. At the
experimentally feasible range of the misfit strain 1–3%
the MM remains small. The other solution consists of a
simultaneous decrease of the Si–Si distance (RSi–Si) and an
increase of the Fe–Si and Fe–Fe distances. Indeed, as seen

Fig. 3 The map of magnetic moments M(tFe–Fe,tFe–Si) for a-FeSi2 at the
equilibrium lattice parameter. Dashed blue lines and the blue point show
the values of hopping integrals which provide the best fit to the ab initio
charge density. The values of hopping parameters are given in eV.

Fig. 4 The map M(tFe–Si,tSi–Si) of magnetic moments M for a-FeSi2: (a) at
equilibrium lattice parameter a = 2.7 Å; (b) at a = 2.8 Å. Dashed blue lines
and the blue points show the values of hopping integrals which provide the
best fit to the ab initio charge density. The values of hopping parameters
are given in eV.
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from Fig. 6, where the dependence of the on-iron-MM on the
distance RFe–Fe at RSi–Si = 2.34 Å and RSi–Si = 1.9 Å is displayed;
the decrease of RSi–Si gives rise to a larger MM at the same
Fe–Fe distance.

Another way to understand why some of the lattice distor-
tions favor the appearance of magnetism is to analyze the
evolution of the partial density of d-electron states (d-DOS)
with these distortions. As shown in Fig. 7 the decrease of the
distance between silicons (RSi–Si) shifts the peaks of the tk2g

states, which move towards the Fermi level. This, in turn, gives
rise to spin polarization. However, an increase of RSi–Si or the
distance RFe–Fe between the iron atoms shifts not the t2g-, but

the eg-peaks. In this case the emg -states appear near the Fermi
level, providing a non-zero spin polarization.

The analysis given above highlights the main difficulty
which is expected to arise in experiments upon inducing a
magnetism in a-FeSi2 with reasonably large MM via lattice
distortions. Particularly, the MM C 1.0 mB should arise at
RFe–Fe C 3 Å, or RSi–Si C 1.8 Å (RFe–Si C 2.5 Å). Such distances
between atoms are hardly possible to implement in a-FeSi2

films with any type of substrate. The distortions which arise
when the a-FeSi2 is grown on the silicon substrate are much
smaller; in the experiments11 on a-FeSi2 nanoparticles the
magnitudes of the distortions between in-plane iron atoms
are about 1%, while for interlayer distances this is about 5%.

Fig. 5 The dependence of the MM in a-FeSi2 on the distance RSi–Si

between silicon atoms (the hopping integrals in the model t = t(RSi–Si)).
The results for RFe–Fe = 2.7 Å are displayed by the black color and for
RFe–Fe = 2.78 Å by red. The crosses stand for GGA (in VASP), the points with
a solid line are for the model within the HFA. The vertical line indicates the
equilibrium distance RSi–Si = 2.34 Å in a-FeSi2. The values of hopping
parameters are given in eV.

Fig. 6 The dependence of the MM in a-FeSi2 on the distance RFe–Fe

between iron atoms (the hopping integrals in the model t = t(RFe–Fe)). The
results for RSi–Si = 2.34 Å are displayed by the black color and for RSi–Si =
1.90 Å by red. The crosses stand for GGA (in VASP), the points with a solid
line are for the model within the HFA.

Fig. 7 Partial densities of d-states of a-FeSi2 for different lattice distor-
tions. From top to bottom: RSi–Si = 1.90 Å, the equilibrium RSi–Si = 2.34 Å,
RSi–Si = 2.90 Å. The t2g-DOS is displayed by red (on-line) and the eg ones by
the blue color. Zero on the energy axis is the Fermi energy. The positive
and negative values of DOS correspond to the spin-up and spin-down
states, respectively.
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Such small distortions induce, correspondingly, a small MM.
The question arises, would it be possible to overcome this
difficulty with a ‘‘chemical pressure’’?

B. The effect of intercalation on the magnetism formation

As was mentioned above, there is a cavity between Si atoms in
the a-FeSi2 structure (Fig. 1a). An intercalation of other atoms
into this cavity will distort the lattice. Here we investigate
if intercalated atoms can introduce a change of the distances
RFe–Fe and RSi–Si sufficient for the appearance of magnetism. In
order to check this hypothesis we performed ab initio calcula-
tions of a-FeSi2 with embedded atoms of different elements.

The two types of positions for embedding the guest atoms
are shown at Fig. 8. The location of intercalated atom at Si–Si or
Fe–Fe bonds are the most energetically favorable. To check the
stability of the intercalated structures we have calculated the
energies of structures with intercalated atoms displaced from
their equilibrium positions (Fig. 8). The energy of any such
structure is always higher than energy of a structure with
intercalated atoms in equilibrium positions. Moreover, the
optimization procedure results in the return of the displaced
intercalated atom to a position in the center of the Si cage
(for metal atoms) or in the Si–Si bond (for non-metal atoms).

The non-metal atoms are found to prefer the positions on
the bonds between the silicon atoms (Fig. 8a), whereas the
position inside the tetragonal cavity formed by the silicon
atoms is more energetically favorable for metal atoms (Fig. 8b).
It is possible that other structures will form during thin film
growth at 50% or 100% concentrations of intercalated atoms.
However, we did not check this since the problem of the crystal
structure prediction of the ‘‘alloys’’ requires special consideration
and separate work. In the present paper we restrict ourselves to the
structures shown in Fig. 8.

The intercalated atoms create a negative chemical pressure
which results in an increase of the distance between host atoms
compared to pure a-FeSi2. The results of calculations for a
100% concentration of embedded atoms are summarized in

Table 1, where the parameters of the lattice cell, the values of
the MMs at the iron atoms and the spin polarization in some of
the considered structures are shown. In this case the symmetry
of intercalated structures remains the same as for the pure
a-FeSi2 (P4/mmm).

The enthalpies of formation were calculated as

Hf = E(a-FeSi2 + X) � NFeEbulk
Fe � NSiE

bulk
Si � NXEref

X (6)

where reference energies Eref
X were calculated for molecular N2,

H2, O2 and for bulk materials in other cases; NFe, NSi, NX = the
number of Fe, Si and intercalated atoms, respectively. Unfortu-
nately, GGA approximation often fails badly on molecular O2,
giving large errors with respect to experimental formation
energies. Therefore we use the correction factor C = �1.2 eV
per O2 (Eref

O2
¼ EGGA

O2
þ C) from ref. 23 for calculation of the

reference energy Eref
O2

of the oxygen molecule. The calculated

enthalpies for a 100% concentration of intercalated atoms are
given in the last column of Table 1. All obtained enthalpies are
negative and, therefore, all considered structures are stable.

As seen from Table 1, an intercalation does not always lead
to the formation of a magnetic state. E.g., the structures with
intercalated nitrogen atoms are not magnetic (see Table 1).
Nevertheless, the general tendency of an MM increase with the
increase of lattice distortion, as studied in the previous section,
is reproduced by direct calculation. Note that the appearance of
MM on Fe atoms is primarily related to lattice distortions
produced by the intercalants. So, in the case of intercalation
by a lithium atom when the intercalant atom is removed while
the distortions are preserved, the magnetic moment is only
slightly decreased (MFe = 0.75 mB). The same is observed for
intercalation by nonmetal atoms. So, in the case of intercalation by
an oxygen atom in a distorted structure without an intercalant
atom, MM decreases down to MFe = 0.32 mB; and vice versa, the
embedding of intercalant atoms into an undistorted structure
of a-FeSi2 does not cause the appearance of MM on the Fe
atoms. As expected, the magnitude of the MM at iron atoms

Fig. 8 Two possible positions for the embedding of an atom into the cavity between silicon atoms. (a) The positions occupied by non-metal atoms;
(b) the positions occupied by metal atoms. Blue balls represent the Fe atoms, grey balls represent Si atoms, red balls represent intercalated atoms.
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grows with increasing Fe–Fe distance, but an increase of only
RFe–Fe does not provide the magnitudes of MM listed in Table 1.
For example, an increase of in-plane distance RFe–Fe up to 2.95 Å
in pure a-FeSi2 leads to an MM at the Fe atom of MFe C 0.5 mB

only (Fig. 6), whereas intercalation by some atoms increases
MM by 1.5–2 times at the same RFe–Fe. The latter occurs due to
additional structure distortions and corresponding restructur-
ing of the DOS due to intercalated atoms.

These calculations show that the distortions caused by
intercalation change the t2g-DOS only slightly; the main
changes occur in the eg-DOS. Similar to pure a-FeSi2 it is
namely the eg-DOS that forms the peaks in the vicinity of the
Fermi level. This is illustrated in Fig. 9 for several intercalants;
similar to pure a-FeSi2 the increase of the distances RFe–Fe and
RSi–Si causes shifts of the emg - and ekg -peaks. In the case of non-
metallic intercalants (P, As, Sb) this shift grows with an
increase of the distances RFe–Fe and RSi–X (Fig. 9a). For the
metallic intercalants Li, Na, K the tendency is opposite (Fig. 9b).

As seen from Fig. 9 and Table 1, intercalation of P and Na is
expected to provide high spin polarization due to the crossing
of the Fermi energy by the dm-peaks of DOS. The quite strong
spin polarization (7th column in Table 1) may occur not only in
the cases of intercalation by the above-mentioned P and Na, but
also by O and K. A small increase of the in-plane lattice
parameter, which arises when the a-FeSi2 is intercalated by
H, As, O or P, allows for the use of the silicon substrate. The
intercalation by Li, Na, K and Sb atoms results in a 7% increase
of the in-plane lattice parameter compared to pure a-FeSi2, but
the compressive strain from the substrate can decrease this
distortion. This, however, does not prevent MM completely, but
decreases it by 30–40%. Therefore, one can expect that the
choice of a substrate with a larger lattice parameter than that of
silicon (e.g., Ge) would allow a decrease of this misfit strain and
increase the magnitude of MM.

Since it is hardly possible to achieve 100% concentration of
intercalated atoms during experiment, we estimate the value of
MM arising at the Fe atoms for lower concentrations of inter-
calated atoms; namely for 25% and 50% concentrations of
intercalated atoms. In order to consider a possible ordering
of intercalated atoms with these concentrations we constructed
a 2 � 2 � 2 supercell of a-FeSi2. Further calculations depend on
the way that the sample is made. Annealing of a sample may
switch on the thermodynamic equilibration processes, possibly
ion migration, etc. This may exclude the contribution of less
energetically favorable configurations. An estimation of the
barriers for the migration of ions and the contribution of
phonons is needed for a quantitative description of these
processes. This requires special consideration. In the case
when a sample is made by quenching, the situation is simpler:
due to fast cooling of the sample the energy hierarchy of
different possible configurations is much less important and
their contribution to an averaged physical quantity hAi may be
calculated either with the help of simple statistical weights, or
by means of some kind of realization of the coherent potential
approximation. The latter, however, also involves additional
assumptions about the distribution function and the way that
the effective medium is introduced (see, e.g., ref. 24 and 25), but
has the advantage that it does not require supercell calculations
and can be used for an arbitrary (but not too small) concen-
tration. Here we consider the first case.

A configurationally disordered structure may contain several
locally different arrangements of intercalated atoms, each at
their fixed concentration. Let us consider the possible arrange-
ments and calculate their weights. Let us denote the statistical
weights of the configurations i as w(n)

x (i), where x is the
concentration of intercalated atoms, and ni

x is number of
equivalent configurations of the type i, and An

x(i) is value of
the physical quantity in the configurations i. Then the total

number of configurations is NcðxÞ ¼
P
i

nixw
ðnÞ
x ðiÞ and

Ah i ¼ 1

NcðxÞ
X
i

Ani
x ðiÞnixwðnÞx ðiÞ: (7)

For the 25% concentration of intercalating atoms we have

Ncð0:25Þ ¼
8
2

� �
¼ 28 arrangements. Five of them are different

(see Appendix B in the ESI†). Considering all possible config-
urations we find that, for x = 0.25, the statistical weight w(3)

0.25 = 4
for three of them, and w(2)

0.25 = 8 for two of them. For a 50%

concentration of intercalated atoms there are Ncð0:5Þ ¼
8
4

� �
¼ 70

possible ways to distribute atoms. Nine of them are different
(see Appendix B in the ESI†): for three configurations w(3)

0.5 = 2,
for two it is w(2)

0.5 = 4, w(2)
0.5 = 8, w(1)

0.5 = 16, and w(1)
0.5 = 24

(
P
i

ni0:5w
ðnÞ
0:5 ¼ 70).

We find that the prospective candidates are Li metal and
the O non-metal intercalants. As seen from Table 1, the inter-
calation with these atoms results in relatively large MMs for
comparatively small lattice distortions. We performed a full

Table 1 The lattice parameters (a,c), magnetic moments on Fe atom (mFe),
the distance between Fe–Si (RFe–Si) and Si–X (X =intercalant) atoms (RSi–X),

spin polarization (P ¼ r"ðeFÞ � r#ðeFÞ
r"ðeFÞ þ r#ðeFÞ

� 100%), anisotropy of the plasma

frequency Z = Oxx/Ozz in the intercalated a-FeSi2 and the formation
enthalpies (Hf)

Atom X
Lattice
parameters/Å

mFe

(mB) RFe–Si/Å RSi–X/Å
P
(%)

Z =
Oxx/Ozz

Hf/eV
per NX

Position 1 (Fig. 8a)
H 2.72 6.28 0.20 2.37 1.76 0 0.52 �1.23
O 2.76 5.91 0.45 2.36 1.63 61 1.767 �0.92
P 2.71 7.27 0.47 2.28 2.35 75 1.63 �0.15
As 2.76 7.58 0.53 2.36 2.46 38 1.737 �0.11
Sb 2.89 7.80 0.90 2.40 2.64 38 2.12 �0.04
N 2.74 6.05 0.00 2.39 1.63 0 1.96 �1.06

Position 2 (Fig. 8b)
Li 2.93 5.34 0.90 2.43 2.50 11 0.84 �0.09
Na 2.90 6.80 0.65 2.41 2.94 71 1.19 �0.03
K 2.87 8.07 0.14 2.44 3.36 68 2.68 �0.02
Ca 3.00 6.85 1.00 2.46 3.04 11 1.03 �0.33
Sr 3.09 7.02 1.05 2.50 3.16 11 1.09 �0.21
Cu 2.95 5.38 0.90 2.24 2.52 24 1.06 �0.12
a-FeSi2 2.70 5.13 0.00 2.36 — 0 0.87 —
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optimization for all ordered structures. In Table 2 we give the
difference DE = Emax � Emin between the maximal and minimal
energies of the structures for each of these cases. The total
energy values of different ordered structures are within 0.5 eV
range per unit cell of a-FeSi2. The average lattice parameters
hai, hci (Å), Fe MMs hmi (mB) and spin polarization hPi (%),
calculated according to eqn (7) are given in Table 2. In the last
row of Table 2 we give the averaged enthalpy of formation hHfi
(eqn (6)). Note that the enthalpy of formation of different
ordered structures are within a few hundredths of eV per NX.

Although at a 25% concentration of lithium atoms the lattice
parameters have only little change as compared with a-FeSi2

(Table 2), the average MM on Fe atoms is equal to 0.31 mB; an
increase of concentration up to 50% results in the increase of

Table 2 The energy difference (DE) between maximal and minimal
energies of ordered supercells of intercalated a-FeSi2, average magnetic
moments (hmi), spin polarization (hPi), lattice parameters (hai, hci) and
formation enthalpies (hHfi) in ordered intercalated a-FeSi2 for 25% and 50%
concentrations of intercalated atoms of oxygen and lithium

O Li

25% 50% 25% 50%

DE (eV) 0.23 0.5 0.05 0.42
hmi (mB) 0.14 0.28 0.31 0.67
hPi (%) 61 63 57 35
hai (Å) 2.72 2.74 2.77 2.82
hci (Å) 5.43 5.66 5.14 5.19
hHfi (eV per NX) �1.21 �0.98 �0.47 �0.20

Fig. 9 (a) eg-DOS for a-FeSi2 intercalated by the non-metal atoms which occupy the first positions in Fig. 8; from top to bottom: P, As, Sb (b) eg-DOS for
a-FeSi2 intercalated by the metal atoms (second position in Fig. 8); from top to bottom: Li, Na, K. Zero on the energy axis is the Fermi energy. The positive
and negative values of DOS correspond to the spin-up and spin-down states, respectively.
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MM up to 0.67 mB. Note that at the equilibrium lattice para-
meters of pure a-FeSi2 without structure optimization by the
atom coordinates, the MM on Fe atoms does not arise even at a
100% concentration of Li atom. This proves that the emergence
of the magnetism in intercalated a-FeSi2 is primarily associated
with lattice distortions.

Note that in order to obtain a sample with a large spin
polarization, the optimal concentration of Li intercalate has to
be found. Indeed, since a move along the Li concentration from
xLi = 0 towards xLi = 1 induces magnetism, the corresponding
eg – peak in the DOS moves from the region above the Fermi
level Ef at xLi = 0 to the region below it at xLi = 1, while the
ekg – peak remains above Ef. In a certain concentration range the
eg – peak passes through Ef (see Fig. 10). In our case such a
concentration is in the vicinity of xLi = 0.25. The latter provides
a large spin polarization. This conclusion is obtained for fully
optimized structures.

When we intercalate a-FeSi2 by non-metal oxygen atoms the
value of the magnetic moment decreases with the decrease of
oxygen concentration. However the spin polarization practically
does not change with concentration. Fig. 9 shows that the
positions of the d-electron peaks in DOS are much more
sensitive to intercalation by heavier atoms (such as antimony),
than by atoms of a metal. The intercalation by light oxygen or
phosphorus atoms shifts the same d-electron peak much less
with increase of concentration; at 100% concentration the peak
is shifted by 0.25 eV, reaching the Fermi level.

Since there are preferable positions for the metal and non-
metal intercalants, one may expect that the intercalation may
cause an anisotropy of the compound properties. A standard
way to estimate this effect would be to inspect the tensor of
static electroconductivity s0, which in the VASP package is
calculated by means of the Drude formula sab = tOab

2/(4p).
Here Oab is the plasma frequency and t is the relaxation time.
However, t is the parameter which depends on many factors
(like, e.g., the method of preparation of the sample) and may
differ for different samples even with the same concentration of
intercalants, not to mention compounds with different inter-
calants. For this reason we prefer to estimate the degree of
anisotropy of a compound just from the ratio Z = Oxx/Ozz

(note that Oxx = Oyy). The results of these calculations are
shown in Table 1, in the 8th column.

A question arises if the different preferable positions for the
metal and non-metal atoms in lattice of a-FeSi2 can be asso-
ciated with the anisotropy? We inspected the maps of electronic
localization function (ELF) at the intercalation by Li and P
atoms (Fig. 11). For the non-metal atoms, which prefer to locate
on the Si–Si bond, the ‘‘conducting channels’’ are shifted from
the middle plane in the c-axis direction. The metal intercalated
atoms prefer the position on the bond between out-of-plane
Fe–Fe atoms. This leads to an overlap of the ‘‘conducting
channels’’. The latter causes a more uniform distribution of
the delocalized electrons by the volume of crystal (Fig. 11).
Although this difference seems to exist for all metal and non-
metal intercalated compounds, its contribution to anisotropy is
not monotonic and it is difficult to formulate a general rule.

IV. Conclusion

The fact that a large, if not the decisive, role in the mechanism
of magnetic structure formation in different compounds is
played by the local environment of the magnetic species is
well known from the physics of surface and interfaces. In
earlier works,10,12 in the framework suggested by our approach
(hybrid self-consistent mapping (HSCMA)) we have shown that
distortions of the crystal lattice as well as the types of atoms in
the local environment have a significant impact on magnetic
moment formation. According to the latest experimental
data, a-FeSi2 is predisposed to the appearance of its ferro-
magnetism. In ref. 10 we studied the possible reasons for this.
As follows from the analysis of the map of the magnetic
moment dependency on the hopping integrals, a crucial role
in the appearance of ferromagnetism is played by the distortion
of the crystal lattice in the Fe plane. A distinctive feature of all
the calculated maps is the presence of sharp boundaries
between regions with magnetic states and those that are non-
magnetic. Therefore, the system is in the vicinity of magnetic
instability and it is reasonable to assume that some other
type of crystal-lattice distortions could cause the formation of
a magnetic state in a-FeSi2.

Fig. 10 Full DOS of Li-intercalated a-FeSi2 for 0% (black line), 25% (green
line) and 50% (red line) concentrations of intercalated atoms. Zero on the
energy axis is the Fermi energy. The positive and negative values of DOS
correspond to the spin-up and spin-down states, respectively.

Fig. 11 The electron localization function (ELF) for (a) Li-intercalated
a-FeSi2; (b) P-intercalated a-FeSi2. The degree of electron localization
on the color map spans from fully delocalized at the blue and green end, to
yellow and red for the localized electrons. Blue balls represent the Fe
atoms, grey balls stand for Si atoms, red balls represent intercalated atoms.
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In the present work we consider the conditions which can
lead to the appearance of magnetic state in a-FeSi2. As follows
from our model analysis, the magnetic state can arise not only
when the distance between in-plane Fe–Fe atoms is changed,
but also, for example, when the distance between out-of-plane
Si–Si atoms is changed. Unfortunately, a pronounced magnetic
moment can arise only during quite large distortions of the
crystal lattice, even if a complex set of distortions is applied.
We suggest that intercalation of a-FeSi2 could be a way to solve
this problem.

We used for this analysis an averaging procedure different
from the one used in the well-known coherent potential
approximation (CPA). Our method has the advantage that it
takes into account the fact that the energies of different
configurations at the same fixed concentration of dopants are
different. The obvious disadvantage is that, contrary to the CPA
method, it cannot be used at an arbitrary concentration. How-
ever, our method takes into account the short-range correla-
tions at certain fixed concentrations, while the CPA method
does not. Therefore, one can expect that a comparison of
the results generated by the CPA and by our method at fixed
concentrations can be used for estimation of the strength of the
short-range correlations and a degree of their importance for
the problem in question.

Our calculations indeed confirm that the intercalation of
a-FeSi2 results in the appearance of a significant magnetic
moment on Fe atoms (0.5–1 mB) at relatively small lattice
distortions (Table 1). It is apparent that it is hardly possible
to reproduce the complex set of lattice distortions caused by the
intercalated atoms only in the vicinity of interface by selecting
different substrates for the film or nanoparticle fabrication; the
intercalation has to be done for bulk a-FeSi2.

In fact, for spintronics devices a large spin polarization is
needed, not a large magnetic moment. We expect that (60–80%)
spin polarization in a-FeSi2 can be achieved via intercalation
with certain elements, such as Li, P, Na, O. This can cause the
required reconstruction of the electronic structure making,
therefore, the intercalated a-FeSi2 a promising candidate for
application in spintronics. Note that although it is hardly
possible to achieve 100% concentration of intercalated atoms
in practice, the spin polarization remains large even at smaller
concentrations. The advantage of maintaining a magnetic state
at a smaller concentration of intercalated atoms is that smaller
distortions of the lattice would facilitate the experimental
fabrication of films on the silicon substrate, which is extremely
important for modern silicate technology.
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