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ABSTRACT

Based on the nonequilibrium Keldysh technique in the atomic representation, the effect of inducing a varied population of
magnetic states of a spin dimer interacting with electrons transported through a system in a zero magnetic field was studied.
In order to find the filling numbers of the quantum states of the system under the strong nonequilibrium condition, a system
of kinetic equations was derived and solved by the method of nonequilibrium diagram technique for Hubbard operators.
Numerical analysis of these equations made it possible to reveal nonequilibrium renormalizations when accounting for
strong spin-fermion correlations.
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1. INTRODUCTION

In recent times, research has been actively conducted to
identify effective methods of managing quantum transport of
electrons through atomic-scale structures by means of external
fields. Systems containing internal degrees of freedom that can
participate in the processes of charge transfer are the most
promising. The chief motive for the application of such systems
is associated with the fact that a state transition of a subsystem
of internal degrees of freedom due to a directed effect can
affect the intensity of quantum transport, and thereby modify
the volt-ampere characteristics of the atomic structure.

A system containing doping magnetic ions can serve
as an example of a similar system. The electrons located in such
a system affect the states of magnetic ions due to s – d(f )
exchange interaction. Therefore, electron transport is accom-
panied by processes of inelastic dispersion, which can signifi-
cantly change the transport characteristics of the system.
This conclusion is important for practical operation, as it
opens up broad opportunities for management of electron
transport due to the action of external fields on the internal
degrees of freedom.1,2

The calculation of the volt-ampere characteristics of
systems with internal degrees of freedom is a significant
problem because the Hamiltonian, taking account of inter-
actions between subsystems, is non-diagonal in the usual
representation of Fermi and Bose operators of secondary
quantization. Therefore, the expansion of the theory of per-
turbations with the usual approach contains a large number of
seed amplitudes of dispersion that significantly complicates
the summation of the diagrammatic expansions.

At the same time, it is necessary to emphasize the impor-
tance of accounting for such processes of dispersion, as
they induce the transitions of the system to excited states.
As a result, the tunnel current flux is accompanied by redis-
tribution of the population of energy states of the system.
Here, the total distribution of the filling of these levels may
differ substantially from the initial equilibrium.3 In actual
operation on a sample system with doping magnetic ions
forming a spin dimer, the nonequilibrium renormalizations
of the states of the magnetic subsystem induced by an elec-
tric current are examined.
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It should be noted that, as a whole, management of the
spin states of atomic-scale systems is one of the important
problems in such areas as quantum calculations and applica-
tions in the information storage realm.4 In addition, this
aspect is integral to the analysis of fundamental processes and
phenomena. One of them is the Kondo effect, the properties
of which, in particular, depend significantly on the value of
the spin moment of the base state of the system interacting
with metal contacts.5 In the absence of a magnetic field,
several mechanisms were examined earlier that make it pos-
sible to affect the spin states of zero-dimensional objects.
Such control can be carried out at quantum points due to
the change in form of the locking potential created by elec-
trodes of the gate. As a result, for an even number of elec-
trons at a point, it is possible to observe a change of the
base state from singlet to triplet.6 It is known that in struc-
tures with spin S > ½, the degeneracy of 2S + 1 states can be
removed by creating magnetic anisotropy. In turn, this can
be induced by the stretching of a molecule,7 spin-orbital
interaction,8 or the effect of the environment.9 We will
show in this article that the processes of nonequilibrium
inelastic transport are capable of causing a nonuniform
probability of realization of the spin states of the structure,
which can be interpreted as the action of the effective mag-
netic anisotropy. In order to describe this effect, a system of
kinetic equations was derived and solved for the filling
numbers of the system, including a spin dimer, and numeri-
cal analysis was performed.

2. MODEL OF A SYSTEM WITH A SPIN DIMER

In order to study the nonequilibrium characteristics of a
subsystem of the spin dimer located in the system and subject
to the effect of flowing electrons, we will examine the most
essential interactions that occur in a system such as that
shown in Fig. 1. The link of the left contact with the system is
executed by electron tunneling from the extreme site of
contact at the first site into the state with energy ξdσ. Tunnel
coupling with the right contact is carried out analogously,
with the only difference being that the second site of the
system participates during the tunneling. In the system, a
subsystem of two mutually interacting localized spins is
present. Then, the s – d(f ) exchange communication of the

localized spins with transported electrons results in dimer
excitation and modification of its characteristics. Execution of
such a system can be achieved by means of adsorption of
molecular structures into the region between the contacts.
Another possibility is associated with the creation of a system
with the participation of transitional ions with an unfilled d-
or f- cover.

Heisenberg exchange interaction operates between the
localized spins. It is assumed below that this interaction is of
anti-ferromagnetic type. If there are no electrons on the
system, the spin dimer is in a singlet state. The energy level of
a triplet term is separated from that of a singlet term by the
value of the exchange energy I.

Due to s – d(f ) exchange interaction, an electron incident
to the site of the system from the contact correlates strongly
with the state of one of the localized spins. This results in the
fact that, in general, when there is a tunneling electron in the
system from the contact, the magnetic state of the system
will change. This occurs because the processes of electron
transport via the system will be accompanied by excitations of
the magnetic degrees of freedom. Hence, the transport of
electrons will occur with the significant effect of the pro-
cesses of inelastic dispersion of electrons in the internal
degrees of freedom of the system.

In order to resolve the question of accounting for the
effect of the processes of nonelastic dispersion of elec-
trons to the characteristics of the electron transport of the
system, we will use the method of nonequilibrium Green
functions, which we construct based on the atomic repre-
sentation. For this purpose, the nonequilibrium Green’s
functions are defined through the Hubbard operators.
Here, it will be shown that the theory of perturbations can
be reformulated so that only the tunneling processes will
define the dispersion matrix on the Keldysh contour. We
will conduct the study of the nonequilibrium properties of
a spin dimer within the Hamiltonian

Ĥ ¼ Ĥ0 þ T̂þ V̂: (1)

The first term

Ĥ0 þ ĤL þ ĤR þ ĤD (2)

corresponds to the left and right contacts

ĤL ¼
X
kσ

ξLkσc
þ
kσckσ, ĤR ¼

X
pσ

ξRpσd
þ
pσdpσ, (3)

as well as to the system, which is described by means of
the Hamiltonian

ĤD ¼
X2
l¼1

X
σ

ξdσa
þ
lσalσ þUnl"nl#

( )
þ td

X
σ

(aþ1σa2σ þ aþ2σa1σ)

þU12n1n2 þ
X2
l¼1

{A(σlSl)� gμBHSzl }þ I(S1S2):

(4)

FIG. 1. Device model with two sites and two doping spins. The left contact
(tL) is connected by a tunnel with the first unit of the system, and the right
contact to the second unit (tR). An electron incident to the system site (at
the first site in the diagram) correlates with the doping spin by means of the
s – d( f ) exchange link.
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Tunnel coupling between contacts and the system is described
by the operator

T̂ ¼ T̂L þ T̂R þ h:c: ¼
X
kσ

tLkcþkσa1σ þ
X
pσ

tRpcþpσa2σ þ h:c: (5)

The operator V̂ takes account of the potential difference
enclosed in the system. Keeping in mind the invariance of the
potential in the contacts and in the system, as well as associ-
ating the reference point of the potential reading with the left
contact, we derive

V̂ ¼
X2
l¼1

X
σ

(eV=2)aþlσalσ þ
X
pσ

(eV)dþpσdpσ: (6)

These designations were used above: ckσ (dpσ) is the
electron destruction operator in the left (right) contact with
wave vector k(p) and spin projection σ; ξLkσ ¼ εLk � geμBHσ�
μ, ξRpσ ¼ εRp � σgeμBH� μ are the one-electron energies in
the left and right contact respectively, read out from the
level of the chemical potential μ and taking account of
energy splitting by the projection of electron spin σ = +½ in
the magnetic field, ge is the electronic g-factor in the con-
tacts, and μΒ is the Bohr magneton. Hereafter, it is assumed
that the contacts are single-zone paramagnetic metals. The
parameters entering into the Hamiltonian of the system
have the following physical sense: ξdσ = εd – geμΒ Hσ – μ is
the spin-dependent energy, calculated from the chemical
potential, of an electron located at one of the sites of the
system in an external magnetic field H: εd is the seed single-
electron energy; nlσ = a+l σ alσ is the operator of the number
of electrons at the system site with number l and spin pro-
jection σ; a+l σ alσ is the operator of the generation (destruc-
tion) of an electron in the system at the site l with spin
projection σ; the parameter U characterizes the Hubbard
repulsion of two electrons with opposite spin projection
located at one site. nl = nl↑ + nl↓ is the operator for the full
number of electrons at the system site with index number
l. The parameter U12 defines the intensity of the Coulomb
interaction of the electrons located at the first and second
site of the system. The effect of a magnetic field on the
power structure of a subsystem of localized spins with an
effective g-factor is described by means of the penultimate
term in (4). The interaction between the spin degree of
freedom of a transported electron and the localized spins
of the system, carried out via the s – d(f ) exchange link, is
characterized by the parameter A, where Sl is the vector
operator of the localized spin of the system, and σl is the
vector operator of the spin of the transported electron. As
is known, the scalar product σS contains operator terms
corresponding to accounting for spin-flip processes when
there is a simultaneous change of projections at doping
spins and at the electron.

3. TUNNELING PROCESSES IN THE ATOMIC
REPRESENTATION FOR THE SYSTEM

The existence of internal degrees of freedom of the
system results in the electron located within it interacting
both with the charge and with the spin degrees of freedom.
The presence of a large number of various seed amplitudes of
dispersion results not only in considerable complication of
the expansion of the theory of perturbations, but also in the
problem of calculating the explicit form of Fermi and spin
operators in the representation of the interaction. This is
associated with the non-equidistant structure of the spec-
trum of Fermi (or spin) excitations of the operator ĤD. Hence,
direct use of the diagram technique in terms of the operators
of secondary quantization becomes impossible due to the
absence of a Wick’s theorem for the means of the product of
such operators.

The resolution of this difficulty is associated with creat-
ing an atomic representation and writing the Hamiltonian of
the system in it, as well as the tunneling operator. With this
objective, we introduce the functions | Ψn ⟩, which are the sol-
ution of the Schrödinger equation for the system:

ĤDjΨni ¼ EnjΨni, n ¼ 1, 2, . . . , ND: (7)

The set of functions | Ψ1⟩, | Ψ1⟩ | ΨND⟩ can be examined as
the basis of a Hilbert space in which the operators pertain-
ing to the system are operative. We introduce the Hubbard
operators10,11

Xnm ¼ jΨnihΨmj, n, m ¼ 1, 2, . . . , ND, (8)

which are operative in the Hilbert space of the system. In
particular, the effect of these operators on the base states is
defined in simple form as Xnm | Ψp⟩ =δmp | Ψn⟩.

The first advantage of this representation is associated
with the fact that the transition to it results in the diagonal
form of the Hamiltonian HD:

HD ¼
XND

n¼1

EnXnn: (9)

A second important feature of the atomic representation
is associated with the fact that the explicit form of the
Hubbard operators in the representation of the interaction
Xnm(t) =U0(t)X

nm U0
+(t) is easily calculated. Here, there arises

the customary time dependence under the exponential law:10

Xnm(t) ¼ exp(i(En � Em)t)Xnm ; exp (iαEt)Xnm:

Here, a form of writing that is convenient for further
exposition is used: E is understood to be an ND-dimensional
vector (E1, E2,… , END), and α an ND-dimensional vector, the
ith component of which is defined by the difference of two
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Kronecker symbols: αi(n, m) = δin – δim. Then, the scalar
product αE = En – Em = Eα if α = αi(n, m), i.e., if α corresponds
to the transition between states Ψm and Ψn.

The simplicity of the time dependence of the Hubbard
operators in the representation of the interaction shows an
obvious path toward the creation of a theory of perturbations,
with the use of the diagram technique for these operators,
since Wick’s theorem exists for them.

The introduction of matrix elements for the operators of
electron destruction with spin projection σ at the first and
second sites,

γ1σ(n, m) ¼ hΨnja1σjΨmi ; γ1σ(α),

γ2σ(n, m) ¼ hΨnja2σjΨmi ; γ2σ(α),
(10)

makes it possible to express the Fermi operators through the
Hubbard operators in compact form

a1σ ¼
X
α

γ1σ(α)X
α, a2σ ¼

X
α

γ2σ(α)X
α, α ; α(nm): (11)

Here and thereafter, for brevity, the expression for summa-
tion on the index α is used, understood as in fact summa-
tion on the pair of indexes n and m of the atomic states of
the system.

In using the atomic representation, the tunneling opera-
tor entering the dispersion matrix takes on a form that is con-
venient for creation of the theory of perturbations,when the
operators of the transition between atomic states are present
in explicit form:

T̂I(t) ¼
X
kσ,α

tLk(t)γ1σ(α)c
þ
kσ(t)X

α(t)

þ
X
pσ,α

tRp(t)γ2σ(α)c
þ
pσ(t)X

α(t)þ h:c: (12)

For the system being examined by us, the complete number
of states |Ψm⟩, m = 1, 2,…, ND is equal to 64. In the mode
of strong correlations, the parameter of Hubbard repulsion
U and the value of the inter-node Coulomb interaction
Ul2 exceed considerably the values of the other power param-
eters of the system. This makes it possible to be limited to
only such states of the system as contain no more than one
transported electron. There are 20 such states.

In order to describe them, we introduce the generation
operators f+1σ and f+2σ and destruction operators f1σ and f2σ of
localized fermions with spin projection σ at the first and
second sites of the system.

Then, the sector of the Hilbert space of the Hamiltonian
of the system that does not contain transported electrons
corresponds to states of the dimeric system. The singlet state
of the system is written as

j1i ¼ 1
1ffiffiffi
2

p ( fþ1"f
þ
2# � fþ1"f

þ
2#)j0i, E1 ¼ �3I=4, (13)

where j0i is the vacuum state. The three triplet states of this
sector are defined by the expressions

j2i ¼ 1ffiffiffi
2

p ( fþ1"f
þ
2" þ fþ1"f

þ
2")j0i,

j3i ¼ fþ1"f
þ
2"j0i, j4i ¼ fþ1"f

þ
2"j0i

(14)

and have energy E2 = 1/4. Among the 16 states of the
one-electron sector, eight states correspond to even and odd
states with total spin St = 3/2. We show the four even states
in a form that facilitates simply calculating the parameters of
the representation

j5i ¼ aþ1" þ aþ2"ffiffiffi
2

p j3i, j6i ¼ Ŝ�tffiffiffi
3

p j5i,

j7i ¼ Ŝþ
tffiffiffi
3

p j8i, j8i ¼ aþ1# þ aþ2#ffiffiffi
2

p j4i,
(15)

where

Ŝ�t ¼
X2

j¼1
( fþj#f j# þ aþj#a j#),

Ŝþt ¼
X2

j¼1
( fþj"f j# þ aþj"a j#):

The four odd states with St = 3/2 are defined by the expressions

j9i ¼ aþ1" � aþ2"ffiffiffi
2

p j3i, j10i ¼ Ŝ�tffiffiffi
3

p j9i,

j11i ¼ Ŝþtffiffiffi
3

p j12i, j12i ¼ aþ1# � aþ2#ffiffiffi
2

p j4i:
(16)

According to the addition rule for moments in quantum
mechanics, there are doublet terms among the one-electron
states of the system. Two even (g) and two odd states (u), with a
projection of total spin Szt = 1/2 relative to the even doublet and
odd doublet terms, is written as

j1=2, 1=2ig+ ¼
X
σ

C+
gσ( f

þ
1σf

þ
2�σa

þ
1" þ fþ1�σf

þ
2σa

þ
2")j0i þ C+

gg(a
þ
1# þ aþ2#)f

þ
1"f

þ
2"j0i,

j1=2, 1=2iu+ ¼
X
σ

C+
uσ( f

þ
1σf

þ
2�σa

þ
1" � fþ1�σf

þ
2σa

þ
2")j0i þ C+

uu(a
þ
1# � aþ2#)f

þ
1"f

þ
2"j0i:

(17)

Then, the remaining eight states are numbered as follows:

j13i ¼ j1=2, 1=2igþ, j14i ¼ Ŝ�t j13i j15i ¼ j1=2, 1=2ig�, j16i ¼ Ŝ�t j15i, (18)

j17i ¼ j1=2, 1=2iuþ, j18i ¼ Ŝ�t j17i j19i ¼ j1=2, 1=2iu�, j20i ¼ Ŝ�t j19i: (19)

These designations were used in writing the expressions in (17):
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C+
g" ¼ +

1ffiffiffi
2

p b+g
Z+
g
, C+

g# ¼ +
1ffiffiffi
2

p a+g
Z+
g
, C+

gg ¼ +
1ffiffiffi
2

p c+g
Z+
g
, Z+

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a+g )2 þ (b+g )2 þ (c+g )2

q
,

C+
u" ¼ +

1ffiffiffi
2

p b+u
Z+
u
, C+

u# ¼ +
1ffiffiffi
2

p a+u
Z+
u
, C+

uu ¼ +
1ffiffiffi
2

p c+u
Z+
u
, Z+

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(a+u )2 þ (b+u )2 þ (c+u )2

q
,

(20)

where

a+g ¼ (νg + A)(νg + I+ 2td), b+g ¼ (Iþ 2td)(νg + I+ 2td), c+g ¼ A(νg + A),

a+u ¼ (νu + A)(νu + I+ 2td), b+u ¼ (I� 2td)(νu + I+ 2td), c+u ¼ A(νu + A),

νg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(A� I� 2td)

2 þ A(Iþ 2td)
q

, νu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(A� Iþ 2td)

2 þ A(I� 2td)
q

:

(21)

Then, within the accepted numbering of one-electron states,
their energies are written as

E5(9) ¼ ξd þ
Aþ 1
4

+ td, E13(15) ¼ ξd þ
Aþ 1
4

+
νg
2
,

E17(19) ¼ ξd �
Aþ 1
4

+
νu
2
: (22)

Taking account of the explicit form of the base functions of
the system, it is not difficult to show that the parameters of
the representation of the operator a1↑ through the Hubbard
operators are defined as follows:

γ1"(3, 5) ¼ γ1"(3, 9) ¼
1ffiffiffi
2

p
,
γ1"(2, 6) ¼ γ1"(2, 10) ¼

1ffiffiffi
3

p ,

γ1"(4, 7) ¼ γ1"(4, 11) ¼
1ffiffiffi
6

p
,
, γ1"(1, 13(15)) ¼

Cþ(�)
g" � Cþ(�)

g#ffiffiffi
2

p ,

γ1"(1, 17(19)) ¼
Cþ(�)
u" � Cþ(�)

u#ffiffiffi
2

p , γ1"(2, 13(15)) ¼ �Cþ(�)
ggffiffiffi
2

p ,

γ1"(2, 17(19)) ¼ �Cþ(�)
uuffiffiffi
2

p , γ1"(4, 15(16)) ¼
ffiffiffi
2

p
γ1"(2, 13(15)),

γ1"(4, 18(20)) ¼
ffiffiffi
2

p
γ1"(2, 17(19)):

(23)

For the system considered by us, |γ2↑ (α)| = |γ1↑ (α)|, where for
half of the transitions, γ2↑ (α) = –γ1↑ (α). These properties of the
parameters of the representation will be used further when
finding the current and the kinetic equations. The parameters
γ1,2↓ (α) are calculated similarly.

4. ELECTRICAL CURRENT AND KINETIC EQUATIONS

The expression for the current at the left contact J
follows from its definition

J ¼ e _̂NL, N̂L ¼
X
kσ

cþkσckσ, (24)

where N̂L is the operator for the number of electrons at the
left contact. Then, using the rules of quantum mechanics, we
derive

J ¼ � ie
�h
h[N̂LT̂L]i ¼ � ie

�h

X
kσ

tLK[hcþ1σa1σi � haþ1σc1σi]: (25)

The absolute value of the charge of an electron is designated
as e. Averaging is carried out with the density matrix ρ(t)12,13

satisfying the equation

i�h@ρ(t)=@t ¼ [Ĥ, ρ(t)]: (26)

We will perform the calculation of averages arising in the
theory by means of nonequilibrium Green’s functions. Finding
these functions is associated with application of the theory of
perturbations with the Keldysh technique.14 For this purpose,
we transfer at the beginning to the density matrix ρv(t),

15 such
that

ρ(t) ¼ Ûþ
υ ρυ(t)Ûυ, Ûυ ¼ exp (itV̂=�h): (27)

The new equation of motion for ρv (t),

i�h@ρυ(t)=@t ¼ [Ĥυ(t), ρυ(t)] (28)

is defined by the Hamiltonian Ĥv (t) =Ĥ0 + T̂v(t), in which the
tunneling operator

T̂υ(t) ¼
X
kσ

tLK(t)cþkσa1σ þ
X
pσ

tRp(t)dþpσa2σ þ h:c: (29)

has an explicit time dependence defined by the functions

tLK(t) ¼ tLK exp (�iteV=2�h), tRp(t) ¼ tRp exp (iteV=2�h):

Further transformation is associated with the transition to
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the representation of the interaction:

ρυ(t) ¼ Ûþ
0 ρI(t)Û0, Û0 ¼ exp (itĤ0=�h): (30)

In this representation, the current is defined by the expression

J ¼ � ie
�h

X
kσ

[tLK(t)hcþkσ(t)a1σ(t)i1 � t*LK(t)haþ1σ(t)ckσ(t)i1], (31)

in which the sign of I in angle brackets signifies that the mean
is calculated with the density matrix, satisfying the equation

i�h@ρI(t)=@t ¼ [T̂I(t), ρI(t)]: (32)

Here, the tunneling operator is carried in the representation of
the interaction

T̂I(t) ¼
X
kσ

tLK(t)cþkσ(t)a1σ(t)þ
X
pσ

tRp(t)dþpσ(t)apσ(t)þ h:c: (33)

In this representation, the time dependence of the operators
of secondary quantization is defined in the usual manner.
Here, for the operators of the contacts

ckσ(t) ¼ Ûþ
0 ckσÛ0 ¼ ckσ exp (� itξLKσ=�h)

the time dependence is well-known. The explicit depen-
dence on time of the operators of the system in the repre-
sentation of the interaction a1σ(t) =U +

0 a1σ Û0 has no simple
representation. This complicates the development of a
theory based on the use of operators of secondary quanti-
zation to describe the interactions in the system. Hence, we
will hereinafter use the atomic representation to overcome
the noted difficulty.

In order to apply the Keldysh technique, we introduce
the evolutionary operator S(t,–∞), which makes it possible to
establish the association between ρI(t) and ρ0

ρI(t) ¼ S(t,�1)ρ0S
þ(t,�1), ρ0 ¼ ρI(�1): (34)

Since the operator S(t,–∞) satisfies the equation

i�h@S(t,�1)=@t ¼ T̂I(t)S(t,�1), (35)

then it is possible to present that with the T-ordered exponent

S(t,�1) ¼ Tt exp � i
�h

ðt
�1

T̂I(t)dt

2
4

3
5: (36)

The operator S(t,–∞) solves the posed problem, since

hcþkσ(t)a1σ(t)iI ¼ hSþ(t, �1)cþkσ(t)a1σ(t)S(t�1)i0: (37)

If we insert the unified operator S–1(∞,–∞) × S(∞,–∞) into the
mean in the right part of this equation, then we derive

hcþkσ(t)a1σ(t)iI ¼ hSþ(1, �1)S(1, t)cþkσ(t)a1σ(t)S(t�1)i0: (38)

The introduction of the Keldysh contour C13, 14, 16, 17 makes it
possible to write the examined means in a form convenient for
calculation:

hcþkσ(t)a1σ(t)iI ¼ hTCcþkσ(t)a1σ(t)SCi0, (39)

where TC is the operator of chronological ordering by time on
the Keldysh contour C, and the dispersion matrix SC

SC ¼ TC exp � i
�h

ð
C

T̂I(τ)dτ

2
4

3
5 (40)

is defined through the tunneling operator, in which the region
of change of the time argument belongs to the same contour.

In the representation of Hubbard operators for the
system, the expression for the current

J ¼ � ie
�h

X
kσ,α

γ1σ(α)[tLK(t)hcþ1σ(t)Xα(t)iI � t*LK(t)hX�α(t)c1σ(t)iI] (41)

manifests a structure that makes it possible to use the
diagram form of the theory of perturbations in which only the
tunneling operator plays a perturbation role. In order to for-
mulate such a theory, we will introduce the nonequilibrium
Green’s functions constructed on Fermi operators and on
Hubbard operators, as well as mixed functions containing the
product of a Fermi operator and a Hubbard operator

Gab
LKσ(τ, τ

0) ¼ �ihTCckσ(τa)cþkσ(τ
0
b)i0,

Dab
α,β(τ, τ

0) ¼ �ihTCXα(τa)X�β(τ0b)SCi0,
Rab
kσ,α(τ, τ

0) ¼ �ihTCckσ(τa)X�α(τ0b)SCi0,
Rab
α,kσ(τ, τ

0) ¼ �ihTCXα(τa)cþkσ(τ
0
b)SCi0,

(42)

where the indexes a, b = +,– designate the branch of the Keldysh
contour on which the times τa and τ0b vary, respectively.

As a result, the formula for the current assumes the fol-
lowing form:
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J ¼ e
�h

X
kσ,α

tLKγ1σ(α){e
ieVt=2Rþþ

LKσ,α(t, tþ δ)

�e�ieVt=2Rþþ
α,LKσ(t, tþ δ)}, δ ! þ0: (43)

Writing the diagram row for mixed functions (see details in
Refs. 18, 19, one may show that the electron current depends
on the Fourier transforms of nonequilibrium seed Green’s
functions of the left contact Gab

L (R)kσ (ω ± eV/2ħ)) and the com-
plete Green’s functions of the system Dab

α,β (ω),

J ¼ e
h

X
kσ

X
αβ

ðþ1

�1
dωt2LKγ1σ(α)γ1σ(β) G�þ

LKσ ωþ eV
2�h

� �
Dþ�

αβ (ω)�Gþ�
LKσ ωþ eV

2�h

� �
D�þ

αβ (ω)
� �

, (44)

where

Gþþ
LKσ(ω) ¼

nLKσ

ω� ξLKσ � iδ
þ 1� nLKσ

ω� ξLKσ þ iδ
, G��

LKσ(ω) ¼ � nLKσ

ω� ξLKσ þ iδ
� 1� nLKσ

ω� ξLKσ � iδ
,

Gþ�
LKσ(ω) ¼ 2πinLKσδ(ω� ξLKσ), G

�þ
LKσ(ω) ¼ 2πi(nLKσ � 1)δ(ω� ξLKσ),

nLKσ ¼ 1þ exp
εLKσ � μ

T

h in o�1
: (45)

The Fourier images of nonequilibrium seed Green’s functions
of the right contact Gab

Rpσ (ω), as well as the corresponding
Fermi-Dirac function are defined analogously. The nonequi-
librium Green’s functions of the system, Dab

α,β (τ – τ0) = –i < TCX
α(τa)X

–β (τb0)~SC>, are found from the solution of the Dyson
equation (see details in Refs. 18, 19, derived based on the
renormalized dispersion matrix

~SC ¼ TC exp �i
ð
C

dτ1

ð
C

dτ2
X
αβ

~Vαβ(τ1 � τ2)X�α(τ1)Xβ(τ2)

8<
:

9=
;, (46)

where

~Vαβ(τ1 � τ2) ¼
X
kσ

γ1σ(α)γ1σ(β)t
2
LKe

ieV2 (τ1�τ2)GLKσ(τ1 � τ2)

þ
X
pσ

γ2σ(α)γ2σ(β)t
2
Rpe

�ieV2 (τ1�τ2)GRpσ(τ1 � τ2): (47)

Hence, after performing a number of mathematical transfor-
mations, we derive the final general expression that describes
an electron current through an atomic-scale system.

J ¼ 4
e
h

X
σ

ðþ1

�1
dω

[Lσ12(ω� eV=2)]
Δσ(ω� eV=2)

Γ1(ω)Γ2(ω)[n2(ω� eV)� n1(ω)], (48)

where

Lσ
12(11)(ω) ¼

X
α

bαγ1σ(α)γ2(1)σ(α)=ωα, bα ¼ Nn þNm, ωα ¼ ωþ Eα,

Γ1(ω) ¼ π
X
k

t2LKδ(ω� ξLKσ), Γ2(ω) ¼ π
X
p

t2Rpδ(ω� eV � ξRpσ):

(49)

Hereinafter, we will use an approximate description of
the contacts as wide-gap metals. Then Γ1,2 = const, and the
denominator in expression (48) can be presented as

Δσ(ω) ¼ [1� Γ1Γ2([Lσ
11(ω)]

2 � [Lσ
12(ω)]

2)]2 þ Γ2[Lσ
11(ω)]

2, (50)

where Γ = Γ1 + Γ2.
It follows from expressions (48) – (50) that the current

depends on the filling numbers of the states of the system,
Nm (m = 1, 2,… , ND), which can be found from the solution
of the system of kinetic equations of the following general
form:

Nm ; hXmmi ¼
ð
dω
2πi

Dþ�
αα (ω) ¼

X
σ

ð
dω

b2αγ
2
1σ(α)
π

Kα(ω)
ω2
αΔσ(ω)

, (51)

where

Kα ¼ Γ1n1 þ Γ2n2 þ Γ1Γ2(Γ1n2 þ Γ2n1)[Lσ
11 � Θσ

12(α)L
σ
12]

2,

Θσ
12(α) ¼ sign[γ1σ(α)γ2σ(α)]: (52)

5. TRANSPORT PROPERTIES OF A SYSTEM WITH A
DIMERIC MOLECULE

The previous paragraph provided the kinetic equation (51)
that, in general form, expresses the dependence of the
filling numbers of the states of the spin dimer + electron
system on the intensity of transitions between these states,
the temperature, the characteristics of the contacts, and
the shift voltage.

In order to simplify the procedure for calculating the
integral in the right side of Eq. (51), we will make several
remarks. It follows from the form of the parameters of the
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representation (23) that γ1σ(α) and γ2σ(α) can differ only by
sign. Consequently, the function Kα(ω) does not depend
on the root vector α. Further, let there be p transitions of
the N, for which Θσ

12 (α) = +1. Then, removing the seed
poles in the initial kinetic equation (51), we derive two var-
iants for writing the latter, depending on the transition
type α:

1) γ1σ(α) ¼ γ2σ(α), Nm ¼
X
σ

ð
dω

b2αγ
2
1σ(α)
π

Π2
α1(ω)K2(ω)
Δσ0(ω)

,

2) γ1σ(α) ¼ �γ2σ(α), Nm ¼
X
σ

ð
dω

b2αγ
2
1σ(α)
π

Π2
α2(ω)K1(ω)
Δσ0(ω)

,

(53)

where

Δσ0 ¼ Π� 4Γ1Γ2

XN�p

α¼1

bαγ21σ(α)Πα1

XN
β¼N�pþ1

bβγ21σ(β)Πβ2

2
4

3
5
2

þ Γ2
XN
α¼1

bαγ21σ(α)Πα

" #2
, Π ¼

YN�p

v¼1

ωv

YN
v¼N�pþ1

ωv ¼ Π1Π2,

Πα ¼ Π=ωα, Πα1(2) ¼ Π1(2)=ωα, K1(2) ¼ (Γ1n1 þ Γ2n2)Π2
1(2) þ 2Γ1Γ2(Γ1n2 þ Γ2n1)

XN�p(N)

α¼1(N�pþ1)

bαγ21σ(α)Πα1(2)

2
4

3
5
2

:

(54)

It follows from the form of the equations in (53) and the defi-
nitions in (54) that in the case of tunnel coupling of a mole-
cule with the contacts and low temperatures, Γ1,2, T << Eα;
and the chief contribution to integrals in the right sides of
the equations lies in the vicinity of the transition energy of α,
ω = –Eα. Keeping this fact in mind, we copy the linear propa-
gators Lσ11,12 as follows:

Lσ
11(12) � Bσ

α11(12)=ωα þ
X

v:Ev=Eα

bvγ1σ(v)γ1(2)σ(v)

Ev � Eα
, (55)

where

Bσ
α11(12) ¼ bαγ1σ(α)γ1(2)σ(α)þ

X
β

bβγ1σ(β)γ1(2)σ(β):

Note that the presence of transitions in the system with iden-
tical energy was considered in the exposition of (55). As a
result, the summation in the multipliers Bσ

α11(12) proceeds
along the root vectors β, corresponding to the condition Eβ =
Eα. Substituting the expressions in (55) into the kinetic equa-
tion, we derive

Nm �
X
σ

ð
dω

b2αγ
2
1σ(α)
π

Γ1n1 þ Γ2n2

ω2
α þ (κσα)

2 , (56)

where

κσα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Γ2

1 þ Γ2
2)(B

σ
α11)

2 þ 2Γ1Γ2(Bσ
α12)

2
q

:

The solution of Eq. (56) is written as

Nm � b2αγ
2
1σ(α)
κσα

Γ

2
þ Γ1

π
arctg

Eα � eV=2
κσα

� ��

þΓ2

π
arctg

Eα � eV=2
κσα

� ��
:

(57)

Operating analogously, we find the equation for Νn,

Nn � b2αγ
2
1σ(α)
κσα

Γ

2
� Γ1

π
arctg

Eα � eV=2
κσα

� ��

�Γ2

π
arctg

Eα � eV=2
κσα

� ��
:

(58)

Here, the solutions of the system of kinetic equations must

satisfy the completeness condition, i.e.
P20
i¼1

Ni ¼ 1: As seen from

formulas (48) and (49), the total electron current is formed by
contributions from various transitions, J ¼P

α,β
Jαβ : In a mode

with tunnel coupling and low temperatures, the diagonal ele-
ments Jαα, as well as the non-diagonal elements Jαβ for which
Eα= Eβ, are determinative:

Jαα � 4eΓ1Γ2
b2αγ

4
1σ(α)

hκσα
arctg

Eα þ eV=2
κσα

� �
� arctg

Eα þ eV=2
κσα

� �� �
,

Jαβ � 4eΓ1Γ2Θ
σ
12(α)Θ

σ
12(β)

bαbβγ21σ(α)γ
2
1σ(β)

hκσα
arctg

Eα þ eV=2
κσα

� �
� arctg

Eα þ eV=2
κσα

� �� �
:

(59)
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The corresponding contributions to the differential conductivity, ∂J/∂V, are of the form

Gαα � 2G0Γ1Γ2b2αγ
4
1σ(α)

1

(Eα þ eV=2)2þ (κσα)
2 þ

1

(Eα � eV=2)2þ (κσα)
2

( )
,

Gαβ � 2G0Γ1Γ2Θ
σ
12(α)Θ

σ
12(β)bαbβγ

2
1σ(α)γ

2
1σ(β)

1

(Eα þ eV=2)2þ (κσα)
2 þ

1

(Eα � eV=2)2þ (κσα)
2

( )
,

(60)

where G0 = e2/h is the quantum of conductivity. It is clear
from formula (60) that the maximum values of these contri-
butions are achieved at eV = ±2Eα. In the case of symmetrical
transport mode (Γ1 = Γ2 =Γ/2), they are equal to

Gmax
αα

� G0
b2αγ

4
1σ(α)

(Bσ
α11)

2 þ (Bσ
α12)

2 1þ Γ2((Bσ
α11)

2 þ (Bσ
α12)

2)
4E2

α

" #
,

Gmax
αβ

� G0
Θσ

12(α)Θ
σ
12(β)bαbβγ

2
1σ(α)γ

2
1σ(β)

(Bσ
α11)

2 þ (Bσ
α12)

2 1þ Γ2((Bσ
α11)

2 þ (Bσ
α12)

2)
4E2

α

" #
:

(61)

Let us consider the example when only a small number of
transitions is realized in a system. Here, we will adhere to the
following relationship between the power parameters: t, td >>
A >> 1. In this manner, by changing the field on a gate, one
may control the type of the base state of the system: with an
electron or without an electron. In the calculations, all energy
values are measured in units of t. In particular, μ = 0. In addi-
tion, we will examine a symmetric connection of the system
with contacts. Consequently, this equality holds:

κσα ¼ Γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Bσ

α11)
2 þ (Bσ

α12)
2

q
=
ffiffiffi
2

p
:

We assume that a field of the gate is attached to the system
such that there is no electron for V = 0. Then, the singlet
state j1i is the base. Above this, with regard to energy, are
the degenerate one-electron levels, to which the wave func-
tions j19, 20i correspond. The triplet states of the dimer
j2i, j3i, j4i, when there is again no electron in the system,
follow. As a result, there are three transitions possible for
σ = ↑ and σ = ↓ between the successive pairs of states of the
system: (1, 19), (2, 19), (4, 20) and (1, 20), (2, 20), (3, 19),
respectively. As transitions for electrons with an opposite
projection of spin are equivalent in the absence of a mag-
netic field, we will hereafter analyze the kinetic equations
for transitions with σ = ↑. In addition, as the intensities of
the transitions are proportional to γ2iσ (α) (i = 1, 2) and, pro-
ceeding from (23), γ2i↑ (1, 19) = γ2i↑ (1, 20), and γ2i↑ (4, 20) = γ2i↑
(3, 19), we will assume that N3 =N4 and N19 =N20. For subse-
quent discussion, it is important that the energy of transitions
to the triplet states of the dimer be identical, E 2,19 = E4,20. At

the same time, γ2i↑ (4, 20) = 2γ2i↑ (2, 19). Then we derive

B"
(1,19)11 ¼ B"

(1,19)12 ¼ b(1,19)γ21"(1, 19),

as well as

B"
(2,19)11 ¼ B"

(4,20)11 ¼ �B"
(2,19)12 ¼ �B"

(4,20)12

¼ (b(2,19)þ 2b(4,20))γ21"(2, 19):

As a result, the kinetic equations (57) and (58) take the follow-
ing form:

Nm � b2αγ
2
1"(α)

2B"
α11

1 þ 1
π
arctg

Eα � eV=2

ΓB"
α11

 !
þ 1
π
arctg

Eα þ eV=2

ΓB"
α11

 !( )
,

(62)

Nn � b2αγ
2
1"(α)

2B"
α11

1� 1
π
arctg

Eα � eV=2

ΓB"
α11

 !
� 1
π
arctg

Eα þ eV=2

ΓB"
α11

 !( )
,

(63)

since ΓBα11 << 1, it follows from Eq. (62) and (63) that

1
π
arctg

Eα + eV=2

ΓB"
α11

 !
! 1

2
sign(Eα + eV=2):

In addition, the completeness condition results in the addi-
tional association Ν1 +N2 + 2N4 + 2N19 = 1.

Let us examine the solution of the system of the kinetic
equations for three cases: I) eV/2 < |E1,19| and E2,19 (weak
voltage); II) |E1,19| < Ev/2 < E2,19 (intermediate voltage); and
III) eV /2 > | E1,19 | and E2,19 (strong voltage). With weak voltage,
the solution of Eq. (62) and (63) gives N2 =N4=N19 = 0, i.e., it
follows from the completeness condition that only the singlet
state of the dimer, N1 = 1, is populated. In the intermediate
voltage mode, Eq. (62) written for α = (1, 19) results in the rela-
tionship N1 =N19. In turn, in the cases α = (2, 19) and α = (4, 20),
Eq. (63) has consequently N2 =0 and N4 = 0, respectively. As a
result, we derive N1 =N19 =N20 = 1/3. In the strong voltage
mode, we also derive the equality N1 =N19. Consequently,
b(2, 19) + 2b(4, 20) = 1. This makes it possible to write two equa-
tions: (N2 +N19)

2 – 2N2= 0 and (N4 +N19)
2 – N4= 0. The solution
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of these equations, taking into account the completeness con-
dition, gives

N2 ¼ 7
2
� 2

ffiffiffi
3

p
, N1 ¼ N19 ¼

ffiffiffiffiffiffiffiffiffi
2N2

p
�N2,

N3 ¼ N4 ¼ 1
2
�N19 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4N19

p
:

(64)

Figure 2(a) gives the dependence of the filling numbers of the
system states on the energy of the source-drain electric field.
The values Ni differ substantially in the three different regions
of eV: I, II and III. In particular, in field III, in accordance with
(64), an unequal population of triplet levels of the dimer is
observed (compare the dotted and the dot-dash curves).

Figure 2(b) presents the VAC for the same set of parameters.
The curve for the current has two jumps between areas I, II
and II, III respectively. Each of these steps provides a signal
regarding the inclusion in the transport of new, not previously
populated, states. This is clear from comparison of Fig. 2(a)
and 2(b). It follows from the formulas in (59) that the height of
the steps essentially depends on γ21σ (α). In particular, a consid-
erable difference of the heights of the jumps in Fig. 2(b) is
explained by the fact that γ2i ↑ (2, 19) and γ2i ↑ (4, 20) >> γ2i ↑ (1, 19).
We emphasize that the transitions between the various
excited system states are manifested in the transport charac-
teristics only when the nonequilibrium population of levels is
accounted for in the self-coordinated solution of the system
of kinetic equations. In the opposite situation, only steps cor-
responding to transitions from the base state are observed in
the VAC [see dotted curve in Fig. 2(b)].

If one conditionally assumes that γ2i↑ (4, 20) = γ2i↑ (2, 19),
then, the equality

ffiffiffiffiffiffiffiffiffi
2N2

p
–N2 ¼

ffiffiffiffiffiffiffiffiffi
2N4

p
–N4: follows from (63).

Using the completeness condition, it is possible to show that
the unique solution of the system of kinetic equations in that
case is N2 =N3 =N4 = 1/18 and N1 =N19 =N20 = 5/18. Hence, if
the source-drain voltage is sufficiently strong to activate
transitions of a dimer to the triplet states, then the population
of states with spin projection Sz = 0 and Sz = ±1 is not identical,
due to the difference of the intensities of the transitions.

It should be noted that when the transition of α is non-
degenerate on energy, then for eV > 2 | E α |, Eq. (62) and (63)
result in the equality Nn=Nm, since Bσα11 = bα γ

2
1σ (α). Consequently,

with the inclusion of a magnetic field at high voltages when
all possible transitions will be activated, the splitting of the
populations of triplet states of the dimer, which is similar to
the effect from creation of easy-axis magnetic anisotropy,
must disappear.18 Here, the size of the magnetic field cannot
be as small as desired, as the approximation setting of the
linear propagators in the form

Lσ
11(12) � bαγ1σ(α)γ1(2)σ(α)=ωα þ

X
v:Ev=Eα

bvγ1σ(v)γ1(2)σ(v)

Ev � Eα

is possible only if | Ev – Eα | >> Γ, T.
Hence, it follows from the presented results that in non-

equilibrium mode there is a possibility of managing the spin
states of a dimeric molecule without the application of an
external magnetic field.

6. CONCLUSION

Results for the solution to the problem of the effect of a
current flowing through a system on the state of a doping sub-
system are presented. Two doping magnetic ions act as such a
subsystem.The exchange interaction of anti-ferromagnetic
nature operates between the spin moments of these ions.

During current flow in the system, electrons interacting
with magnetic doping ions induce transitions to the excited
states of a spin dimer. The existence of such processes results
in a significant complication of describing electron transport

FIG. 2. Dependence of the filling numbers of the states of a dimer + electron
system (a) and current (b) on the energy of the electric field of the shift. Inset:
the jump of a current caused by activation of the transitions to one-electron
states of the system. Parameters: td = 1, ξd = 1.145, A = 0.3, I = 0.02.
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through the system under study. On the other hand, the exis-
tence of internal degrees of freedom makes it possible to
manage electron transport by means of acting on the doping
subsystem. This last aspect has important practical significance.

The reverse effect is also significant, when the flowing
current is capable of modifying the magnetic characteristics
of the doping subsystem. During operation on a specific
example, the change of population of the states of a spin
dimer due to transported electrons is analyzed. A special
feature of the effect is associated with the fact that such
change occurs in a zero magnetic field.

In order to describe the noted phenomenon in operation,
based on modern methods of research on nonequilibrium
processes, a theory of electron transport through a system
with arbitrary nonequivalence of energy levels of the system
caused by the presence of several interactions between its
internal degrees of freedom was developed.

The introduction of the atomic representation for the
Hamiltonian of the system based on Hubbard operators played
an active role in the solution of the noted problem. Such an
approach provided the possibility of an exact accounting for
all interactions in the system and in writing the corresponding
Hamiltonian in diagonal form. Here, only the tunneling opera-
tor acts as a perturbation.

The use of the nonequilibrium diagram technique for the
Hubbard operators in combination with the Keldysh technique
made it possible to derive a general expression for the current,
and also the kinetic equations for the case when the left and
right contacts are connected in a tunnel manner with different
sites of the system. As the Green functions that were found
taking into account the processes of repeated dispersion of
electrons were used, the derived system of kinetic equations is
suitable for describing the case of a strong renormalization of
the filling numbers as a consequence of the interaction of trans-
ported particles with the internal spin degrees of freedom of
the system. This made it possible to describe the effect of split-
ting the triplet states of the spin dimer in a zero magnetic field.
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