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ABSTRACT

We study the behavior of resonant modes under variation of the distance between two coaxial dielectric disks and show an avoided crossing
of resonances because of the interaction between the disks. Owing to coaxial arrangement of disks, the resonant modes are specified by the
azimuthal index m ¼ 0, 1, 2, . . .. In the present paper, we consider the case m ¼ 0. At a long enough distance, the modes are symmetric
and antisymmetric hybridizations of the resonant modes of the isolated disk. With decreasing the distance, the interaction becomes stronger,
giving rise to avoided crossings of different resonances of the isolated disk. This in turn enhances the Q factor of the two disks by one order
in magnitude compared to the Q factor of the isolated disk.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5094188

I. INTRODUCTION

Optical microcavities and various other sorts of resonators
have been widely employed to tightly localize electromagnetic field
in small volumes for a long duration due to high Q factors, which
plays an indispensable role in lasing, sensing, filtering, and many
other applications in both the linear and nonlinear regimes. In
general, there is a compromise between high Q factors and small
mode volumes due to the fact that larger resonators are required to
increase the round-trip travel time for Q factor enhancement, as is
the case for whispering gallery modes.1,2

It is rather challenging for optical resonators to support reso-
nances of simultaneous subwavelength mode volumes and high Q
factors. The traditional way for increasing the Q factor of optical
cavities is suppression of leakage of a resonance mode into the
radiation continua. This is usually achieved by decreasing the cou-
pling of the resonant mode with the continua. However, microcav-
ities and resonators based on reflection from their boundaries
demonstrate low values of the Q factor by virtue of weakness of the
dielectric contrast of optical materials. The conventional ways to
realize high Q resonators are the use of metals, photonic bandgap
structures, or whispering gallery mode resonators. All of these
approaches lead to reduced device efficiencies because of complex
designs, inevitable metallic losses, or large cavity sizes. On the

contrary, all-dielectric subwavelength nanoparticles have recently
been suggested as an important pathway to enhance capabilities of
traditional nanoscale resonators by exploiting the multipolar Mie
resonances being limited only by radiation losses.3,4

The decisive breakthrough came from the paper by Friedrich
and Wintgen,5 which put forward the idea of destructive interfer-
ence of two neighboring resonant modes leaking into the contin-
uum. Based on a simple generic two-level model, they formulated
the condition for a bound state in the continuum (BIC) as the
state with zero resonant width at crossing of two eigenfrequencies
of the cavity. This principle was later explored in an open plane
wave resonator where the BIC occurs with degeneracy of resonant
frequencies.6

However, these BICs exist provided that they embedded into a
single continuum of propagating modes of a directional waveguide.
In photonics, the optical BICs embedded into the radiation contin-
uum can be realized in two ways. The first way is the use of an
optical cavity coupled with the continuum of a 2D photonic crystal
(PhC) waveguide7 that is an optical analog of the microwave system.6

A more perspective way is to achieve BICs in periodic PhC systems
or arrays of dielectric particles in which resonant modes leak into a
restricted number of diffraction continua.8–12 Although the exact
BICs can exist only in infinite periodical arrays,13,14 the finite arrays
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demonstrate resonant modes with a very high Q factor, which grows
quadratically with the number of particles15 (quasi-BICs).

Another attractive way to achieve quasi-BICs (supercavity
modes) is to use individual subwavelength high-index dielectric res-
onators, which also exhibit high Q factors.4,16–18 Such super cavity
modes originate from avoided crossing of the resonant modes,
specifically the Mie-type resonant mode and the Fabry–Pérot reso-
nant mode under variation of the aspect ratio of the dielectric disk.
As a result, a significant enhancement of the Q factor is reported.
It is worth noticing that the idea of formation of long-lived, scarlike
modes near avoided crossings in optical deformed microcavities
was first put forward by Wiersig.19 The dramatic Q factor enhance-
ment was predicted by Boriskina20,21 at an avoided crossing of
highly excited whispering gallery modes in symmetrical photonic
molecules of dielectric cylinders.

In the present paper, we consider a similar way to enhance the
Q factor by variation of the distance between two identical coaxial
dielectric disks. In contrast to Refs. 19–23, we consider the avoided
crossing of low excited resonant modes (monopole and dipole).
When the disks are separated by a long distance, we have pairs of
almost degenerate resonant modes. With the decrease of the dis-
tance, the resonant modes interfere giving rise to avoided crossings.
We show that this effect is complemented with a spiral behavior of
the resonant eigenfrequencies when the interaction between the
disks is weak. With a further decrease of the distance, the interac-
tion is increasing to give rise to a strong repulsion of the reso-
nances. In this phenomenon, one of the resonant eigenfrequencies
can closely approach to the real axis acquiring the Q factor much
higher than that of the isolated disk.

II. AVOIDED CROSSING IN THE SYSTEM OF TWO
COAXIAL DISKS

There are two limiting cases of the system of coaxial dielectric
disks, the infinite periodic array of disks and the isolated disk.
The former supports numerous BICs: symmetry protected BICs in
the Γ-point, accidental BICs with a nonzero Bloch vector, and
hybrid BICs with nonzero orbital angular momentum.24 The sym-
metry protected BICs were experimentally observed in the system
of ceramic disks in the THz range.15 The case of the isolated disk
was considered in papers,4,16 which have shown considerable
enhancement of the Q factor due to an avoided crossing of two res-
onant modes. In these papers, the avoided crossing was achieved
through variation of the aspect ratio of the disk, which technologi-
cally is not simple. In the present section, we consider two identical
coaxial disks as sketched in Fig. 1 with the aspect ratio not obliga-
tory tuned to the optimal Q factor as in Refs. 16 and 18.
The coaxial disks have the advantage that all resonant modes are
classified by the azimuthal number m ¼ 0, 1, 2, . . . because of the
axial symmetry. Therefore, one can consider subspaces with
definite m separately. In the present paper, we consider the case
m ¼ 0 in which the solutions are separated by polarization with
Hz ¼ 0 (E modes) and Ez ¼ 0 (H modes). In what follows, we
consider the H-modes.

In general, the resonant modes and their eigenfrequencies
are found by solving the time-harmonic source-free Maxwell

equations,25,26

0 i
ϵ∇��i∇� 0

� �
En

Hn

� �
¼ kn

En

Hn

� �
, (1)

where En and Hn are the EM field components defined in Ref. 26
as quasinormal modes, which are also known as resonant
states27,28 or leaky modes.29 It is important that they can be nor-
malized and the orthogonality relation can be fulfilled by the use
of perfectly matched layers (PMLs).26 With the exception of sym-
metrical particles, cylinders, spheres, etc., Eq. (1) can be solved
only numerically, in particular, by COMSOL Multiphysics.
Irrespective of the choice of the dielectric particle, the eigenfre-
quencies are complex, kna ¼ ωn þ iγn, where a is the disk radius.
In what follows, the light velocity is taken as a unit. Figure 2
shows resonant frequencies of the isolated disk complemented
with their mode profiles (only Ef is shown). There are modes
with nodal surfaces crossing the z axis and the modes with nodal
surfaces crossing the plane z ¼ 0. They are the Fabry–Perót reso-
nant modes and the radial Mie modes introduced in Ref. 16,
correspondingly.

Figure 3 shows the solutions of Eq. (1) for two coaxial dielectric
disks with variation of the distance L between the disks. The

FIG. 2. The resonant eigenfrequencies (closed circles) and the corresponding
resonant modes (the component Ef) of the dielectric disk with the height h ¼ a
and permittivity ϵ ¼ 40.

FIG. 1. Two coaxial dielectric disks separated by distance L measured between
the centers of disks.
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necessity to use PMLs restricts the distance between the disks, which
is to be considerably less than the distance between the PMLs in the
z-direction. In spite of an illusive complexity in Fig. 3(a), the zoomed
pictures reveal remarkably simple behavior of resonant frequencies in
the form of a spiral convergence of avoided eigenfrequencies to the

resonant frequencies of the isolated disks marked by closed
circles as demonstrated in Figs. 3(b), 3(d), and 3(f ) in zoomed
plots. However, when the disks are close enough to each other,
the spiraling behavior is replaced by a strong repulsion of the
complex eigenfrequencies because of stronger coupling between
the disks.Figures 3(e) and 3(g) show the oscillating behavior of
the Q factors, while Fig. 3(c) demonstrates a rapid decline of the
Q factor with the distance between disks. The Q factor was calcu-
lated as the ratio of real part and imaginary parts of the resonant
eigenfrequency: Q ¼ Re(ka)=2Im(ka). The aforementioned differ-
ence in dependencies of the Q factor vs the distance between the
disks is directly related to the radiation patterns of resonant
modes shown in Fig. 2. The radiation from one disk scatters from
the other resulting in a coupling between the disks. The general
expression for the coupling between dielectric resonators was
considered in Refs. 30–32,

κ ¼
ð
d3 x![ϵ( r!)� 1] E

!*

1 E
!

2, (2)

where E
!

1,2 are the PML-normalized solutions for the separated
disks.26 One can see that the coupling is determined by overlap-
ping of the resonant modes, which in turn depends on the dis-
tance between the particles. Moreover, the overlapping also
depends on the number of wavelengths stacked over the z axis in
the radiation modes shown in Fig. 2.

In order to quantitatively evaluate this interaction, we consider
an isolated disk for which the matrix of derivatives in Eq. (1)
becomes diagonal with the complex eigenfrequencies kn in the
eigenbasis presented in Fig. 2. It is reasonable to consider that for a
large distance between the disks, the matrix is still diagonal with
pairs of degenerate kn shown in Fig. 3 by blue closed circles.
Rigorously speaking for the large distance between the disks
L � a=γn, the interaction via the resonant modes can grow expo-
nentially.26 In view of that, we restrict the distance L , a=γn.
As the distance between the disks is reduced, the interaction
between the disks via the resonant modes splits the degenerate
eigenfrequencies kn giving rise to the avoided crossing. Assume
also that the value of splitting is much less than the distance
between the different kn. These assumptions are justified numeri-
cally as shown in the insets to Fig. 3, however, only for certain
domains of the eigenfrequency k around the resonances of
the isolated disk where the spiral behavior takes place. In the
framework of these assumptions, we can use a two-mode
approximation for the Hamiltonian matrix in Eq. (1) for each
resonance kn,

18,19,26

H(n)
eff ¼ H(0)

eff þ V ¼ kna 0
0 kna

� �
þ un vn

vn un

� �
, (3)

where vn is responsible for the interaction between the disks via the
resonant modes, while un is the result of the backscattering.
Therefore, one can expect that arg (vn) ¼ ωnL=a, arg (un) ¼ 2ωnL=a.
Figure 4 shows the behavior of both the absolute value and phase
of the matrix elements. The matrix elements vn and un can be
easily found from numerically calculated resonances shown in

FIG. 3. (a) Behavior of resonant eigenfrequencies under variation of the dis-
tance between the disks L with the same parameters as in Fig. 2. (b), (d), and
(f ) Zoomed areas highlighted in (a) with symmetric (solid lines) and antisymmet-
ric (dash lines) hybridization (6) of resonant modes of the isolated disk. (c), (e),
and (g) show behavior of the Q factor vs the distance for corresponding insets
at the left. Closed blue circles mark the eigenfrequencies of isolated disks and,
respectively, the Q factors, while crosses mark the limiting case L ¼ h when
two disks stick together.
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Figs. 3(b) and 3(d),

k(n)a,s a ¼ knaþ un + vn, (4)

as vn ¼ k(n)s �k(n)a
2 , un ¼ k(n)s þk(n)a

2 � kn. As a result, we obtain (3)

vn � e�iknL

L2
, un � e�2iknL

L4
: (5)

The scaling law against the distance (5) is observed with good
accuracy for all resonances shown in Fig. 3, however, for only

regimes of spiral convergence of the resonances. The numerically
calculated behavior of the matrix elements vn and un for n ¼ 2 is
shown in Fig. 4. In spiralling around the resonances of the isolated
disk, the hybridized resonant eigenmode is given by symmetric
and antisymmetric combinations of the resonant modes of the iso-
lated disk,

ψ s,a( r
!) � ψn r!? � 1

2
L z!

� �
+ ψn r!? þ 1

2
L z!

� �
, (6)

where r!? ¼ r, f, z! is the unit vector along the z axis and
ψn( r

!?) is the corresponding resonant mode of the isolated disk
shown in the insets of Fig. 2.

FIG. 4. Dependence of the matrix elements vn and un on the distance between
disks L. (a) and (b) were evaluated according to Fig. 3(b), while (c) and (d)
were evaluated according to Fig. 6(b).

FIG. 6. (a) Behavior of resonant eigenfrequencies under variation of the dis-
tance between the disks L with ϵ ¼ 40 (ceramics in the terahertz range) and
the aspect ratio a=h ¼ 0:7. (b) and (d) Zoomed areas highlighted in (a) with
symmetric (solid lines) and antisymmetric (dashed lines) hybridization (6) of res-
onant modes of the isolated disk. (c) and (e) show behavior of the Q factor vs
the distance for corresponding insets at the left. Closed circles mark the eigen-
frequencies of isolated disks and, respectively, the Q factors, while crosses
mark the limiting case L ¼ 1 when two disks stick together.FIG. 5. Dependence of the coupling jvnj on the distance between disks L.
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In Fig. 5, we show the dependence of the coupling constant vn
on the distance calculated in the two-level approximation. One can
see that the higher the Fabry–Perót resonance with indices 1 or 3, 2
or 4, 5 according to Fig. 2, the weaker the coupling shown in Fig. 5,
and, respectively, the more spiral evolution of resonances as indeed
Figs. 3(b), 3(d), and 3(f ) evident. In order to better distinguish the
true couplings between the disks, we absorb the contribution
e�iknL=L2 onto the vn in accordance with Eq. (5). Figure 5 shows
that these couplings through mode 1 are so large that the resonances
k(1)a,s quickly avoid each other, while for other resonances k(n)a,s , n . 1,
the coupling is sufficiently weak to show an avoided crossing in the

form of spiral evolution. Respectively, we observe different dependen-
cies of the Q factors presented in Figs. 3(c), 3(e), and 3(g).

At first, the resonant frequencies go away from the limiting
point given by kn. Respectively, the Q factor in Fig. 3(c) demon-
strates oscillating behavior exceeding the Q factor of the isolated
disk several times. As the disks approach one another, the spiral
behavior of the pair of resonances k(n)s,a is replaced by strong repul-
sion as shown in Fig. 3(a). Figure 3(d) shows a remarkable feature
caused by the avoided crossing of resonances with different n.
To be specific, there is an avoided crossing of symmetric resonances
k(2)s and k(5)s according to notations in Fig. 2. Because of the same
symmetry of the resonances relative to z ! �z, they undergo the
typical avoided crossing with a considerable decrease of the imagi-
nary part of the resonant frequency and enhancement of the Q
factor by one order in magnitude. Respectively, the two-mode
approximation (3) breaks down.

It is interesting to trace the behavior of the resonances and Q
factors for the aspect ratio a=h � 0:7 and ϵ ¼ 40 for which the iso-
lated disk shows the maximal Q factor.4,16 The results are presented
in Fig. 6. One can see that with decrease of the distance between
the disks, we have the same spiralling behavior of the hybridized
resonances around the resonances of the isolated disks, which is
terminated by strong repulsion of the symmetric and antisymmetric
resonances for L ! h. However, we have no pronounced effect of
the avoided crossing of hybridized resonances with different n and,
respectively, have no enhancement of the Q factor by one order as
it was achieved for the aspect ratio a=h ¼ 1 [see Fig. 6(e)].

Until now, we considered the permittivity ϵ ¼ 40 and
a ¼ 1 cm (ceramic disks) that corresponds to the resonant frequen-
cies into the terahertz range. Finally, we consider ϵ ¼ 12 (silicon
disks) and a ¼ h ¼ 1μ with the resonant frequencies in the optical
range. The results of computations are presented in Fig. 7, which
shows that there is no qualitative difference between the ceramic
disks and silicon disks. Similar to Figs. 3 and 6, we observe spiral
behavior of the resonant eigenfrequencies for enough distance
between the disks. However, what is more remarkable that we also
observe the avoided crossing of the resonances with different n as
shown in Fig. 7(d) with corresponding strong enhancement of the
Q factor by one order in magnitude [Fig. 7(e)].

III. CONCLUSIONS

The recipe to enhance the Q factor by means of the avoided
crossing of resonances is well known. Friedrich and Wintgen5 were
the first who investigated the quantitative influence of the interfer-
ence of resonances on their positions and widths. Moreover, in the
framework of two-level effective Hamiltonian, they found out that
one of the widths can turn to zero to identify a BIC. A single iso-
lated dielectric particle of finite dimensions cannot trap light13

because of the infinite number of radiation continua or diffraction
channels.12 However, with a sufficiently large refractive index, the
particle shows distinctive Mie resonances with the Q factors, which
can be substantially enhanced owing to the avoided crossing of the
resonances under variation of the aspect ratio.18,33 Technologically,
it might be challenging to vary the size of the disk in the optical
range. In the present paper, we propose to vary the distance
between two coaxial disks that is preferable from the experimental

FIG. 7. (a) Behavior of resonant eigenfrequencies under variation of the dis-
tance between the disks L with ϵ ¼ 12 (silica in the optical range) and the
aspect ratio a=h ¼ 1. (b) and (d) Zoomed areas highlighted in (a) with symmet-
ric (solid lines) and antisymmetric (dashed lines) hybridization (6) of resonant
modes of the isolated disk. (c) and (e) show behavior of the Q factor vs the dis-
tance for corresponding insets at the left. Closed circles mark the eigenfrequen-
cies of isolated disks and, respectively, the Q factors, while crosses mark the
limiting case L ¼ 1 when two disks stick together.
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viewpoint. Continuous variation of the distance gives rise to an
avoided crossing of the Mie resonances due to the interaction
between the disks through radiating resonant modes.

If there is enough distance, we can assume that two disks have
almost degenerate resonances kn. However, as the distance is
decreased, the disks weakly couple with each other via the leaky
resonant modes. This lifts a degeneracy of the resonances according
to Eq. (4) and results in symmetric and antisymmetric hybridiza-
tions of resonant modes k(n)s,a according to Eq. (6). As a result, we
observe a spiral avoided crossing of the resonances around the
points kn. A further decrease of the distance between the disks
enhances the interaction and, respectively, gives rise to strong
repulsion of k(n)s and k(n)a . However, what is most remarkable is that
there are avoided crossings of the resonances with different n.
Respectively, one can observe strong enhancement of the Q factor
around one order in magnitude.

Although in the present paper we only considered dielectric
disks, it is clear that the phenomenon of the avoided crossing and
respective enhancement of the Q factor would occur with particles
of arbitrary shape when the distance between them is varied. The
case of two coaxial disks simplifies computations because the solu-
tions with different angular momentum m are independent. In the
present paper, we have presented only the case m ¼ 0 because of a
possibility to consider E-modes and H-modes separately.
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