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Abstract
Bound states in the continuum (BICs) or embedded trapped modes are widely studied in
different physical systems. The studies are restricted to a single open scattering channel. In the
present paper we consider BICs embedded into several continua in a cylindrical resonator
opened by two coaxially attached cylindrical waveguides with different radii. We demonstrate
that engineering the BICs requires a degeneracy of three eigenmodeds of the closed resonator.
That is achieved by variation of both the length and the radius of the resonator.
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1. Introduction

Bound states in the continuum (BICs), also known in the field
of acoustics as embedded trapped modes, are solutions loca-
lized despite of the fact that they coexist with the continuous
spectrum of propagating waves. This concept was originally
proposed by von Neumann and Wigner [1] in 1929, in the
context of quantum mechanics, and has recently become a
topic of interest in optics and acoustics [2] because of the
possibility to significantly increase the quality factor of the
resonators due to complete [3, 4] or partial [5] destructive
interference of modes leaking from the resonator.

One of the first researchers who pointed out the possi-
bility of the existence of localized solutions with discrete
frequencies embedded into the continuum (BICs) was Parker.
He showcased BICs in the air stream holding a row of parallel
plates and demonstrated that they may cause destruction of
periodic mechanical structures [6, 7]. Evans and Porter first
provided convincing numerical evidence for BICs of both
Neumann and Dirichlet types in the case of a rigid circular
cylinder placed on the center-plane between parallel walls
[8, 9]. Linton and McIver [10] proved the existence of an
infinite number of trapped modes for the case of cylindrical
waveguide containing an axisymmetric obstacle, in particular
a thin circular sleeve.

Specific geometric configurations of the systems were
chosen in the majority of studies on this subject which made it

possible to reduce their effective dimensionality usually to
two [11, 12]. A different class is the fully three-dimensional
systems. For example, in the case of non-axisymmetric
obstacle inside the cylindrical waveguide, Hein and Coch [13]
numerically computed acoustic resonances and BICs having
solved the eigenvalue problem. BICs with orbital angular
momentum were shown to occur in the cylindrical resonator
opened by coaxial [14] and non-coaxial [15] attachment of
cylindrical waveguides of a lesser radius.

In the cylindrical waveguides the propagating modes are
classified by two indices p (azimuthal, OAM) and q (radial)
(see table 1) while eigenmodes of the closed cylindrical reso-
nator are specified by three indices mnl, azimutal (OAM),
radial and longitudial, respectively. In the wake of Friedrich–
Wintgen approach [3] the majority of papers consider the BICs
embedded into a single continuum. However, in the wave-
guides as soon as the frequency exceeds the cut-off of the
propagating modes with p=±1, q=1 the number of con-
tinua increases. In order to obtain a BIC it is necessary for the
solution of Helmholtz equation to have zero coupling with all
propagating channels. For the first time the problem of the BIC
residing in a finite number of continua was considered by
Pavlov-Verevkin et al [16] in the framework of the phenom-
enological Weisskopf–Wigner model. The rigorous statement
on the BICs was formulated as follows. The interference
among N degenerate states which decay into K non-interacting
continua generally leads to the formation of N−K BICs. The
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equivalent point of view [4, 17] is that the linear superposition
of the N degenerate eigenstates yå = an

N
n n1 can be adjusted to

have zero coupling with K different continua in N−K ways
by variation of the N superposition coefficients an. Respec-
tively, these coefficients an define an expansion of the BIC
over the eigenstates of the closed resonator. The aim of present
paper is to demonstrate the existence of BICs embedded into
several continua of propagation bands of cylindrical wave-
guides in accordance to table 1. The considered system is
schematically depicted in figure 1.

2. Acoustic coupled mode theory

For readers’ convenience in this section we review the
acoustic coupled mode theory [18] which allows to easily
find BICs as eigenmodes of the effective non-hermitian
Hamiltonian with real eigenvalues, i.e. with zero line width.
It is important that all quantities are dimensionless. The
resonator parameters are measured in terms of waveguides
radius rw, and the dimensionless frequency is expressed in
terms of the dimensional one as follows: w w= r sw˜ , where
rw is the radius of waveguides and s—the sound velocity.
The propagating modes in the waveguides have the fol-
lowing form:
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where ρ and α are the polar coordinates in the reference
frame of the waveguides and μpq are the roots of equation

m r¢ r=Jp pq 0( )∣ implied by the Neumann boundary conditions
on the waveguides hard walls.

The solutions inside the closed resonator are:
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where r and f are the polar coordinates in the reference frame
of the resonator and μmn are the roots of equation

m¢ =J r R 0m mn( ) . The corresponding eigenfrequencies are:

w
m p

= +
-

R

l

L

1
. 3mnl

mn2
2

2

2 2

2

( ) ( )
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

The effective non-Hermitian Hamiltonian has the fol-
lowing form [15, 18]
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where HB is the Hamiltonian of the closed resonator and the
coupling matrices of the resonator eigenmodes with the pro-
pagating modes are determined by the overlapping integrals:
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where C=L, R enumerates the waveguides.
Complex eigenvalues z of Heff have simple physical

meaning: their real parts define positions of resonances with a
width defined by corresponding imagine part [19]

y f y f=H r z z r z, , , , . 6r r reff ( ) ( ) ( )

In order to find a BIC one has to find those eigenvalues of Heff

which have zero imaginary part, i.e. resonances with zero

Table 1. Cut-off frequencies and corresponding indices and profiles
of propagating modes in the cylindrical waveguide.

Channel Frequency Indices Mode profile

1 0 p=0, q=1

2, 3 1.8412 p=±1, q=1

4, 5 3.0542 p=±2, q=1

6 3.8317 p=0, q=2

7, 8 4.2012 p=±3, q=1

Figure 1. Cylindrical resonator of radius R and length L with two
coaxially attached waveguides of the unit radius.
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width. The eigenvector of Heff corresponding to such eigen-
value is the BIC.

Therefore one has to solve the fix-point equations [15, 20]

w w w= =z L R z L RRe , , , Im , , 0, 7c c c c c c c( ( )) ( ( )) ( )

for two varying parameters of the resonator, its length L and
radius R. After the fix-point equations are solved we can
determine the eigenmodes of the effective Hamiltonian with
real eigenvalues [4, 15]. Numerically these fix-point equations
were solved by method of successive approximations.

3. BICs embedded into the continua p=0, q=1 and
p=±1, q=1

BICs embedded into the propagation band of the first channel
p=0, q=1 of the coaxial waveguide for ω<μ11 were
considered in previous papers [14, 15, 21]. Now assume
μ11<ω<μ21. Then the waveguides support three propa-
gating modes with indices p=0, q=1 and p=±1, q=1
depicted in table 1. For the BIC to occur it is necessary for its
overlapping with these propagating modes to vanish. Firstly, it
is obvious that any eigenmode with >m 1∣ ∣ is orthogonal to
these propagating modes so it is a symmetry protected BIC.
More interesting are the BICs occurring due to full destructive
interference by Friedrich–Wintgen mechanism [3] which are
embedded into the continua p=0, q=1 and p=±1, q=1.

Here we use more evident explanation of BICs realiza-
tion based on linear superposition of degenerate eigenmodes
[4]. We start with the BICs superposed of the eigenmodes
with m=0 but with different radial indices n. Then by the
symmetry arguments all these eigenmodes have zero coupling
with the continua p=±1, q=1. Therefore one can form a
BIC superposed of

y y y= + ¢ ¢ ¢ ¢a anl nl n l n lBIC 0 0 0 0

to give rise to the following condition for the BIC

+ =¢ ¢ ¢ ¢a W a W 0, 8nl nl n l n l0 0 ;01 0 0 ;01 ( )

where the coupling matrix elements are given by (5). Theo-
retically it is easy to reach a degeneracy of the eigenmodes
y nl0 and y ¢ ¢n l0 by variation of the resonator’s radius R.
However it is not easy to vary the radius experimentally. It is
much easier to vary the length of the resonator by use of
piston-like hollow-stem waveguides tightly fitted to the
interior boundaries of a cylindric resonator [14]. Figure 2
shows typical wave function of such BIC superposed of the
eigenmodes ψ032 and ψ014 with coefficients shown in figure 3.
Open circles indicate the areas of waveguides connection. It is
clear that the BIC is orthogonal to the waveguide modes with
the indices p=±1, q=1 propagating in the second and
third channels. Vanishing of the coupling coefficient with the
first scattering channel with indices p=0, q=1 is ensured
by the complete destructive interference of the resonator
eigenstates with the indices m=0, n=3, l=2 and m=0,
n=1, l=4 as depicted in figure 3.

Another way is to superpose the eigenmodes with the
indicesm=±1, n=3, l=2 and m=±1, n=2, l=4. At the

point of degeneracy of the eigenfrequencies ω132(L) and ω124(L)

y y y= +a a .BIC 132 132 124 124

This BIC has zero coupling with the first channels p=0, q=1
and p=−1, q=1 by the symmetry arguments while zero
coupling with the channel p=1, q=1 can be achieved by
variation of the resonator’s length to have

+ =a W a W 0. 9132 132;11 124 124;11 ( )

The BIC projection onto the boundary of the closed resonator is
shown in figure 4 with coefficients shown in figure 5.

As in the case of a single open channel, BICs can be
detected in the transmittance spectrum as collapsing Fano
resonances [4, 22], i.e. points in which the zero and unit
transmittance coincide. However, the picture essentially
depends on which wave is injected as shown on figures 6 and 7.
If a wave is injected in the first channel with indices p=0,
q=1 only those BICs are accompanied by collapses of the
Fano resonance which are results of the Friedrich–Wintgen
destructive interference [3]. For example the BIC shown in
figure 2 is depicted in figure 6 by the white circle. On the
contrary, if the wave with indices p=1, q=1 is injected the
aforementioned BICs can not be seen in the transmittance.

Figure 2. Wave function of BIC withdrawn on the surface of the
cylindrical resonator at ω2=6.3878, L=3.729, R=3.

Figure 3. Expansion coefficients amnl∣ ∣ formed the BIC depicted in
figure 2.
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Next, let us consider the frequency range μ02<ω<μ31
where the waveguides support six open channels according to
table 1. We consider the BICs superposed of the eigenmodes with
m=0 but with different radial quantum numbers n. Then for
symmetry reasons all these eigenmodes have zero coupling with

four continua p=±1, q=1 and p=±2, q=1. In order the
BIC to have zero coupling with the remaining open channels with
p=0, q=1 and p=0, q=2 it is necessary to superpose three
eigenmodes with the correspondence to the requirements of
threefold degeneracy [16, 17]. As could be seen from (3), twofold
degeneracy is easily achieved by variation of one parameter of the
system, for example the resonator length [14]. Respectively, the
threefold degeneracy requires variation of two parameters—bot
the resonator length and radius. The point of threefold degeneracy
is shown by the white circle on the figure 10.

Therefore the condition for the BIC embedded into
two continua with p=0, q=1 and p=0, q=2 can be
written as

+ + =a W a W a W 0, 10019 019;01 047 047;01 055 055;01 ( )
+ + =b W a W a W 0. 11019 019;02 047 047;02 055 055;02 ( )

Obviously this system of linear equations can be easily solved
to provide zero coupling of this BIC with two continua.

Figure 5. Expansion coefficients amnl∣ ∣ forming the BIC depicted in
figure 4.

Figure 6. The transmittance versus frequency and resonator length in
case of the wave with indices p=0, q=1 is supplied by the
generator. White circle represents the BIC depicted in figure 2.

Figure 7. The transmittance versus frequency and resonator length in
case of the wave with indices p=1, q=1 is supplied by the
generator. White circle represents the BIC depicted in figure 4.

Figure 4.Wave functions of BIC at ω2=8.7777, L=3.9763, R=3.

Figure 8. Wave function of BIC at ω2=19.327, L=5.7172, R=3.5.
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The mode shape of BIC on the surface of the cylindrical
resonator with the corresponding coefficients is shown in
figure 8 with expansion coefficients shown in figure 9.
Although many channels are open the BICs can still be
diagnosed in the transmittance through collapses of Fano
resonances as seen from figure 10.

4. Conclusion

We considered BICs embedded into several continua in the
system composed of a cylindrical acoustic resonator with two
coaxially attached waveguides of a lesser radius for variation
of the resonator scales (length and radius). Due to the axial
symmetry of the waveguide the BICs are classified by the

OAM. In particular the BICs with zero OAM m=0 are
orthogonal to propagating modes of the attached waveguides
with non-zero OAM ¹p 0. Then these BICs can be tuned to
have zero coupling with the continuum with zero OAM p=0
by variation of the resonator length via the Friedrich–Wintgen
mechanism of full destructive interference of two resonances.
However if two channels p=0, q=1 and p=0, q=2
with zero OAM are opened, the accidental BICs can occur
due to full destructive interference of three resonances. These
BICs are located at the point of threefold degeneracy of
eigenmodes in correspondence with the papers [16, 17]. Such
a degeneracy can be achieved by simultaneous variation of
two parameters—the resonator length and radius.

Despite that there are fewer possible applications for the
acoustical BICs than, for example, the optical ones, the
physical mechanisms underlying this phenomenon are generic
for all areas of physics, as was shown by Friedrich and
Wintgen [3]. Therefore, the investigation of BICs embedded
into several continua makes it possible to expand the scope of
experimental study of this phenomenon, including a possi-
bility to extend the frequency range of BICs.
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