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Abstract
Magnetic characteristics and their spatial distribution ofmagnetron sputtered nanocrystallineNiFe
thinfilms of various compositions were investigated by ferromagnetic resonance (FMR) and
magneto-optical Kerr effectmicroscopy. A sharp increase in the FMR linewidth and a strong deviation
of the uniaxialmagnetic anisotropyfieldwere observed near thefilm edges. It was shown that the
observedmagnetic anisotropy behavior can be explained by assuming that besides the field-induced
uniaxialmagnetic anisotropy an additional source of the uniaxial anisotropy near thefilm edges exists,
with the easy axis parallel to the edges. The possible origins of this additional contributionwere
discussed.

1. Introduction

Nanocrystallinemagnetic thin films have gained a lot of attention over the last decades. This interest ismainly
stimulated by the rapidly growing technological demand formagneticmaterials with highmagnetic
susceptibility [1–3]. The excellentmagnetic softness of nanocrystallinemagnetic thin films stems from their
microstructure.When the sizes of randomly oriented crystallites are smaller than the exchange length of the
material the exchange energy starts dominating over themagnetocrystalline anisotropy energy. The local
magnetocrystalline anisotropies are averaged out resulting in the very low coercivity [4] and the highmagnetic
susceptibility of thefilm [5, 6]. It is worth noting that these films demonstrate high susceptibility in awide range
from static tomicrowavemagnetic fields, with the upper limit determined by the ferromagnetic resonance
(FMR) frequency [2]. However, there is a number of factors that can lead to the formation of spatial variations of
magnetic characteristics over the film area. Dispersion of themagnetic anisotropy,magnetization saturation,
and othermagnetic characteristics reduce themagnetic susceptibility [7, 8] and enhance themagnetic noise in a
film. It was found that themagnetic noise caused by the spatial dispersion of themagnetic characteristics is the
key factor that limits the sensitivity of themagnetic field sensors based on a thinmagnetic film [9–11]. Usually,
during deposition of thinmagnetic films an externalmagnetic field is applied in thefilm plane. Under the
influence of this field the uniaxialmagnetic anisotropy is induced,mainly through themechanismof atomic pair
ordering for FeNi alloy films. Thefield ‘smooths’nonuniformities of themagneticmicrostructure, thereby
reducing the dispersion of the filmmagnetic characteristics. However, edges of a filmdisturb its continuality and
naturally lead to the nonuniformity of themagnetic characteristics in the vicinity of thefilm boundaries. These
edge effects can have different origins. Tominimize themagnetostatic energymagneticmoments near film edges
may rearrange to spatially nonuniform configurations [12–14]. Afilmmagnetized perpendicular to an edge and
exited by a high-frequencymagnetic field exhibits the localized ‘edgemodes’ of themagnetization oscillations
caused by the nonuniformity of an effective internalmagnetic field at thefilm edges [15]. The symmetry
breaking at the film edges leads to the formation ofmechanical stresses gradients [16, 17] that through
magnetostriction affectmagnetic properties of the film [18, 19]. Thefilm growth conditions near edges often
differ from those in the central part [20–22], whichmay result in a non-uniformmicrostructure.
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In this study, we experimentally investigated in detail the spatial variations in themagnetic properties of thin
NiFefilms of various compositions produced bymagnetron sputtering with a focus on their edges.We found the
sharp broadening of FMR linewidth and significant deviation of the uniaxialmagnetic anisotropy parameters at
thefilm edges compared to the central part. The possible reasons of the observed effects are discussed.

2. Experimental details

The investigated nanocrystallinemagnetic thin filmswere produced byDCmagnetron sputtering fromhigh
purity (99.95%) targets of theNi60Fe40, Ni70Fe30, Ni75Fe25, Ni80Fe20, andNi85Fe15 chemical compositions. The
targets were discs 55 mm in diameter andwith thickness of 2 mm. From each target five samples were produced
(25 samples in total). The thinfilmswere deposited on quartz glass 12×12×0.5 mm size square substrates
with∼1 nm roughness. To exclude the possibility of large crystallites formation on the initial stage offilm
growth due to epitaxy the substrates were preliminary covered by SiO layerwith thickness of 500 nm. The
substrates were placed in the substrate holder with a squaremask 10×10 mm size. The distance between the
target and the substrate during filmdepositionwas 170 mm. The power density at themagnetronwas kept
constant at 11W cm−2, which provideda deposition rate of 0.25 nm s−1. The base pressure was 3×10−4 Pa
while Ar pressure was 2×10−1 Pa. The thickness of each thinmagnetic filmwas≈60 nm.During the
deposition process, substrates temperature of 200 °Cwasmaintained, and an orienting externalmagnetic field
Hext=200 Oewas applied in the film plane. For all the samples, except one, themagnetic fieldHextwas parallel
to one edge of the substrate (the y axis). A special depositionwas performed, where twoNi80Fe20 samples were
simultaneously produced during one sputtering, with the y axis oriented at 0° for thefirst sample and at 45° for
the second samplewith respect to thefieldHext (figure 1).

The chemical composition of the filmswas determined by an x-ray fluorescence analysis (spectrometer S4
Pioneer, Bruker). It showed that, on average, the composition offilms differed from that of the targets by less
than 1.5 wt%. The transmission electronmicroscopy (TEM,HitachiHT-7700) revealed that our samples had a
nanocrystallinemicrostructure, with the crystallites sizes of about 4-10 nm (see figure 2(a)). The cross-section
TEMof the samples confirms the low roughness of the substrates and also shows that the films thickness differs
from the nominal thickness by nomore that 5% (figure 2(b)). The electron diffraction pattern of the investigated
part of thefilm is typical of a polycrystallinematerial. The observed reflections correspond to a face-centered
cubic structure (fm-3m space group).

Themagnetic properties of the sampleswere analyzed by the FMR spectrometry andmagneto-optical Kerr
effect (MOKE)microscopy. Ferromagnetic resonance is one of themost informative and accurate techniques of
measuring thin filmsmagnetic characteristics [23–25]. FMRmeasurements were performed using the scanning
FMR spectrometer. The spectrometer’s design, peculiarities of its usage, and its operational characteristics were
described in detail in ref. [26]. Briefly, in the spectrometer, themicrostrip resonator fabricated on a dielectric
substrate was used as a sensor. Because of the small volume of themicrostrip resonator, the spectrometer is
highly sensitive even in the decimeter wave band thus providing an opportunity to study effects on local areas of
thinfilms that is hard to detect in largemagnetic fields. Themeasuring hole was etched in the ground plane of the
resonator near the antinode of high-frequencymagnetic field. The hole diameter (∼1 mm) determined the
locality ofmeasurements. The FMRmeasurements were performed across the samplewith a step of 1 mm. The
microwave pump frequency was 2.3 GHz. The resonance field (field at a point where the differential FMR curve
changes sign)was determinedwith an accuracy of 0.05 Oe, and the peak-to-peak linewidthwas determinedwith
an accuracy of 0.1 Oe. The uniaxial in-planemagnetic anisotropy of the filmswas retrieved from the
experimental angular dependences of the resonance field by fitting the parameters of a theoreticalmodel of a
single-domain film to the experimental data [27, 28].

Figure 1. Sketch of a thinfilm sample. The applied during deposition in-planemagnetic fieldHext is oriented at angles 0° and 45°with
respect to the y axis. The sweepingmagneticfieldH lies in thefilm plane andmakes anglejHwith the x axis.

2

Mater. Res. Express 6 (2019) 116105 BABelyaev et al



A few samples were also investigated byMOKEmicroscopy (NanoMOKE2, DurhamMagnetoOptics Ltd).
The light sourcewas a current and temperature stabilized solid state laserwith an operatingwavelength of 630-
640 nmand an output power of 2.5 mW.The accurate determination of themagnetic anisotropy parameters
from theKerrmeasurements is not a trivial task [29].We used a simplified approach for the qualitative analysis
of the samples. For a thinmagnetic filmwith a uniaxial anisotropy in a single-domain state the slope of the linear
part of the hysteresis loopMH(H) obtained in in-plane fieldH applied along the hard axis is inversely
proportional to the uniaxialmagnetic anisotropy field. Therefore, we calculated the dH/dMH ratio fromMOKE
hysteresis loops (where the in-planemagnetic fieldH is directed along the hard axis, andMH is the normalized
magnetization), which allowed us to investigate the relative distribution of the uniaxialmagnetic anisotropy field
over thefilms surfaces.

3. Results and discussion

Figure 3 shows typical differential absorption FMRcurvesmeasured by the scanning FMR spectrometer. The
presented curves were obtained along the easy and hard axes ofmagnetization on two local areas of theNi75Fe25
film— in its center, and near one of the edges. A relative decrease in the FMR signal amplitude near thefilm edge
is related to the fact that, in this case, the investigated area of the filmdid not completely cover themeasuring
hole of themicrostrip resonator. In all themeasurements, only absorption peaks corresponding to the uniform
FMRmodewere observed in the spectrameasuredwhile sweeping themagnetic field over the available range of
0–300 Oe. Figure 4 shows the obtained from themeasured spectra dependences of the resonance fieldHR and
FMR linewidthΔH on the sweepingfield directionjH for theNi75Fe25filmmeasured on its two local areas.
These angular dependences demonstrate that thefilmhas a uniaxial in-planemagnetic anisotropywith the easy
axis parallel to the y axis. It can be also seen that the anisotropy field in thefilm center is slightly less than the
anisotropy field near thefilm edge that is parallel to the y axis.

Figure 2. (a)Plan-viewTEM image of theNi70Fe30 thinfilm, (b) cross-section TEM image and electron diffraction pattern of the
investigated part of thefilm.
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With the help of the scanning FMR spectrometer, wemeasured themagnetic characteristics of all the
samples as functions of the position across their areas. Figure 5 shows the results for thin films of three
compositions. Note that these surfaces were drawn using the smoothed experimental data for better visibility of
spatial nonuniformities. Here, a relatively high uniformity of the spatial distribution of themagnetic
characteristics in the central part of

thefilm is abruptly disturbed at the edges. Themost interesting features are a sharp increase in the FMR
linewidthΔH and a strong deviation of the uniaxialmagnetic anisotropy fieldHa at the film edges. In the vicinity
of the edges parallel to themagnetic fieldHext applied during film deposition (parallel to the y axis), the
anisotropy fieldHais about 25%greater thanHa in the central part whileHanear edges perpendicular toHext

(parallel to the x axis) is weaker by approximately the same value. The standard deviation (std) of the anisotropy
field calculated across thefilm area excluding edges (1 mmaway from the edges) is about four times less than the
std for thewholefilm area. A similar picture can be seen in the FMR linewidth distributionwith the exception
that theΔH value increases near all the edges independent of their orientationwith respect to the fieldHext. On
the contrary, the distribution of the easy axis orientation angleja (measuredwith respect to the x axis) has no
features near thefilm edges and, in general, the easy axis follows the direction of the fieldHext.

The results ofMOKE and FMRmeasurements of theNi60Fe40 sample are shown infigure 6. TheMOKE
measurements with a step of 0.1 mmwere performed along two lines on thefilm surface, whichwere parallel to
the x and y axis, respectively, and crossed at the center of thefilm. Square symbols infigure 6 correspond to
dH/dMH values calculated fromMOKEhysteresis loops (figure 7 as an example) and circle symbols connected
by a line represent themagnetic anisotropy fieldHaobtained by the FMR spectrometer at the same local areas of

Figure 3.Differential absorption FMR curvesmeasured along the easy axis (EA, red lines) and hard axis (HA, blue lines) of
magnetization for theNi75Fe25 film on its two local areas: x=5 mm, y=5 mm (dashed lines), and x=0 mm, y=5 mm (solid
lines).

Figure 4.Dependences of the resonancefieldHR and FMR linewidthΔH on the sweepingfield directionjH for theNi75Fe25film
measured on its two local areas: (a) x=5 mm, y=5 mm, (b) x=0 mm, y=5 mm. Symbols correspond to the experimental
results, while lines are theoretical fits.
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thefilm but with a step of 1 mm.There is a good qualitative correspondence between results obtained by two
differentmagnetometrymethods, although theMOKE signal seemsmuch noisier than the FMRone. Thismay
be attributed to the fact that theMOKEmicroscopy probes only a small fraction of thefilm volume as it has a
very high spatial locality (the laser spot is∼5 μm in diameter) and light penetrates into the film only∼25 nm
deep [30]. The scanning FMR spectrometermeasuresmagnetic parameters of themuch larger film volume
(surface region of∼1 mm in diameter and over the entirefilm thickness) averagingmagnetic nonuniformities
that results in smoother dependencies. The high spatial resolution of theMOKEmicroscopy allows us to

Figure 5.Magnetic characteristics of thin permalloy films as functions of the position across their areasmeasured by the scanning
FMR spectrometer.Ha is the uniaxialmagnetic anisotropy field,ja is the easy axis orientation angle, andΔH is the FMR linewidth. (a)
Ni60Fe40, (b)Ni75Fe25, (c)Ni86Fe14.

Figure 6. dH/dMH values calculated from theMOKEhysteresis loops (square symbols), andmagnetic anisotropy fieldHa obtained by
the FMR spectrometer (circle symbols)measured along two lines on the surface ofNi60Fe40 film, parallel to the x axis (a) and y axis (b),
respectively.
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consider closely themagnetic behavior near the film edges. It reveals that the dH/dMH deviation decreases with
increasing distance from the edges not abruptly but rathermonotonically and vanishes at a distance of about
1 mmaway from the edges for all sides of the sample.

In general, it was found that for all the investigated films themagnetic anisotropy behavior at the opposite
edges is almost symmetrical and the positive deviation ofHafrom themean value approximately equals to the
negative one.Moreover, as expected, themagnetic anisotropy fields depend on the chemical composition of the
films.Hence, it is of interest to investigate both the behavior of the averagedmagnetic anisotropy 〈Hf〉 of

each sample without consideration of edge effects (1 mmaway from the edges) and the behavior of the
contribution of the edge effects themselves as a function of the nickel concentration. The contribution of the
edge effects was estimated by the averaged value 〈He〉 determined as an absolute difference between themean
anisotropy fieldsHameasured on each pair of the opposite edges and 〈Hf〉.We can consider 〈Hf〉 as the averaged
field of the uniaxialmagnetic anisotropy induced by themagnetic field applied during deposition (thefield-
induced anisotropy), and 〈He〉 as the averagedfield of the additionalmagnetic anisotropy induced near the film
edges.

The obtained dependences are given infigure 8, where error bars indicate the standard deviation. It can be
seen that themagnetic anisotropy field 〈Hf〉 drops linearly with an increase in the nickel concentration from60
to 86 wt%. This accurately reproduces thewell-known results of the study onNiFe films that were explained by
the theory of atomic pair ordering under themagnetic field applied during film deposition [31, 32]. 〈He〉 also
exhibits a linear dependence on the composition, decreasing from2.17 Oe at 60 wt%ofNi to 1.3 Oe at 86 wt%
ofNi. It is important to note that for thefilms of all compositions the symmetry of themagnetic anisotropy field
distribution is the same (figure 5).

The observed features in the anisotropy field behavior can be explained if we assume that amechanism exists
that induces an additional contribution to the uniaxialmagnetic anisotropy near the film edges, with the easy
axis parallel to the edges. Indeed, let us consider two uniaxialmagnetic anisotropies: the anisotropy formed by a
magnetic field applied during depositionwith thefieldHf, and the anisotropy induced near the film edges with
thefieldHe. In this case, the energy of themeasured uniaxialmagnetic anisotropy F cosa

H M
M a2

2a s j j= - -( ) is

the sumof the energy of the anisotropy induced by themagnetic field F cosf
H M

M f2
2f s j j= - -( ) and the

energy of the anisotropy induced near the edges F cos .e
H M

M e2
2e s j j= - -( ) HereMs is the saturation

Figure 7.MOKEhysteresis loopsmeasured along the hard axis ofmagnetization at two points of theNi60Fe40film: x=5 mm,
y=5 mm (open symbols), and x=0 mm, y=5 mm (filled symbols).

Figure 8.Dependences of the averagedmagnetic anisotropy fields 〈Hf〉 and 〈He〉 (see text) onnickel concentration. Dashed lines are
linear fits.
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magnetization of thefilm,jM is the angle of the equilibriumposition ofmagnetization,jf andje are the angles
that determine easy axes directions of anisotropiesHf andHe, respectively. This results in the following systemof
equations [33]

H H

H

H H

H

cos 2 cos 2

cos 2

sin 2 sin 2

sin 2

1

a M a f M f

e M e

a M a f M f

e M e

j j j j
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- = -

+ -

⎧
⎨
⎪⎪

⎩
⎪⎪

( ) ( )
( )

( ) ( )
( )

( )

fromwhichwe can determine the value and orientation angle of the experimentally observed uniaxialmagnetic
anisotropy
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AssumingHf 〉He, from equation (2) follows that if the easy axes of the two anisotropies are parallel
(orthogonal) then the resulting anisotropy field simply equals to the sum (difference) of the two anisotropy
fields, and the orientation angle of the resulting easy axis equals tojf. This corresponds to the observed behavior
of themagnetic anisotropy shown infigure 5.

However, in the general case of arbitrary orientations of the two easy axes the easy axis of the resulting
uniaxial anisotropy should be somewhere in between those two. To confirm this, we fabricated twoNi80Fe20
samples obtained by simultaneous deposition on the two substrates whose y axes were oriented at 0° and 45°
with respect to themagnetic fieldHext applied during deposition. The distribution of themagnetic
characteristics across the films areameasured by the scanning FMR spectrometer are shown infigure 9.
Additionally, figure 10 shows the easy axis distributions plotted using the data presented infigure 9, butwhere
the axis deviation from the direction of the fieldHextwas enlarged by a factor of six tomake it clearly visible. It
can be seen that in the film oriented at±45°with respect toHext the easy axis is tilted toward the edges. For the
filmwhosemagnetic characteristics are presented infigure 9(a), where the averageHafields at the adjacent edges

Figure 9.Magnetic characteristics of twoNi80Fe20 thin films as functions of position across their areasmeasured by the scanning FMR
spectrometer. (a)The y axis of the filmwas oriented at 0°with respect to the fieldHext applied during deposition, (b) the y axis of the
filmwas oriented at 45°with respect to thefieldHext. Note that axes of the same variables have the same scale.
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equals 6.7 Oe and 4.3 Oe, respectively,je=90° and 0°,jf =90°, we can assume thatHf=〈Hf〉=5.9 Oe and
He=〈He〉=1.2 Oe. For these two values of the anisotropy fields and anglesjf =90° andje=45°
equation (2) gives usHa=6.02 Oe,ja=84.3°. The calculated orientation angle deviation fromHext of the
resulting anisotropy (5.7°) is very close to themeasured average easy axis orientation angle deviation fromHext

(5.5°) at the edges of thefilm oriented at±45°with respect toHext (figure 9(b)), while the calculatedHa value
only slightly differs fromHf that is also in good agreementwith the experiment.

This confirms that in our samples near the edges an additional contribution to the energy of the uniaxial
magnetic anisotropy exists. Thefield of this additionalmagnetic anisotropy approximately equals to the 〈He〉
valuemeasured for thefilms deposited in amagnetic field oriented along one of their edge. It is interesting to
note that a similar effect was observed in thin sputtered FeSifilms during investigation of theirmagnetic
domains structure [34]. It was found that near the film edges themagnetization tends to align parallel to the
edges. The authors attributed this behavior to the uniaxialmagnetic anisotropy of unclear origin formed near
thefilm edges.

The dependence of 〈He〉 on the composition (figure 8) suggests thatmechanical stresses can contribute to the
energy of this additional anisotropy formed near the edges but they cannot be the sole source of 〈He〉, otherwise
forNi86Fe14film the easy axis of the additional anisotropy should rotate by 90° as themagnetostriction constant
changes sign atNi82Fe18 [35], which contradicts the experiment (figure 5(c)). However, it is possible that during
film growth an inhomogeneousmorphology of anisotropic character in themicrocrystalline structure forms
near the film edges. Thismay be caused by a temperature gradient during sputtering or by influence of the edges
of the substrate holder on the angle and energy distribution of deposited particles. Because of the dipolar
interaction, these anisotropic structural irregularities are the source of additional contribution to themagnetic
anisotropy energy. This assumption is supported by the behavior of the FMR linewidth (figures 5 and 9). The
broadening of the FMR line in polycrystalline thinmagnetic films ismainly attributed to the extrinsicmagnetic
relaxation processes [36]. The inhomogeneous effectivemagnetic field provides interactions between spin-wave
modes that allow the energy of the uniformmagnetization oscillation to transfer to the other normal oscillation
modes resulting in an additional damping of the uniformmode [37]. Therefore, the observed sharp broadening
of the FMR line at the film edges indicates the increase in inhomogeneity of the effectivemagnetic fieldmost
probably caused by the increase of structural irregularities in the vicinity of the film edges.

4. Conclusion

In this paper, themagnetic characteristics and their spatial nonuniformity ofDCmagnetron sputtered
nanocrystallineNiFe thin filmswere investigated bymeans of the FMR spectrometry andMOKEmicroscopy. A
sharp increase in the FMR linewidth and strong deviation of the uniaxialmagnetic anisotropy field from its
average valuewere observed near the film edges. These edge effectsmonotonically declinewith increasing
distance from the edges and vanish at a distance of∼1 mmaway from the edges. It was shown that the observed
magnetic anisotropy behavior can be explained by assuming that in addition to thefield-induced uniaxial
magnetic anisotropy another source of uniaxial anisotropy near the film edges exists, with the easy axis parallel to
the edges. Thefield of this additional anisotropy is about 25%of the field-induced anisotropy field. The
dependence of themagnetic anisotropy field on the nickel concentration suggests that this additional
contribution to the anisotropy energy cannot be solely attributed tomechanical stresses. It is possible that the
anisotropic structural irregularities formed during the growth near the film edges are the source of the additional
contribution to themagnetic anisotropy. The presence of these irregularities explains the observed broadening
of the FMR line near the edges.

Figure 10.Easy axis distributions in the twoNi80Fe20 samples, with the y axis oriented at 0° (a) and 45° (b)with respect to the fieldHext

applied during deposition. The easy axis deviation from theHext direction is enlarged by a factor of six.

8

Mater. Res. Express 6 (2019) 116105 BABelyaev et al



It is important for application that the observed edge effects increase the dispersion of uniaxial anisotropy
value for the entire film up to four times. The obtained results can be used in designing devices based on thin
magnetic films. Particularly, in the studywe provided absolute values of this effect for the permalloy films of
different compositions thus giving information for practitioners whether the extra efforts are needed for
mitigating these edge effects in their specific cases.
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