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Probing quantum chaos in many-body quantum systems by the induced dissipation
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We theoretically analyze the depletion dynamics of an ensemble of cold atoms in a quasi-one-dimensional
optical lattice where atoms in one of the lattice sites are subject to decay. Unlike the previous studies of this
problem in Labouvie et al., Phys. Rev. Lett. 116, 235302 (2016), we focus on the case where the system is
brought to the chaotic regime, which crucially modifies the depletion dynamics as compared to the regular case.
It is shown that depletion of the affected site results in gradual depletion of the neighboring sites according to
the t1/3 scaling law. We also show that by measuring occupations of the lattice sites one can extract important
information on chaotic dynamics of the original conservative system.
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I. INTRODUCTION

The term quantum chaos appeared in physics in the late
1980s, although the problem itself can be traced back to 1950s
[1] or even to the 1917 paper by Einstein [2]. In a wide sense
it means the branch of modern physics dealing with nonin-
tegrable quantum systems and, simultaneously, the variety of
phenomena one meets in these systems such as the universal
spectral statistics [3–7]. Nowadays the field of quantum chaos
consists of several subfields with one of them addressing
nonintegrable systems of a large number of identical particles
[8–14]. The ultimate goal of these studies is a foundation
of the equilibrium and nonequilibrium statistical mechanics
by utilizing the universal properties of the energy spectrum
and eigenstates of the quantum chaotic systems. For example,
it was demonstrated in recent work [14] that, provided the
condition of quantum chaos is satisfied, an isolated system
of weakly interacting fermions exhibits self-thermalization
with meaningful notions of the temperature and chemical
potential.

Another development in physics of the last decade is open
many-body systems [15–20]. Here the term “open” means that
the system of identical particles is coupled to an environment
or particle reservoir, and, thus, neither the system energy nor
the number of particles is conserved. Generally, there are
both the particle gain and loss, as is the case in the cold
atom transport in a “lead” connecting two atom reservoirs
with different chemical potentials [19,20]. However, in some
cases we can have only losses. For example, the authors of
the abstract laboratory experiment [21] study dynamics of a
Bose-Einstein condensate (BEC) of cold atoms in a quasi-
one-dimensional optical lattice where one of the lattice sites is
constantly depleted by using a tightly focused electron beam.
Merging these two developments one arrives at the problem of
open many-body chaotic systems, where we may expect some
universal dynamics [22].

In the present work we theoretically analyze the system
studied in Ref. [21] yet for the principally different initial con-
dition where the BEC of atoms is brought to the edge of the

Brillouine zone. Experimentally this is done by accelerating
the lattice or by applying a gradient of the magnetic field for
one-half of the Bloch period. As is known, at the zone edge
the BEC of repulsively interacting atoms exhibits dynamical
or modulation instability that indicates the onset of chaos. We
are interested in the depletion dynamics, which is shown to
provide important information about chaotic properties of the
closed system. Thus, one can use the induced dissipation as a
tool for probing quantum chaos in many-body systems.

II. THE SYSTEM

The system dynamics is governed by the master equation

dR
dt

= −i[Ĥ,R] + L̂γ (R) (1)

on the density matrix R(t ) of the ensemble of interacting
atoms in a lattice,

Ĥ = ω

L∑
l=1

n̂l − J

2

L∑
l=1

(â†
l+1âl + H.c.) + U

2

L∑
l=1

n̂l (n̂l − 1),

(2)
where the Lindblad operator L̂γ (R),

L̂γ (R) = −γ

2
(â†

l âlR − 2âlRâ†
l + Râ†

l âl ), (3)

acts only on the single site with the index l = L/2. In Eqs. (2)
and (3) ω is the frequency of zero oscillations, J the hopping
matrix elements, U the microscopic interaction constant, and
γ the depletion rate. An additional parameter of the system is
the mean occupation number of the lattice sites n̄. In the exper-
iment [21] n̄ ≈ 700 atoms, J ≈ 230 Hz, and the macroscopic
(mean field) interaction constant g = Un̄ ≈ 1400 Hz.

Below we solve Eq. (1) by using the pseudoclassical ap-
proach, which is based on the notion of the truncated Wigner
or Husimi functions [23,24]. With respect to cold atoms in op-
tical lattices this approach was used, in particular, to analyze
Bloch oscillations of interacting atoms. It was demonstrated
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in Ref. [25] that the pseudoclassical approach is capable of
reproducing extremely well both results of the exact quantum
simulations [25] and the experimental results [26]. Next we
briefly review the main statements of this approach (for more
details see Refs. [13,27]).

III. PSEUDOCLASSICAL APPROACH

In the framework of the pseudoclassical approach the dy-
namics is described by the distribution function f (a, t ), which
is a function of time and L complex variables al , l = 1, . . . , L.
Assuming for the moment γ = 0 and neglecting the terms
O(1/n̄) it satisfies the Liouville equation

∂ f

∂t
= {H, f }, (4)

where {. . . , . . .} denotes the Poisson brackets and H is the
Hamiltonian of the classical Bose-Hubbard model,

H = ω

L∑
l=1

a∗
l al − J

2

L∑
l=1

(a∗
l+1al + c.c.) + g

2

L∑
l=1

|al |4, (5)

where g = Un̄. [Notice that in Eq. (5) we apply normalization∑L
l=1 |al |2 = L.] Commonly, one solves Eq. (4) by solving the

Hamilton equations of motion,

iȧl = ∂H

∂a∗
l

= ωal − J

2
(al+1 + al−1) + g|al |2al , (6)

and averaging the result over an ensemble of initial conditions
with the distribution function f (a, t = 0). For example, for
relative occupations of the lattice sites nl (t ) = Nl (t )/n̄ (which
are the quantities measured in the laboratory experiment) we
have

nl (t ) = Tr[â†
l âlR(t )]/n̄ = |al (t )|2, (7)

where the overline denotes the ensemble average. Since
f (a, t = 0) is uniquely determined by the initial many-body
wave function of the quantum system (2) we refer to this
ensemble of initial conditions as the quantum ensemble.
Typically, it is a difficult numerical problem to generate the
quantum ensemble. Fortunately, for some important many-
body states, such as the BEC or Mott-insulator states, quantum
ensembles are known explicitly [13,25].

Next we discuss the classical Bose-Hubbard model (5).
Since it can be viewed as the system of L coupled nonlinear
oscillator hl ,

hl = ωIl + g

2
I2
l , Il = |al |2, (8)

one expects that its dynamics is generally chaotic. As an
example, we consider the case L = 6, which already captures
the main properties of larger systems L � 1. The upper panel
in Fig. 1 shows the volume of the energy shell as the function
of the shell energy for g/J = 4. (We note, in passing, that
the depicted histogram reproduces the density of states of
the quantum Bose-Hubbard model [27].) The lower panel in
Fig. 1 shows the Lyapunov exponent λ of different trajectories
a(t ) with the initial conditions uniformly distributed over the
whole phase space, which is a hypersphere defined by the con-
dition

∑L
l=1 |al |2 = L. Additional vertical lines in Fig. 1(b)
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FIG. 1. The classical Bose-Hubbard model. Upper panel: Rela-
tive volume of the energy shell as the function of the shell energy
E where energy is measured in units of J . Lower panel: Lyapunov
exponent λ of 1000 trajectories with the initial conditions uniformly
distributed over the whole phase space. Vertical lines mark energies
of the periodic trajectories (9). Parameters are L = 6 and g/J = 4.

mark the energies of the nonlinear Bloch waves,

al (t ) = exp[iκl + iJ cos(κ )t − igt], κ = 2πk/L, (9)

which are stable (|κ| < π/2) or unstable (|κ| > π/2) periodic
trajectories of the system. As expected, we find regular trajec-
tories (i.e., vanishing Lyapunov exponent) only for low- and
high-energy trajectories while trajectories in the middle of the
“spectrum” are chaotic with probability close to unity.

Chaotic dynamics of the system for |κ| > π/2 implies that
the time behavior of fast variables is a random process. In
particular, we consider the variable ξ (t ),

ξ (t ) = al+1(t ) + al−1(t ), (10)

which is the driving force for the lth oscillator (8). We found
that the autocorrelation function of ξ (t ) is well approximated
by the exponential function,

ξ (t )ξ ∗(t ′) ≈ A exp(−|t − t ′|/τ ), (11)

A = |al+1(t )|2 + |al−1(t )|2 = 2,

where the correlation time τ is determined by the Lyapunov
exponent λ, which, in turn, is determined by the ratio g/J .
Thus, we have some freedom in varying the correlation time
τ by varying the ratio g/J .

IV. DEPLETION DYNAMICS

Assume now that γ �= 0. In this case Eq. (4) should be
complimented by the relaxation term Lγ ( f ). Again neglecting
the terms O(1/n̄) we obtain from Eq. (3)

Lγ ( f ) = γ

2

(
a
∂ f

∂a
+ 2 f + a∗ ∂ f

∂a∗

)
, (12)
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FIG. 2. Occupations of the lattice sites in the course of time
where time is measured in units of the tunneling period. Upper
panels: Occupations of the lattice sites with l = L/2, . . . , L/2 + 4
(from bottom to top) as functions of time in the linear and logarithmic
scales. Lower-left panel: Occupation dynamics as a color map (dark
blue = 0, bright yellow = 1). Lower-right panel: Total number of the
depleted particles normalized to n̄ for different positions of the weak
link; see text. Parameters are L = 20 (periodic boundary conditions),
g/J = 4, and γ = 0.1. Average over 1000 trajectories.

where we omit subindex L/2 not to overburden the equation
(see Appendix A). It is also easy to show that this relaxation
term modifies Eq. (6) as

iȧl =
(

ω − i
γ

2
δl,L/2

)
al − J

2
(al+1 + al−1) + g|al |2al . (13)

We run Eq. (13) for the initial conditions taken from the
quantum ensemble for the BEC of atoms accelerated to the
edge of the Brillouin zone. Approximately it corresponds to
al (t = 0) ≈ (−1)l with tiny fluctuations of the amplitude and
phase that are proportional to n̄−1/2 [25]. However, due to
the positive Lyapunov exponent [see Fig. 1(b)] these tiny
fluctuations result in completely different trajectories, and,
hence, only the average over the ensemble has a physical
meaning. This average is depicted in Fig. 2, which shows
the occupations of the lattice sites and the total number of
depleted atoms,

N (t ) = n̄
L∑

l=1

[1 − nl (t )], (14)

as the functions of time. Below we quantify the observed
occupation dynamics by using some simple approximations.

A. Short-time dynamics

First, we address the short-time dynamics (t < 10 in Fig. 2)
of the central oscillator. Let us for the moment suppress
the back action of this oscillator on the other oscillators
by changing the hopping between the central well and the
neighboring wells with l = L/2 ± 1 from J to a small value
εJ , ε � 1. This reduces the amplitude of the stochastic force
proportionally to ε and, simultaneously, divides the whole

system into the system of interest (the central oscillator) and
the reservoir (remaining oscillators). Then the dynamics of the
central oscillator is governed by the stochastic equation

iȧ =
(

ω − i
γ

2

)
a + g|a|2a − εJ

2
ξ (t ), (15)

where, as before, we drop the subindex l = L/2. From
Eq. (15) we obtain the equation on the distribution function
f = f (a, t ),

∂ f

∂t
= {h, f } + Lγ ( f ) + D

∂2 f

∂a∂a∗ , (16)

where the relaxation term Lγ ( f ) is defined in Eq. (12) and the
diffusion coefficient D = ε2J2τ/2. (A quantum counterpart of
the introduced diffusion term is discussed in Appendix B.) It
is easy to prove that the stationary solution of Eq. (16) is given
by the two-dimensional Gaussian

f (a) = 1

2πσ 2
exp

(
− |a|2

2σ 2

)
, (17)

where σ 2 = D/γ . This determines the relative stationary oc-
cupation of the central site as

ñ = ε2J2τ

2γ
� 1. (18)

Let us now come back to the original system where the
artificial parameter ε = 1. As seen in Figs. 2(a)–2(c), the back
action of the central oscillator on the neighboring oscillators
results in gradual decay of the latter. A direct consequence of
this is that the stationary value ñ Eq. (18) becomes quasista-
tionary,

ñL/2(t ) = J2nL/2±1(t )τ

2γ
, (19)

where nL/2±1(t ) is the relative occupation of the nearest sites,
and it is implicitly assumed that it is still close to unity. Thus,
by measuring the site occupations one can find the correlation
time τ in Eq. (11).

B. Long-time dynamics

The above results on the short-time dynamics suffice to
qualitatively describe the long-time dynamics of the system. It
is a sequence of step-by-step oscillator decay starting from the
central oscillator. Furthermore, the decay of every oscillator
follows two stages: first, it decays to a quasistationary state
characterized by some equilibrium value ñ � 1, which slowly
decreases during the second stage; see Fig. 2(b). [We mention
that by a proper rescaling of the time axis the different curves
in Figs. 2(a) and 2(b) can be brought above each other.]

The other approach to describe the long-time dynamics is
the artificial devision of the whole system into the system of
interest and the reservoir. In fact, by putting the weak link εJ
far enough from the central site, we reduce the problem to
the known problem of an atomic current in the Bose-Hubbard
chain, where the first site of the chain is connected to a particle
source and the last site to a particle sink (see the recent work
[20] and references therein). The dashed, dash-dotted, and
solid lines in Fig. 2(d) show the relative number of depleted
particles in the cases where the weak links with ε = 1/

√
10
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are located 4, 6, and 10 sites away from the central well,
respectively. Notice the asymptotic linear growth of N (t )
in the first two cases, which corresponds to a steady-state
regime with the stationary current. According to Ref. [20], the
relaxation time to this steady state scales as the chain length
to the third power. Inverting this relation, we conclude that the
number of depleted wells grow proportionally to t1/3.

V. CONCLUSION

We analyzed the depletion dynamics of cold atoms in a
quasi-one-dimensional optical lattice where atoms in one of
the lattice sites are subject to decay. Experimentally this is
done by ionizing the atoms by an electron beam focused
on that site [21]. Unlike Ref. [21], in the present work we
consider the principally different initial state where the BEC
of atoms is brought to the edge of the Brilloine zone. In this
case the system is chaotic in the sense of both classical and
quantum chaos [13], which crucially modifies the depletion
dynamics as compared to the regular case where the BEC is
in the ground state (the center of the Brilloune zone). It is
predicted that in the chaotic case depletion of the affected site
results in a gradual depletion of the neighboring sites, so that
the total number of the depleted sites grows ∼t1/3. We also
show that by measuring occupations of the lattice sites one can
extract the decay time τ for correlation functions of the type
C(τ ) = 〈â†

l (t )âl (t + τ )〉 [here â†
l (t ) and âl (t ) are the creation

and annihilation operators in the Heisenberg representation].
Keeping in mind that classically the correlation time τ is
determined by the Lyapunov exponent λ of the classical
Bose-Hubbard model, the proposed experimental studies of
the depletion dynamics will shed additional light on the long-
standing question of the meaning of the classical Lyapunov
exponent in the quantum realm.
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APPENDIX A

In the pseudoclassical approach operators are given by
their Wigner-Weyl images. For example, images of the op-
erators ã = â/

√
n̄ and ã† = â†/

√
n̄ (which commutes to the

effective Planck constant h̄′ = 1/n̄) corresponds to a and a∗,
respectively. Knowing images of two arbitrary operators A =
A(a, a∗) and B = B(a, a∗) the image of their product is given
by [28]

A  B = A exp

[
h̄′

2

(
∂←

∂a

∂→

∂a∗ − ∂←

∂a∗
∂→

∂a

)]
B, (A1)

where the the first-order approximation obviously corre-
sponds to

A  B ≈ AB + h̄′

2

(
∂A

∂a

∂B

∂a∗ − ∂A

∂a∗
∂B

∂a

)
. (A2)

Applying Eq. (A2) to Eq. (3) we obtain

Lγ ( f ) = − γ

2h̄′ (a∗  a  f − 2a  f  a∗ + f  a∗  a)

≈ γ

2

(
a
∂ f

∂a
+ 2 f + a∗ ∂ f

∂a∗

)
. (A3)

APPENDIX B

Let us show that the quantum counterpart of the diffusion
term in Eq. (16) is given by the sum of two Lindblad operators,

D̂(R) = L̂1(R) + L̂2(R), (B1)

where

L̂1(R) = −Dn̄

2
(ââ†R − 2â†Râ + Rââ†), (B2)

L̂2(R) = −Dn̄

2
(â†âR − 2âRâ† + Râ†â). (B3)

Notice that in the first-order approximation the operators (B2)
and (B3) have the same form (see Appendix A) but a different
sign. Thus, D̂(R) does not vanish only in the second-order
approximation. To calculate the second-oder Wigner-Weyl
image of D̂(R) we rewrite Eq. (B1) as

D̂(R) = − D

2h̄′2 ([ã, [ã†,R]] + [ã†, [ã,R]]). (B4)

Using the standard correspondence relation where the com-
mutator corresponds to the Poisson brackets, we obtain from
Eq. (B4)

D( f ) = −D

2
({a, {a∗, f }} + {a∗, {a, f }}) = D

∂2 f

∂a∂a∗ . (B5)

It is easy to show that the introduced diffusion term leads
to unbounded growth of the oscillator action as I = Dt . This
drawback of the model can be eliminated by introducing an
effective friction:

Leff ( f ) = D

2

(
a
∂ f

∂a
+ 2 f + a∗ ∂ f

∂a∗

)
. (B6)

This additional term naturally appears in the equation on the
classical distribution function if we begin with the bosonic
relaxation operator of the standard form

L̂(R) = −D

2
[n̄(ââ†R − 2â†Râ + Rââ†)

+ (n̄ + 1)(â†âR − 2âRâ† + Râ†â)], (B7)

where the parameter D is usually referred to as the decay
constant. It is understood, however, that the physical meaning
of this parameter is the diffusion constant rather than a decay
constant. This becomes particularly clear in the case of the
induced decay with the rate γ � D, where one can neglect
the “internal friction” (B6) in comparison with the “external
friction” (12). Of course, dividing the relaxation process into
diffusion and friction is valid only in the pseudoclassical limit
n̄ � 1. If n̄ ∼ 1 one typically speaks about the decoherence
and relaxation. With respect to the Bose-Hubbard reservoir
with n̄ ∼ 1 the validity of the master equation with the
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relaxation term (B7) was discussed in Ref. [29], with the
main conclusion that the necessary and sufficient condition

of its validity is the condition of quantum chaos in the Bose-
Hubbard model.
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