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In this paper we propose an optimization procedure for quality-factor (Q-factor) enhancement in dielectric
oligomers. The oligomers are introduced as linear periodic chains of dielectric elements the individual Q factors
of which are optimized via multipolar conversion in an avoided crossing of two resonant eigenfrequencies. It
is demonstrated that when such dielectric elements are assembled into an infinite periodic array the coupling
between individual resonances gives rise to an in-� optical bound state in the continuum (BIC) unprotected
by symmetry. By setting up the oligomers of finite numbers of dielectric elements we observe high quality
resonances which occur as traces of the infinite array band structure. The resulting high quality resonances exhibit
light localization spots of a few squared wavelengths with Q factors Q > 104. The localization is provided by
similarity of the field pattern to that of the BIC with the losses at the edges of the array suppressed due to an
almost flat BIC host band. The scaling law of the Q factor against the dielectric permittivity is derived.
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I. INTRODUCTION

Controlling the localization of electromagnetic waves
plays an important role in modern science and technology
[1–4]. In the optical range the mainstream idea is the use
of high quality (high-Q) resonant modes. This idea can be
implemented with either defect modes of a two-dimensional
photonic crystal [5,6] or whispering gallery modes [7,8]. Both
approaches in principle allow one to engineer resonances of
arbitrary high quality factors (Q factors), but at the cost of the
size of the supporting structure, which in both cases is much
larger than the wavelength in at least two spatial dimensions.
In contrast, the application of plasmonic nanostructures easily
allows for subwavelength localization [9,10], but is limited by
material losses. The material losses are negligible in dielec-
tric setups, which motivates research on near subwavelength
localization of light in the field of all-dielectric nanophotonics
[11,12]. The Q factor of a resonant mode supported by a single
dielectric object can be significantly enhanced [13–15] if the
outgoing radiation is suppressed via coupling of two radiating
modes first proposed by Friedrich and Wintgen [16]. However,
this approach can only lead to Q ≈ 200 in the optical range
[14] in a subwavelength dielectric system.

Another strategy to enhance the Q factor in dielectric
setups is the use of bound states in the continuum (BICs)
[17–19], i.e., optical nonradiating modes embedded in the
continuous spectrum of the scattering states [4,20]. The major
problem of that strategy is that the extremely high Q factors
come at the price of the size of the resonator as the true BICs
can only be hosted by dielectric structure infinitely extended
at least in one spatial dimension [21]. The way around this is
to employ an oligomer (finite array) of dielectric particles that
preserves geometric properties of the infinitely extended pho-
tonic crystal supporting the BICs. The oligomers are formed
as an infinite array is terminated at two edged points (cells).

Such oligomers are known to exhibit traces of photonic band
structure [22] emerging in the form of structural resonances,
i.e., resonances the properties of which are dictated by spatial
distribution of dielectric particles. The structural resonances
may possess Q factors significantly higher than those of
individual dielectric particles [23–27].

It has been recently demonstrated that the traces of BICs
emerge in finite arrays of dielectric particles as high-Q struc-
tural resonances [28–30] the Q factors of which diverge
algebraically with the number of particles. Engineering quasi-
BIC high-Q resonances with a few elementary cells has been
proposed by Taghizadeh and Chung [31]. It has been found
that the structural resonances inherit the radiation pattern of
traveling-wave BICs, also known as Bloch BICs [32], with
radiation suppressed in the direction perpendicular to the
axis of the array. Simultaneously, the radiation losses at the
edges are minimized by setting up a BIC host band with flat
dispersion to hinder resupply of electromagnetic energy to the
lossy spots at the edges.

In this paper we propose an optimization procedure which
leads to a drastic enhancement of Q factors in dielectric
oligomers. Specifically, we consider parallel dielectric bars of
rectangular cross section. The key idea is to employ the two
mode interference mechanism by changing the cross-section
aspect ratio [14] of the bar for increasing its Q factor. In
this approach the Q-factor enhancement is accompanied by
a dramatic change of multipolar composition of the electro-
magnetic field [15,33,34] with outgoing radiation suppressed
in all directions, even at the level of the individual building
blocks of the dielectric oligomer. We shall show that the
same mechanism is responsible for formation of an in-� BIC
unprotected by symmetry [35] in infinite arrays composed of
the dielectric bars with the same geometry and permittivity.
At the same time, due to weak optical coupling between the
bars via outgoing radiation, the leaky band hosting the in-�
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BIC unprotected by symmetry acquires flat dispersion which
is crucial to suppress the radiation outgoing from the edges
of a finite array [31]. Moreover, we shall demonstrate that the
Q factor can be further optimized by varying the period of the
lattice as the bar aspect ratio remains constant and deriving the
scaling law of the Q factor against the dielectric permittivity.

II. OPTIMIZING THE Q FACTOR
IN A SINGLE DIELECTRIC BAR

Let us consider a dielectric bar of infinite length and
rectangular cross section with permittivity ε submersed in air.
In what follows we always assume that the centerline of the
bar is aligned with the z axis while the spatial extensions along
the x and y axes are designated by g and h, respectively. The
bar cross section in the x0y plane is sketched in the inset in
Fig. 1(a). Notice that in the above setting we are left with
a single geometric parameter, namely, the bar cross-section
aspect ratio h/g. In this paper we restrict ourselves to TM
waves with zero propagation constant in the z direction. In
the above stetting the electromagnetic field is exhaustively
described by a single scalar variable Ez, i.e., the component
of the electric vector aligned with the z axis.

By applying the Fourier modal method [36] we computed
the leaky modes of a single dielectric rod in the vicinity
of an avoided crossing of two resonances. The complex
eigenfrequencies as a function of h/g as well as the mode
profiles are shown in Fig. 1. In Fig. 1 one can see a typical
picture of two branches “swapping” their field patterns in
transition across the point of the avoided crossing. Notice that
the eigenfields are defined up to an arbitrary normalization
constant. Therefore in what follows the electric fields are

measured in procedure defined units (p.d.u.) with the absolute
value of the maximal field amplitude equal to the unit. As it is
easily seen from Fig. 1(b) the maximal Q factor is obtained
in the point marked by E in Fig. 1(b) with h/g = 1.2914.
Remarkably, our simulations show that the position of the
maximum is almost independent of ε. Thus, by keeping h/g
constant we can recover the dependence of the Q factor on ε.
The results are shown in Fig. 2(a). Our simulations show that
with the increase of ε the Q factor somewhat deviates from
Q ∼ ε3, which was previously found for a single dielectric
cylinder of finite length [14] with a similar field structure of
the high-Q resonant mode.

It has been recently demonstrated that the maximal Q fac-
tors can be achieved due to the multipolar conversion [15], i.e.,
the rapid changes of multipolar structure of the rectangular
wire Mie resonances [37] that suppress the far-field radiation.
The multipolar expansion of the electric field outside the bar
is written as

Ez =
m=+∞∑
m=−∞

am
eimφ

√
2π

H (1)
m (k0r), (1)

where φ and r are the polar coordinates in the x0y plane, k0 is
the vacuum wave number, H (1)

m is Hankel’s function, and am

can be found from the following formula [33]:

am = iπk2
0

2

∫
S

Jm(k0r)
e−imφ

√
2π

(ε − 1)Ez(r)drdφ, (2)

where Jm is the Bessel function of the first kind and the inte-
gration is performed over the bar cross section S. In Figs. 2(b)
and 2(c) we plot the dominating coefficients in the multipolar
expansion Eq. (1), which in our case are m = ±1 and ± 3.
One can see from Fig. 2(b) that the maximal Q factor is

FIG. 1. The spectrum and the modes profiles in the vicinity of an avoided crossing; ε = 3.482. (a) The real part of the two eigenfrequencies:
high-Q resonance, solid blue line; low-Q resonance, dashed red line. (b) The imaginary parts of the two eigenfrequencies. (c) The mode profiles
are shown in the bottom in the form of the absolute value of the field amplitude, |Ez| (procedure defined units). The hotter spots correspond
to the higher amplitude. The orientation of the structure corresponds to the inset in subplot (a). The labels attached to the mode profiles are
defined in subplot (b).
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FIG. 2. Q factor and multipolar expansion of the leaky modes. (a) Maximal Q factor against ε, h/g = 1.2914. (b) Dominating expansion
coefficients for the high-Q mode: m = ±1, dashed red line; m = ±3, solid black line; ε = 3.482. The thin vertical line corresponds to h/g =
1.2914 with the maximal Q factor. (c) Dominating expansion coefficients for the low-Q mode, ε = 3.482.

accompanied with a rapid change of the multipolar structure
of the far-field radiation.

Following [33] we express the Q factor through the radia-
tion rates Pm of the multipoles:

Q = k0U∑
Pm

, (3)

where U is the mode energy. The radiation rate is expressed
via the multipolar expansion coefficient am [Eq. (2)] as fol-
lows [33]:

Pm = 1

πk0
|am|2. (4)

As it is seen from Fig. 2(b) the multipoles with |m| = 3 dom-
inate in the expansion at the maximal Q factor. Therefore we
truncate the summation in the denominator in Eq. (3), taking
into account only the terms with |m| = 3. For a subwavelength
solution inside the bar we can write

Jm(k0r) ∼
(

k̃0√
ε

r

)m

, (5)

where k̃0 = √
εk0. Using Eq. (5) one can rewrite Eq. (2) as

am ∼ iπ k̃2
0

2ε
(ε − 1)

(
k̃0√
ε

)m ∫
S

rm e−imφ

√
2π

Ezdrdφ. (6)

Our simulations show that under variation of ε the mode
shape remains unchanged, providing the same field pattern
for the highest quality resonance. Thus, the integral in the
above expression is independent of ε. Substituting Eq. (2) into
Eqs. (3) and (4) and keeping in mind that U ∼ ε one finds

Q ∼ εm

k̃2(m+1)
0

. (7)

As it was already mentioned, in our case the dominant
contribution is provided by the multipole with |m| = 3 [see
Fig. 2(b)]. The quantity k̃0 is almost independent of ε due to
the persistent field structure within the bar. k̃0 is, however,
raised to the eighth power in the denominator in Eq. (7).
Therefore, the scaling low deviates from Q ∼ ε3. Our simula-
tions show that in the avoided crossing regime the scaling law
is best approximated by Q ∼ ε2.75 as it seen from Fig. 2(b).

III. OPTIMIZING THE Q FACTOR IN AN INFINITE
ARRAY OF DIELECTRIC BARS

Now we consider the system of an infinite number of
coaxial dielectric bars arranged along the x axis with period
a as shown in Fig. 3(a). Then, the system becomes a one-
dimensional photonic crystal the spectrum of which above the
line of light is a set of leaky bands. In this section we examine
the leaky band of the infinite array in the spectral vicinity of
the high-Q resonance obtained in the previous section with
the use of the same numerical technique [36]. By using the
aspect ratio h/g in Fig. 3(a) as a control parameter and keeping
a/g = 2 we obtained the spectrum of the leaky band in the
vicinity of the � point. Our simulations show that for the band
spectrally close to the resonances in Fig. 1 a BIC emerges
as the imaginary part of the in-� eigenfrequency vanishes at
h/g = 1.3666, which is quite close to the highest-Q aspect
ratio h/g = 1.2914 for a single dielectric bar.

The dispersion of this band is shown in Fig. 3(b). One can
see that the imaginary part of the eigenfrequency vanishes
in the � point as k4

x as it was demonstrated in [28,38]. At
the same time the real part of the BIC host band has almost
flat dispersion which, as it was mentioned in the introduction,
is a key for designing high-Q resonances [31]. Remarkably,
our simulations demonstrate that tuning h/g to obtain the
BICs provides the most flat dispersive band in our setup.
If h/g is detuned from the BIC point the band exhibits a
more pronounced dispersion as it is seen from Fig. 3(b). In
Figs. 3(c) and 3(d) we show the evolution of the in-� eigen-
frequencies in the spectral vicinity of the � point. Notice that
the two eigenfrequencies exhibit essentially the same behavior
as those of a single dielectric bar in Figs. 1(a) and 1(b). The
only difference is that in the present case the imaginary part
can reach an exact zero indicating a true BIC. Finally, the
mode profiles for three different aspect ratios h/g are shown
in Fig. 3(e). Notice the striking resemblance between mode
B in Fig. 3 and mode E in Fig. 1. Thus, as an intermediary
conclusion we can state that in both cases the emergence of
high-Q modes is granted by the same Friedrich-Wintgen inter-
ference mechanism [16] with the same multipoles providing
the dominating contribution to expansion [Eq. (1)].
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FIG. 3. Bound state in the continuum in an infinite array of dielectric bars, a/g = 2, ε = 3.482. (a) The sketch of the system. (b) The leaky
bands supported by the infinite array. Solid blue line, the real part of the eigenfrequency of the BIC host band, h/g = 1.3666; dashed red line,
the same band at h/g = 1.8 with no BIC. The inset shows the dispersion of the imaginary part of the eigenfrequency of the BIC host band
against k4

x . (c) Real parts of the in-� eigenfrequencies against h/g. (d) Same as subplot (c) but for the imaginary part. (e) Mode profiles for
high-Q resonance in subplots (c) and (d) within a single elementary cell in the form of the absolute value of the field amplitude, |Ez| (p.d.u.):
mode A, h/g = 1.0955; mode B, h/g = 1.3666; mode C, h/g = 1.7990. The orientation of the structure corresponds to the inset in subplot (a).

The field pattern of mode B in Fig. 3 is clearly symmetric
with respect to x → x, the same as the outgoing waves in the
zeroth-order diffraction continuum at the normal incidence.
This indicates an in-� BIC unprotected by symmetry against
decay into the zeroth-order diffraction channel. We mention
in passing that unlike the common symmetry protected in-�
BICs the unprotected ones are much more difficult to set up
[35] as they require a careful tuning of at least one of the
parameters, h/g in our case.

IV. OPTIMIZING THE Q FACTOR IN A FINITE
ARRAY OF DIELECTRIC BARS

Now assume that the infinite array is terminated at both
ends to form a finite chain of N dielectric rods. In this situation
we expect that the BIC unprotected by symmetry gives rise
to a family of high-Q structural resonances with large N
asymptotic behavior Q ∼ N3, as it was found in [28], and
the field patterns of which within a single elementary cell are

similar to those shown in Figs. 1 and 3. In Figs. 4(a)–4(c) we
present the data on the Q-factor optimization procedure for
an oligomer of N = 5 dielectric bars under variation of the
aspect ratio g/h. The behavior of the high-Q eigenfrequency
in Figs. 4(a) and 4(b) is similar to that in Figs. 1 and 3 while
the mode profiles are drastically reshaped in transition across
the point of the maximal Q factor. The simulations for N = 5
show that Q = 1809 can be achieved with the aspect ratio
g/h = 1.3580 close to that for the BIC in the infinite array.
Such Q factor exceeds the optimum for a single dielectric
bar by an order of magnitude. The Q factor can be further
increased by increasing the number of the bars. The mode
profiles of such high-Q resonances and their Q factors are
presented in Figs. 4(d) and 4(e). Notice that the field patterns
represent a standing wave locked between the edges of the
array with the radiation from the edges suppressed by flat
dispersion of the BIC host band.

In contrast to an array of dielectric spheres and rods of
circular cross section [28] the system under scrutiny possesses

033830-4



Q-FACTOR OPTIMIZATION IN DIELECTRIC … PHYSICAL REVIEW A 100, 033830 (2019)

FIG. 4. High-Q resonances in oligomers of rectangular bars, ε = 3.482, a = 2g. (a) The real part of the eigenfrequency of the high-Q
resonance, N = 5. (b) Imaginary part of the eigenfrequency of the high-Q resonance, N = 5. (c) Mode profiles corresponding to the labels
in subplot (b) in the form of the absolute value of the field amplitude, |Ez|. The highest-Q mode with Q = 1809, g/h = 1.3580 is mode
B. (d) High-Q resonance, Q = 1.18 × 104, N = 10, g/h = 1.3766. (e) High-Q resonance, Q = 7.3 × 104, N = 20, g/h = 1.3766. The axes
orientation is shown by red arrows in the middle of the plot.

one extra dimensionless geometric parameter a/g which al-
lows for more freedom in optimizing the Q factor. Thus, the
Q factor can be further increased by changing the period of
the array, a. In Figs. 5(a), 5(b) and 5(e) we show the behavior
of the high-Q resonances for N = 5 in arrays of bars with
the aspect ratio h/g = 1.3580 found at the previous step in
optimization. As before, we see the multipolar conversion
similar to Figs. 1, 3, and 4. Our simulations show that with
N = 5 the maximal Q factor, Q = 2.85 × 103, more than
twice as large as for g = 2a, can be achieved at a/g = 2.1081.
In contrast to N = 5, for a larger number of bars, N = 10, the
optimization with respect to a/g = 2 at h/g = 1.3766 takes
no effect, resulting in the same Q = 1.16 × 104 at a/g = 2, as
seen from Figs. 5(c), 5(d) and 5(f). This can be qualitatively
explained by similarity of the array with larger N to its infinite
counterpart. It is also interesting to point out the sensitivity of
the Q factor to the period of the array. One can see in Figs. 5(b)
and 5(d) that the imaginary part of the eigenfrequency is

rapidly increased from its minimum with the growth of the
period.

Finally, let us consider excitation of high-Q resonances by
a dipole source, say an atom with a two-level intra-atomic
transition. The proposed setup is a key to evaluation of decay
rates of a quantum system in a dielectric nanoscale environ-
ment [39]. In Fig. 6(a) we show the spectrum of the maximal
amplitude of the electric-field component Ez. In Fig. 6(a) one
can see pronounced peaks corresponding to the maxima of
the resonant enhancement by the first two resonances induced
by the BIC [28]. The field profiles at the first two maxima are
shown in Figs. 6(b) and 6(c) with subplot (b) corresponding to
the mode with the maximal Q factor in Fig. 4(d). Importantly,
one can see that the obtained high-Q resonances can be
strongly excited by a quantum two level system, the Green’s
function of which with the source coordinate at the position
of the dipole [Figs. 6(b) and 6(c)] yields the effect of the
dielectric structure onto the quantum decay rates [39].
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FIG. 5. Q-factor optimization by varying the period of the array, ε = 3.482. (a) The real part of the eigenfrequency of the high-Q resonance,
N = 5, h/g = 1.3580. (b) The imaginary part of the eigenfrequency of the high-Q resonance, N = 5, h/g = 1.3580. (c) The real part of the
eigenfrequency of the high-Q resonance, N = 10, h/g = 1.3766. (d) The imaginary part of the eigenfrequency of the high-Q resonance,
N = 10, h/g = 1.3766. (e) The mode profiles at resonant eigenfrequencies labeled in subplot (b) in the form of the absolute value of the field
amplitude, |Ez|. (f) The mode profiles at resonant eigenfrequencies labeled in subplot (d). The axes orientation is the same as in Fig. 4.

V. DISCUSSION

In this paper we described a Q-factor optimization proce-
dure in oligomers composed of a finite number of periodically
arranged dielectric elements. The basic idea of the approach is
increasing the number of dielectric elements limiting to an op-
tical bound state in the continuum unprotected by symmetry.
The procedure consists of four steps.

(i) The choice of the basic dielectric element which will
later serve as a building block of the oligomer. In this step
the geometry of the building block is optimized with respect
to the maximal Q factor. The key to optimization is coupling
of two resonances [13–15] accompanied by multipolar con-
version [15,33,34]. In that sense the choice of rectangular
bars is justified since, unlike for dielectric spheres or rods of
circular cross section, the problem of resonant eigenvalues is
not integrable, allowing for avoided crossing of resonances
impossible in the integrable case. As a result at this step the
frequency of the high-Q resonance is obtained for the optimal
geometry by solving the eigenvalue problem for Maxwell’s
equations.

(ii) In the second step the building blocks are assembled
into an infinite periodic array with period approximately twice
as large as the spatial extension of the building block along
the axis of periodicity. The simulations for the eigenvalues
are rerun to find the optimal aspect ratio corresponding to di-
verging Q factor, i.e., an optical BIC. The frequency obtained
in the first step provides a good initial guess in search for
the BICs, since the individual building blocks are optically
weakly coupled as their far-field radiation is suppressed at
the Q-factor optimum. If the mode profile of the high-Q
resonance is symmetric in the direction perpendicular to the
axis of periodicity, the second step yields an optical BIC
unprotected by symmetry hosted by a leaky band with almost
flat dispersion, again due to weak optical coupling between
the building blocks. The initial choice of a = 2g is justified
by the following arguments. First, the distance between the
building blocks has to be large enough to provide weak optical
coupling and, thus, guarantee a flat dispersion about the �

point. On the other hand, the period must obey the inequality

aRe{k0} < 2π (8)

033830-6



Q-FACTOR OPTIMIZATION IN DIELECTRIC … PHYSICAL REVIEW A 100, 033830 (2019)

FIG. 6. Excitation of the high-Q resonances in the array with
N = 10, a/g = 2, h/g = 1.3766, ε = 3.482. (a) The spectrum of the
maximal field amplitude, Ez. (b, c) The field profiles of the scattering
solution at the peaks marked by A and B in subplot (a) in the form
of the absolute value of the field amplitude, |Ez|. In subplots (b) and
(c) the dipole source is located by the red cross. The axes orientation
is the same as in Fig. 4.

with k0 being the eigenfrequency found in step (i). The
inequality (8) ensures the absence of the first diffraction
order in the outgoing field. Otherwise, the BICs would be
destroyed by leakage in the first-order diffraction channels
(Wood’s anomaly). In our case the data from Fig. 1 with the
highest-Q resonance with gk0 = 2.304 suggest that a = 2g is
a reasonable choice.

(iii) The infinite array is truncated to form a finite oligomer
of N dielectric elements, and the optimization by changing
their geometry is run again for finding the maximal Q factor.
Notice that this step is much more expensive numerically,
since the computational domain is N times larger than that in
steps (i) and (ii). Fortunately, the frequencies of the high-Q
resonance supported by the individual building block and
the BIC are already known from (i) and (ii), providing the
lower- and the upper-frequency bounds for high-Q resonance
supported by the oligomer.

(iv) Finally, should the eigenfrequency of the high-Q res-
onance be different from that of the BIC, which is the case
for small N ≈ 5, a further optimization step can be taken by
varying the period of the array.

In the oligomer with N = 10 the above procedure results in
Q factors 100 times higher than in a single dielectric rod. Pre-
viously Taghizadeh and Chung [31] reported a record-high-Q
quasi-BIC with Q = 1.79 × 104 at vacuum wavelength λ =
1.55 μm supported by a dielectric resonator composed of
four unit cells at the same dielectric permittivity, ε = 3.482.
That resulted in the area of the resonator 2.2λ2 in terms of
the eigenmode wavelength. In this paper we obtained Q =
1.18 × 104 with the area of 3.2λ2 [Fig. 4(d)] and Q = 7.3 ×
104 with the area of 6.4λ2 [Fig. 4(e)]. Thus, the parameters
obtained with the proposed optimization procedure provide
the Q factors nearest to the best of the BIC-related setups
reported in the literature [28,31] with respect to the size of the
resonator. However, the primary advantage of the proposed
procedure, besides its simplicity, is the scaling law against the
number of dielectric elements [28], which is Q ∼ N3 for N >

10, whereas [31] reports Q ∼ N with saturation at N ≈ 7.
The scaling law against permittivity, in its turn, is dictated

by the multipole composition of the resonant eigenmode
according to Eq. (7) and given by the index of the multipole
providing the dominant contribution into the far-field radia-
tion. We speculate that a search for resonances with higher-
order multipoles could provide a faster growth of the Q factor
against permittivity than Q ∼ ε3 reported in this paper for
m = 3. We expect that the proposed optimization procedure
could be also applied to dielectric oligomers composed of
three-dimensional (3D) objects. To support this claim, in the
Appendix we present the numerical data on the Q-factor
optimization in arrays of coaxial dielectric disks. Similarly to
dielectric rods with rectangular cross section, the procedure
results in Q ≈ 104 at N = 10 and ε = 3.482. Finally, the
data in Fig. 6 suggest that the achieved high-Q resonances
can be effectively excited by the dipole source, suggesting
application to enhancement of the Purcell effect. Enhanced
Purcell factors in dielectric oligomers have been previously
demonstrated in [40,41]. Recently a rigorous theory of the
Purcell effect with resonant eigenmodes supported by an
open dielectric system was proposed in [42]. Here we restrict
ourselves with a rough estimate of the Purcell factor, F , for
a 3D system with a finite volume, presented in the Appendix,
where we find a relatively high Purcell factor F ≈ 930 with
N = 10. It should be pointed out that in our estimate we
neglected the material losses which would limit the Q factor
in a real dielectric. We believe that enhancement of the Purcell
effect by quasi-BIC is worth future study.
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APPENDIX: Q-FACTOR OPTIMIZATION
IN A 3D SYSTEM

Here we apply the proposed optimization procedure to an
oligomer composed of coaxial dielectric disks as shown in
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FIG. 7. (a) Oligomer composed of dielectric disks, ε = 3.482 and period a = 2g. (b) Real parts of two resonance eigenfrequencies of a
single disk in the avoided crossing regime. (c) Imaginary parts of two resonance eigenfrequencies of a single disk in the avoided crossing
regime. (d) The Q factor of the structural resonances against the number of disks. The inset shows the resonant eigenfrequencies. (e) The field
profile of the high-Q eigenmode with N = 9 and zero orbital angular momentum. The field is visualized in the form of the absolute value of
the azimuthal component of the electric field, |Eφ |, in the x0z plane, φ being the azimuthal angle in the x0y plane.

Fig. 7(a). To find the complex eigenfrequencies we applied
the numerical method described in [43]. In the case of a single
disk the problem was considered in [14] where the authors
found Q ≈ 200 with ε = 3.482. This was observed due to
interference of two radiating modes. The avoided crossing of
the positions of the resonances is shown in Fig. 7(b), while the
behavior of the imaginary parts of the resonant eigenfrequen-
cies is demonstrated in Fig. 7(c). Notice the resemblance with
Figs. 1(a) and 1(b), correspondingly. This suggests that the
findings of [14] provide a good candidate for the initial step
of the Q-factor optimization in the oligomer from Fig. 7(a).
For optimizing the Q factor we directly applied steps (ii) and
(iii) as described in Sec. V. All simulations were run for
the eigenmodes with zero orbital angular momentum. At step
(ii) we found that the system supports a BIC unprotected by
symmetry with eigenfrequency 2gk0 = 4.7488 at the aspect
ratio R/(2g) = 0.36481. At step (iii) we found that the Q
factor of the BIC-related resonance supported by the oligomer
is increased with the number of disks, reaching Q ≈ 2.5 × 104

with N = 10. Notice that this value is very close to the N = 10
resonance in Fig. 4(d). The dependence of the Q factor on N is
shown in Fig. 7(d). The frequencies of the high-Q resonances
are shown in the inset to Fig. 7(d). Finally, in Fig. 7(e) we plot
the field profile of the high-Q mode with N = 9.

Relying on the above data we can roughly estimate the
Purcell factor using the formula

F = 6πQ

Re{k0}3V
(A1)

with V as the mode volume. Since the high-Q eigenmode is
well localized in the oligomer, as it is seen from Fig. 7(e),
we estimate the mode volume as the volume of the dielectric
disks plus the blank spaces between them through the formula
V ≈ πR2g(2N − 1). This rough estimation yields a relatively
high Purcell factor F ≈ 930 with N = 10. Notice, however,
that this value is obtained for an ideal dielectric with no
material losses, and neglecting the correct definition of the
mode volume introduced in [42].

[1] S. John, Why trap light? Nat. Mater. 11, 997 (2012).
[2] D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales,

and J. Capmany, Integrated microwave photonics, Laser and
Photonics Rev. 7, 506 (2013).

[3] P. Qiao, W. Yang, and C. J. Chang-Hasnain, Recent
advances in high-contrast metastructures, metasurfaces,
and photonic crystals, Adv. Opt. Photonics 10, 180
(2018).

033830-8

https://doi.org/10.1038/nmat3503
https://doi.org/10.1038/nmat3503
https://doi.org/10.1038/nmat3503
https://doi.org/10.1038/nmat3503
https://doi.org/10.1002/lpor.201200032
https://doi.org/10.1002/lpor.201200032
https://doi.org/10.1002/lpor.201200032
https://doi.org/10.1002/lpor.201200032
https://doi.org/10.1364/AOP.10.000180
https://doi.org/10.1364/AOP.10.000180
https://doi.org/10.1364/AOP.10.000180
https://doi.org/10.1364/AOP.10.000180


Q-FACTOR OPTIMIZATION IN DIELECTRIC … PHYSICAL REVIEW A 100, 033830 (2019)

[4] C. Wei Hsu, B. Zhen, A. Douglas Stone, J. D. Joannopoulos,
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