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Evolution of the resonances of two parallel dielectric cylinders with distance between them
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We study evolution of resonant modes by traversing over the distance between two parallel dielectric cylinders.
The processes of mutual scattering of Mie resonant modes by cylinders result in an interaction between the
cylinders which lifts a degeneracy of resonances of the isolated cylinders. There are two basic scenarios of
evolution. For strong interaction of cylinders resonances bypass the Mie resonances with increase of the distance.
That scenario is typical for low-lying resonances (monopole and dipole). For weak interaction of cylinders the
resonances are bound around the Mie resonances of isolated cylinders that form the second scenario. Both
scenarios demonstrate a significant enhancement of the Q factor compared to the case of an isolated cylinder.

DOI: 10.1103/PhysRevA.100.043806

I. INTRODUCTION

It is rather challenging for optical resonators to support res-
onances of simultaneous subwavelength mode volumes and
high Q factors. The traditional way for increasing the Q factor
of optical cavities is a suppression of leakage of the resonance
mode into the radiation continua. That is achieved usually
by decreasing the coupling of the resonant mode with the
continua by the use of metals, photonic band gap structures, or
whispering-gallery-mode resonators. All of these approaches
lead to reduced device efficiencies because of complex de-
signs, inevitable metallic losses, or large cavity sizes. On
the contrary, all-dielectric subwavelength nanoparticles have
recently been suggested as an important pathway to enhance
capabilities of traditional nanoscale resonators by exploiting
the multipolar Mie resonances being limited only by radiation
losses [1,2].

The decisive breakthrough came with the paper by
Friedrich and Wintgen [3], which put forward the idea of
destructive interference of two neighboring resonant modes
leaking into the continuum. Based on a simple generic two-
level model they formulated the condition for the bound state
in the continuum (BIC) as the state with zero resonant width
for crossing of eigenlevels of the cavity or avoided crossing
of resonances. This principle was later explored in an open
plane wave resonator where the BIC occurs in the vicinity of
degeneracy of the closed integrable resonator [4].

However, these BICs exist provided that they embedded
into a single continuum of propagating modes of a directional
waveguide. In photonics the optical BICs embedded into
the radiation continuum can be realized in two ways. The
first way is realized in an optical cavity coupled with the
continuum of 2D photonic crystal (PhC) waveguide [5] that is
an optical variant of the microwave system [4]. An alternative
way is the use of periodic PhC systems (gratings) or arrays
of dielectric particles in which resonant modes leak into a
restricted number of diffraction continua [6–10]. Although the
exact BICs can exist only in infinite periodical arrays [11,12],
finite arrays demonstrate resonant modes with the very high
Q factor which grows quadratically [13] or even cubically

[14] with the number of particles (quasi-BICs). Even arrays
of three [15] and five dielectric rods demonstrate the Q factor
exceeding the Q factor of an individual particle by two and six
orders in magnitude, respectively [16].

Isolated subwavelength high-index dielectric resonators
are more advantageous from an applied point of view
to achieve high Q resonant modes (supercavity modes)
[2,17,18]. Such supercavity modes originate from avoided
crossing of the resonant modes, specifically the Mie-type
resonant mode and the Fabry-Pérot resonant mode under
variation of the aspect ratio of the dielectric disk which could
result in a significant enhancement of the Q factor. It is worthy
also to notice the idea of formation of long-lived, scarlike
modes near avoided resonance crossings in optical deformed
microcavities [19]. The dramatic Q factor enhancement was
predicted by Boriskina [20,21] for avoided crossing of very
high-lying whispering gallery modes in symmetrical photonic
molecules of dielectric disks on a surface.

In the present paper we study evolution of resonances of
two parallel dielectric cylinders under variation of distance
between them as sketched in Fig. 1 with a focus on the Q
factor. We consider the avoided crossing of low-lying resonant
modes (monopole, dipole, and quadruple) as different from
papers in [19–25], where the avoided crossing of high-lying
resonances, whispering gallery modes were considered.

II. AVOIDED CROSSING UNDER VARIATION OF
DISTANCE BETWEEN TWO CYLINDERS

The problem of scattering of electromagnetic waves from
two parallel infinitely long dielectric cylinders sketched in
Fig. 1 was solved a long time ago [26–28]. The solutions
for the electromagnetic field for the TE polarization with
the component of electric field directed along the cylinders
ψ = Ez (see Fig. 1) outside the cylinders are given by series
over the Hankel functions

ψ1 = ∑
n

A1nH (1)
n (kr1)einθ1 , (1)

ψ2 = ∑
n

A2nH (1)
n (kr2)einθ2 . (2)
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FIG. 1. Two identical infinitely long parallel dielectric cylinders
with radii a and refractive index

√
ε = √

30.

Inside the cylinders the solution is given by series over the
Bessel functions

ψ1 = ∑
n

B1nJn(
√

εkr1)einθ1 , (3)

ψ2 = ∑
n

B2nJn(
√

εkr2)einθ2 . (4)

By means of the Graf formula [29]

H (1)
n (kr1)einθ1 =

∑
m

in−mH (1)
m−n(kL)Jm(kr2)eimθ2 , (5)

H (1)
n (kr2)einθ2 =

∑
m

in−mH (1)
m−n(kL)Jm(kr1)eimθ1 , (6)

the total field ψ = ψ1 + ψ2 can be written completely in
either coordinate system.

Applying the boundary conditions at r j = a leads to the
system of homogeneous algebraic equations [26,28]

A1n = inSn(k)
∑

m

i−mHn+m(kL)A2n,

(7)
A2n = inSn(k)

∑
m

i−mHn+m(kL)A1n,

where Sn are the scattering matrix amplitudes for the isolated
cylinder

Sm(k) =
√

εJ ′
m(

√
εka)Jm(k) − J ′

m(k)Jm(
√

εk)

H (1)′
m (k)Jm(

√
εk) − √

εJ ′
m(

√
εk)H (1)

m (k)
. (8)

The solutions of this system (7) define the resonant modes if

Det[M̂2 − I] = 0 (9)

or

Det[M̂ ± I] = 0, (10)

where the sign “±” responds for antisymmetric and sym-
metric resonances, respectively. The complex roots of these
equations define the resonant frequencies or poles of the S
matrix, where matrix elements M̂ are given by Eq. (7) and

FIG. 2. Evolution of resonances (poles) with the distance be-
tween cylinders. Closed circles correspond to minimal distance L =
2a, where a is the radius of cylinders and crosses mark the indexed
Mie resonant frequencies of the isolated cylinder shown in Fig. 3.

equal

Mmn = Sm(k)im−nHm+n(kL) (11)

and I is the unit matrix.
Rigorously speaking the rank of the matrix M̂ given by the

number of the azimuthal indices m in series (7) is infinite.
However, in practice for numerical computation of the res-
onant frequencies we have to restrict the rank of the matrix
M̂ where the choice of the rank is determined by the range
of resonant frequencies in which we are interested. In the
present paper we are restricted by the case of subwavelength
cylinders ka ∼ 1 for which the rank defined by inequality
−5 � m � 5 turns out sufficient. In Fig. 2 we show the results
of computation or complex roots of Eq. (10) in the form of
their evolution for traversing over L. To simplify the picture
we presented only a part of the resonant frequencies. First of
all one can see from Fig. 2 that a major part of the resonances
evolves with the distance by-passing the Mie resonances of
the isolated cylinder marked by crosses. Second, there is a
small part of the resonances which are bound around the Mie
resonances with small imaginary parts. As a rule these Mie
resonances correspond to high-lying Mie resonances.

Let us consider the asymptotic behavior of poles for L →
∞. By use of asymptotical behavior of the Hankel functions
[30] we have for matrix (11) the following:

Mmn ∼
√

2

πkL
ei(kL−π/4)Sm(k)(−1)n. (12)

Let us take the eigenvector of matrix M̂
−→
ψ + =

(ψ1, ψ2, ψ3, . . .). Then Eq. (9) takes the following form:

√
2

πkL
eikLSm(k)

∑
n

(−1)nψn = ±ψm, (13)

which has the solution provided that√
2

πkL
eikL

∑
n

(−1)nSn(k) = ±1. (14)
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FIG. 3. Dimensionless Mie resonances (close circles) and corre-
sponding resonant modes (the component Ez) of the isolated cylinder.

For the absolute value we have

2e2γnL

π |kn|L = 1

| ∑m(−1)mSm(kn)|2 , (15)

where γn = −Im(kn). The poles of the isolated cylinder
are given by the poles of the S matrix, i.e., by equation
Sm(kn)−1 = 0. Therefore, from (15) it follows that, first, the
poles of double cylinders do not converge to the poles of
the isolated cylinder at L → ∞. The reason is related to
the exponential factor exp(γnL) of the resonant modes. In
open systems an eigenmode acquires a certain linewidth or
finite lifetime, so that the eigenfrequency becomes complex
valued due to leakage to the outside of cylinders. In the
literature these are also known as Gamow states [31] or leaky
modes [32]. Second, although kn → 0 at L → ∞ as indeed
Figs. 4(a) and 4(b) illustrate, the factor Im(knL) shown in
Fig. 4(c) diverges to a result in a divergence of the resonant
modes at large distances L that constitutes the problem with
normalization of the resonant modes [33].

Next, we consider the behavior of some typical resonances
shown in Fig. 2. Due to the symmetry relative to x → −x and
y → −y the resonant modes can be classified as ψσ,σ ′ , where
the indices σ = s, a respond for symmetric and antisymmetric
modes, respectively [22]. We start with the first two lowest
symmetric and antisymmetric resonances whose evolution is
shown in Fig. 5(a). One can see that the resonant modes
outside the cylinders can be approximated as hybridizations

0 50 100
0

5

10
(b)

FIG. 5. Evolution of resonant frequencies and monopole modes
ψ

(0)
s,s/a (a) and the Q factors with the distance between the cylin-

ders. Solid (dash) line shows symmetric (antisymmetric) reso-
nances. Closed circles correspond to L = 2a, open circles corre-
spond to L = 1000a, and cross corresponds to the monopole Mie
resonance 1.

of the Mie resonant modes

ψ
(m)
s;s/a = H (1)

m (kr1) sin(mθ1) ± H (1)
m (kr2) sin(mθ2),

(16)
ψ

(m)
a;s/a = H (1)

m (kr1) cos(mθ1) ± H (1)
m (kr2) cos(mθ2),

with m = 0, i.e., monopole Mie resonances except for the
close distance between the cylinders. Figure 5(b) shows the
evolution of the Q factor Q = −Re(kn)/2 Im(kn) for both
resonances. The Q factor of the antisymmetric resonance at
L = 2a exceeds the Q factor of the isolated cylinder as well
as the Q factor of the symmetric resonance by one order in
magnitude. As seen from Fig. 5(a) the antisymmetric resonant
mode becomes the dipole mode at L = 2a, which has the
resonant width by one order less than the resonant width of
the monopole mode as seen from Fig. 3.

The next resonances refer to hybridizations of the Mie
dipole, quadruple, etc. resonances which are degenerate in
the isolated cylinder. The coupling between cylinders strongly
depends on the symmetry of Mie resonant modes. The general
expressions and physical origin of the coupling of dielectric
resonators was considered in Refs. [34–36]. The coupling
constant can be written as [35]

v =
∫

dx dy[ε(−→r ) − 1]
−→
E ∗

1
−→
E 2, (17)

where
−→
E 1,2 are normalized solutions. Here the indices 1 and

2 imply the resonant modes of isolated cylinders. One can

0 500 1000
0
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0 500 1000
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-4
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FIG. 4. Behavior of resonant positions (a), resonant widths (b), and imaginary parts Im(kL) (c) of a few lowest resonances shown in Fig. 2
on the distance between cylinders.
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FIG. 6. Same as in Fig. 5 for hybridization of the Mie dipole
resonant modes. Cross marks the Q factor of the isolated cylinder.

see that the coupling constant is determined by overlapping
of resonant Mie modes which in turn depend on a distance
between the particles and directivity of radiation of the Mie
resonant mode.

That conclusion is well illustrated by the Mie dipole
resonant modes which are degenerate. The first dipole Mie
resonant mode, symmetric relative to x → −x, radiates preva-
lently towards the neighboring cylinder as shown in insets in
Fig. 6, while the second antisymmetric dipole Mie resonant
mode radiates away from the neighboring cylinder as shown
in insets of Fig. 7. As a result the interaction in the former
case turns out stronger compared to the latter case as it follows
from Eq. (17). That explains why the evolution of resonances
shown in Fig. 6(a) is similar to the case of interaction via the
monopole resonant modes in Fig. 5, while the evolution of
resonances in Fig. 7(a) is bound to the Mie dipole resonance
2. Respectively, the gain in the Q factor in the former case
is smaller than in the latter case as seen from Figs. 6(b)
and 7(b).

Moreover, for the symmetric resonance ψ
(1)
s;s/a the coupling

between the cylinders is so strong that resonance bypasses the
Mie dipole resonance 2 and then bypasses the monopole Mie
resonance 1 becoming close to the monopole resonance ψ (01)

s;s .
That property of symmetric hybridizations to bypass one by
one the Mie resonances is brightly illustrated in Fig. 8, where
at each event the resonant mode inside the cylinders becomes
close to the respective Mie resonant modes. Figures 8(a)
and 8(b) illustrate evolution of the resonances from the Mie
resonances 4 and 5, respectively. As shown in Fig. 3 they
correspond to the monopole and dipole Mie resonant modes

0 20 40
0

20

40

60

80
(b)

FIG. 7. Behavior of resonant modes, symmetric and antisymmet-
ric hybridizations (16) of dipole resonant modes of isolated cylinders
(a), and respective Q factors (b) for variation of distance between
them. The dipole Mie resonance is shown by red cross.

FIG. 8. Example of the evolution of the symmetric resonances
from the Mie resonance 4 (a) and 5 (b).

with higher eigenfrequencies because of the nodal radial line.
Therefore, the coupling (17) is weakened compared to the
monopole and dipole resonances 1 and 2, respectively. As
a result for traversing over the distance from the shortest
distance L = 2a till L ≈ 10a the resonances are bound to the
corresponding Mie resonances as seen from Figs. 8(a) and
8(b). However, with further increase of distance the coupling
between cylinders increases because of exponential factor
exp(γnL), where n = 4, 5. That unbinds the resonances from
the original Mie resonances 4 and 5, which bypass the low-
lying Mie resonances one by one.

For the antisymmetric resonance ψ
(1)
a;s/a the evolution is

cardinally different as shown in Fig. 7(a). When the cylin-
ders are close to each other the coupling is maximal, which
results in the maximal repulsion of the resonant frequencies.
A separation of the cylinders weakens the coupling so that
the resonances, symmetric and antisymmetric, are both bound
to the dipole Mie resonance 2 in Fig. 7(a). However, with
further separation of cylinders the coupling is strengthened
because of growth of the exponential contribution exp(2γ2L),
however small the resonant width γ2 was. As the result, the
resonant trajectories are unbound when the distance exceeds
1/γ1. Figure 7(a) and forthcoming figures brightly illustrate
this feature related to the exponential contribution exp(γnL)
of resonant modes. Figures 9 and 10 illustrate the second
scenario of evolution of resonances which are bounded by the
quadruple, octuple, etc. Mie resonances of the isolated cylin-
der because of weakness of interaction of cylinders through
these resonant modes. A spiralling of the complex resonant
frequencies in 3D plots is a consequence of exponential
contribution exp ikL in the asymptotic of Hankel functions.
Respectively, we observe only oscillating behavior of the Q
factor with substantial enhancement compared to the isolated
cylinder. Figures 10(c) and 10(d) show that the Q factor
can reach extremal enhancement for variation of the distance
similar to the WGM resonances [19–21]. And similar to
the dipole resonant hybridizations the evolution of hybridized
resonances with m = 2, 3, . . . also crucially depends on the
symmetry of the Mie resonant modes.

III. SUMMARY OF RESULTS AND CONCLUSIONS

For the isolated dielectric cylinder we have well
known Mie resonances specified by azimuthal index m =
0,±1,±2, . . . (monopole, dipole, quadruple, etc. resonances)
due to axial symmetry. Two parallel cylinders have no
axial symmetry and therefore the solutions of homogeneous
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FIG. 9. (a), (c) 3D plots of resonant frequencies complimented
by insets of resonant modes which are the hybridizations of the Mie
quadruple resonant modes for traversing over L. Cross marks the
quadruple Mie resonance 3 shown in Fig. 3. (b), (d) The correspond-
ing behavior of the Q factors where red closed circles mark the case
L = 2a.

Maxwell equations are given by a series of the Bessel (inside)
or Hankel (outside cylinders) functions in m. However, there
were no studies of the behavior of resonances of two identical
cylinders dependent on distance between the cylinders except
studies of the Q factor by Boriskina for extremely high-lying
resonances, whispering gallery modes [20,21]. The study pre-
sented in this paper reveals surprisingly complicated behavior
of the resonances with the distance which can be divided into
two families. In the first family the resonances bypass the Mie
resonances. At each event of that the resonant mode inside
the cylinders takes the field profile of the corresponding Mie
resonant mode, while the solution between the cylinders takes
regular symmetric or antisymmetric packing of half wave-
lengths. At these moments the Q factor achieves maximal
magnitudes. The resonances bound to the Mie resonances
form the second family and typical for higher resonances with
m = 1, 2, 3, . . ..

The dipole Mie resonances are double degenerate in the
isolated cylinder and constitute an exceptional case. Approach
of the second cylinder lifts this degeneracy that plays an im-
portant role in the evolution of resonances with the distance.
Those Mie resonant modes which radiate towards the neigh-
boring cylinder give rise to the coupling between cylinders
(17) larger than in the case of the Mie dipole resonant mode
radiating away from the cylinder. As a result the resonances in

FIG. 10. (a) 3D plot of the octuple resonances with resonant
modes in insets where cross marks the Mie resonance 8 shown in
Fig. 3. (b),(c) The corresponding plots of Q factor vs the distance
between cylinders.

the first case bypass the Mie resonances, while in the second
case resonances are bound. For variation of the distance the Q
factor shows the highest values when the resonances bypass
the Mie resonances, while in the second family the Q factor
shows oscillating behavior with maxima which can exceed the
Q factor of the isolated cylinder three times.

One can consider the evolution of resonances hybridized
from the Mie resonant modes with the TM polarization (H
modes) for traversing over the distance between cylinders.
The corresponding system of algebraic equations for ex-
pansion coefficients is derived by Olaofe [26]. However, a
consideration of the case of TM polarization brings little new
compared to the case of TE polarization. It is worthy also to
note that Olaofe has shown also oscillatory behavior of the
cross section with cylinder separation L that was revisited
recently by Dmitriev and Rybin [37].

ACKNOWLEDGMENTS

We acknowledge discussions with D. N. Maksimov. This
work was partially supported by Ministry of Education
and Science of Russian Federation (State Contract No.
3.1845.2017) and The Russian Foundation for Basic research
RFBR Grant No. 19-02-00055.

[1] A. Kuznetsov, A. Miroshnichenko, M. Brongersma, Y. Kivshar,
and B. Luk’yanchuk, Science 354, aag2472 (2016).

[2] K. Koshelev, A. Bogdanov, and Y. Kivshar, Sci. Bull. 64, 836
(2019).

[3] H. Friedrich and D. Wintgen, Phys. Rev. A 32, 3231
(1985).

[4] A. F. Sadreev, E. N. Bulgakov, and I. Rotter, Phys. Rev. B 73,
235342 (2006).

043806-5

https://doi.org/10.1126/science.aag2472
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1126/science.aag2472
https://doi.org/10.1016/j.scib.2018.12.003
https://doi.org/10.1016/j.scib.2018.12.003
https://doi.org/10.1016/j.scib.2018.12.003
https://doi.org/10.1016/j.scib.2018.12.003
https://doi.org/10.1103/PhysRevA.32.3231
https://doi.org/10.1103/PhysRevA.32.3231
https://doi.org/10.1103/PhysRevA.32.3231
https://doi.org/10.1103/PhysRevA.32.3231
https://doi.org/10.1103/PhysRevB.73.235342
https://doi.org/10.1103/PhysRevB.73.235342
https://doi.org/10.1103/PhysRevB.73.235342
https://doi.org/10.1103/PhysRevB.73.235342


BULGAKOV, PICHUGIN, AND SADREEV PHYSICAL REVIEW A 100, 043806 (2019)

[5] E. N. Bulgakov and A. F. Sadreev, Phys. Rev. B 78, 075105
(2008).

[6] S. P. Shipman and S. Venakides, Phys. Rev. E 71, 026611
(2005).

[7] D. C. Marinica, A. G. Borisov, and S. V. Shabanov, Phys. Rev.
Lett. 100, 183902 (2008).

[8] C. W. Hsu, B. Zhen, J. Lee, S. G. Johnson, J. D.
Joannopoulos, and M. Soljačić, Nature (London) 499, 188
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