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Talbot effect based on a Raman-induced grating
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We theoretically study the Talbot effect resulting from Raman-induced grating based on periodic spatial
modulation of the Raman gain and dispersion in the field of a standing pump wave. Features of integer and
fractional Talbot effects are demonstrated for one- and two-dimensional (1D and 2D) Raman-induced gratings.
It is shown that the intensity of diffraction images can increase due to Raman amplification in the grating.
Glass-shaped diffraction patterns are demonstrated for 2D gratings. It is also shown that in the vicinity of the
Talbot planes there are planes in which the diffraction patterns are spatially compressed and the intensity becomes
greater. The results expand the possibility of using the Talbot effect in various applications.
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I. INTRODUCTION

The Talbot effect (TE) (also referred to as self-imaging or
lensless imaging) is a near-field diffraction phenomenon. The
effect arises when spatially periodic structures (gratings) are
illuminated by a light wave [1,2]. TE can give self-imaging at
certain periodic planes (the Talbot planes), where imaging of
a grating is periodically repeated with a period ZT = 2�2/λ

(the Talbot length) in the direction of light propagation (�
is the grating period, λ is the wavelength of the illuminating
light). This effect is also called the integer Talbot effect. At the
distance Z = (p/q)ZT (p and q are positive integers, p < q),
diffractive patterns are similar to the grating but the period of
the image is different from that of the object. This property is
referred to as the fractional Talbot effect (FTE).

These phenomena are the consequences of interference
between diffraction orders, which acquire a quadratic phase
under Fresnel propagation. These effects have interesting
applications in many different areas, for example, in optical
imaging and computing [1], optical microscopy [3], Talbot
array illumination [4,5], and lithography [6]. The Talbot ef-
fect has also been demonstrated in atomic waves [7], Bose-
Einstein condensates [8], waveguide arrays [9], plasmonic
Talbot effect [10], exciton polaritons [11], and metamaterials
[12]. In addition, the Talbot effect has been extended to the
temporal [13], nonlinear [14], angular [15], and PT-symmetric
[16] Talbot effects.

In most of the existing works the grating to be imaged
is usually material. Recently, the Talbot effect was reported
using a nonmaterial grating [17–19]. This grating is an elec-
tromagnetically induced grating (EIG) [20]. It is based on the
electromagnetically induced transparency (EIT) phenomenon
[21]. Such an induced grating leads to self-images, which are
called the electromagnetically induced Talbot effect (EITE).
EITE offers a nondestructive and lensless way of imaging
ultracold atoms and molecules in the Fresnel diffraction
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region [17]. It possesses certain distinguishable features due
to the light-induced atomic coherence in atomic media and
allows easy control of different experimental parameters in
order to get an optimal configuration for desired applications.
An atomic imaging scheme based on the second-order two-
photon EITE is proposed in [22].

Another type of a lensless imaging scheme based on elec-
tromagnetically induced holographic imaging is proposed in
[23]. In contrast to the EITE scheme [17], this one allows both
the amplitude and phase information of the generated EIG to
be imaged with the characteristic of the arbitrarily controllable
image variation in size.

In this paper, we propose another type of EITE which is
based on a Raman-induced grating (RIG) in atomic media
[24–26]. Such a grating occurs during Raman interaction of
the probe field with a standing-wave pump field in atomic
media. Unlike EIGs based on EIT, a RIG is based on spatial
modulation of the Raman gain and refractive index for
the probe wave in a pump standing wave. In Ref. [27], a
Fraunhofer diffraction was investigated, when the probe
field propagates normal to the standing wave, and a RIG
can operate as a diffraction grating. Herein, we study the
features of integer and fractional Talbot effects from one-
(1D) and two-dimensional (2D) Raman-induced gratings.
These phenomena are observed in Fresnel diffraction in the
near field and are fundamentally different from the Fraunhofer
diffraction in the far field. This work may expand the variety
of applications in imaging techniques and be useful for optical
lithography as well.

II. MODEL

We consider a homogeneously broadened medium consist-
ing of an ensemble of three-level atoms in a � configuration,
with two metastable lower states |0〉 and |2〉 [Fig. 1(a)].
Initially, the entire population is distributed in the ground
state |0〉. Two ground states |0〉 and |2〉 are coupled to the
excited state |1〉 via a standing-wave pump field of angular
frequency ω1 with a large detuning �1, and a weak probe
field of angular frequency ω2 with a detuning �2. In the case
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FIG. 1. (a) Three-level �-type atomic system for Raman-
induced grating. (b) Configuration of a standing-wave pump field.

of a 1D grating the pump field consists of two fields that
propagate at an angle 2� symmetrically with respect to the
z direction and, when intersecting generate a standing wave
within the medium along the x direction with a spatial period
� = λ1/[2 sin �], depending on the angle � [Fig. 1(b)]. The
probe field propagates along the z direction normal to the
standing wave. For a 2D grating the pump field is to be a
combination of two orthogonal standing waves of the same
frequency, and the probe field propagates normal to the the x-y
plane in the intersection region of the two orthogonal standing
pump waves. In the approximation of a thin grating [20], when
diffraction within the bulk of the medium can be ignored, the
probe field E2(x, y, L) at the output surface z = L is

E2(x, y, L) = E2(z = 0) exp(−k2χ
′′
2 L) exp(ik2χ

′
2L), (1)

Here E2(z = 0) is the amplitude of the probe plane wave at the
input surface, L is the medium length, k2 = ω2/c, χ ′

2 = Re χ2,
and χ ′′

2 = Im χ2.
The linear macroscopic susceptibility χ2(ω2) of the system

at the probe frequency ω2 is expressed as [27]

χ2(ω2) = αr
γ12

�2
1

|Gp|2
(�20 + iγ20 + |Gp|2/�1)

, (2)

where Gp(x) = G1 sin(πx/�) is the Rabi frequency of the
pump field in the case of 1D grating and Gp(x, y) =
G1[sin(πx/�x ) + sin(πy/�y)] for the 2D grating, where �x,y

is the period of a standing wave along x and y axes; αr =
|d12|2N/2h̄γ12, �1,2 = ω1,2 − ω10,12 is one-photon detuning,
�20 = �1 − �2 is the Raman detuning; ωmn, γmn, and dmn

are the frequency, half width, and matrix dipole moment of
transition, respectively; and h̄ is Planck’s constant. Near the
Raman resonance (|�20| � |�1|, |�2|) the detuning �2 ≈
�1. Here we assume that |�1| � γ10, G1 and that the probe
field is weak considering that all atoms remain in the ground
state |0〉 in the process of interaction. It can be seen from
(2) that by changing the intensity and frequency of the pump
field, one can effectively control the susceptibility χ2(ω2).
When |Gp|2/|�1| > γ20 the pump field induces an AC-Stark
shift of the state |1〉, which leads to a shift of the Raman
resonance by �S = |Gp|2/�1 depending on the transverse
coordinates. Since the Stark shift is proportional to |G1|2, then
the amplitude of perturbed resonance increases significantly
in comparison with the unperturbed one. From Eqs. (2) and
(1), it can be seen that the Raman gain and the refractive index
for the probe field are periodically modulated in a space along
the direction x in the case of 1D grating or along x and y
directions for 2D grating.
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FIG. 2. Output profiles of (a) the probe field amplitude |T (x, L)|
and (b) the phase �(x, L) as a function of x within a single space
period. The parameters are G1 = 2 (solid curves) and G1 = 2.5
(dashed curves), �20 = 40.

III. RESULTS AND DISCUSSION

In our calculation we used the parameters for the D1 line
of sodium atoms, and levels |0〉 and |2〉 correspond to the
long-lived superfine sublevels of the ground state 2S1/2. The
following atomic parameters are used: γ10/2π = 10 MHz,
γ21 = γ10, γ20 = 10−3γ10. The Rabi frequency G1 and one-
photon detuning δ1 are given in γ10 units, the Raman detuning
�20 in the units γ20, �1 = −100, the atomic media length
L = 10 is given in the units z0 = 1/k2αr , and the grating
period is � = 20λ1.

A. 1D grating

Consider the case of a 1D grating. Let us intro-
duce the complex transmission (gain) function T (x, L) =
E2(x, L)/E2(z=0)=|T (x, L)| exp(i�(x, L), where |T (x, L)|
= exp(−k2χ

′′
2 L) is the amplitude and �(x, L) = exp(ik2χ

′
2L)

is phase of the transmission function. Typical plots of
|T (x, L)| and �(x, L) as a function of x are shown in Fig. 2. It
is clear that the probe field is amplified and the gain depends
on the transverse coordinate x and reiterates along x with
a period � controlled by the standing pump wave. Thus,
an optical grating (nonmaterial) is induced on the output
plane on which the probe wave diffracts. This grating is a
combination of an amplitude (gain) and a phase (refraction)
gratings, that is, it is a hybrid grating. The period of the grating
� can be made arbitrarily larger than the wavelength λ2 of
the probe field by varying the angle between the two pump
fields generating a standing wave. The grating profile on the
x coordinate depends on the standing-wave amplitude G1 and
Raman detuning �20. The transmission profile represents one
or two symmetrical peaks, which is due to the AC-Stark shift
of the Raman resonance induced by the pump field [Fig. 2(a)].
The position of the peaks corresponds to the perturbed Raman
resonance (with the account of the Stark shift). The solid blue
line in Fig. 2(a) corresponds to the case when a perturbed
Raman resonance occurs for the pump field at the center of
the period.

With the increasing pump field, a spatial splitting of the
peak occurs (dashed red line), and the larger the G1, the
stronger the peaks shift and they are spatially compressed. The
phase of the transmission function is also spatially modulated
along the x direction [Fig. 2(b)].
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FIG. 3. Normalized intensity distributions of the probe field at
various distances within a two-space period. The parameters are (a)
G1 = 2, (b) G1 = 2.5, and �20 = 40.

Using the Kirchhoff diffraction integral under the Fresnel
(paraxial) approximation [28], the output probe field E2(X, Z )
for a 1D grating at distance Z from the output surface of the
medium can be expressed as

E2(X, Z ) = 1 + i√
2λ2Z

e−ik2Z
∫ ∞

−∞
T (x, L)

× exp

{
− ik2

2Z
(x − X )2

}
dx, (3)

where x and X are the coordinates in the object and observa-
tion planes, respectively.

Completing the integral in (3) with the Fourier series
expansion of T (x, L), we can obtain the Talbot effect as

E2(X, Z ) = ie−ik2Z
∑

n

Cn exp(i2πnX/� − i2πn2Z/ZT ),

(4)

where ZT = 2�2/λ2 is the Talbot length, and Cn is the Fourier
coefficient (or the amplitude of the n\rm{th} harmonic).

From Eq. (4), we can see the typical features of the Talbot
effect on a RIG. At a certain distance Z = mZT , where m
denotes a positive integer, the field amplitude matches the
amplitude at the output plane of the RIG (the self-images)
and all diffraction orders are in phase. For Z = ZT /2 the field
amplitude is exactly the same as the amplitude at the output
RIG plane, but the phase is shifted by half a period. Figure 3
shows typical transverse profiles of the normalized intensity
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FIG. 4. (a) Normalized intensity distribution of the diffraction
pattern as a function of X and Z near the Talbot plane Z = ZT

within a single-space period. The solid curve (red) corresponds to the
intensity distribution in the Talbot plane, the dash-dotted (blue) line
corresponds to the maximum intensity plane. Intensity distribution
I2(X ) is shown in the planes of maximum amplitude, at a distance
of a = −10−3ZT from the planes (b) Z = ZT /4 and (c) Z = ZT /8
(dash-dotted blue curves). For comparison, an intensity profile is
shown in (b) Z = ZT /4 and (c) Z = ZT /8 (solid red curves). The
parameters are G1 = 2 and �20 = 40.

I2 = I2(Z )/I2(z = 0) of a diffracted wave at distances
Z = (p/8)ZT (p = 0, 1, 2, . . . , 8) from the grating. It can be
seen that their intensity can be substantially higher than the
intensity of the radiation incident on the medium. This is due
to the Raman gain in the grating. For fractional ZT , the field
amplitude and the period undergo change and the diffraction
pattern is no longer a replica (self-image) of the grating, but it
is periodic in nature. With fractional values of ZT , the period
changes, and the intensity distribution is no longer a RIG
self-image. Note that in Fig. 3(b) the number of peaks in one
period is twice the number in Fig. 3(a). This is due to splitting
of the transmission function T [Fig. 2(b)] caused by the Stark
effect.

Figure 4(a) shows the intensity distribution of the diffrac-
tion pattern on X and Z coordinates near the Talbot plane
Z = ZT . It can be seen that there is a plane Z < ZT (dash-
dotted curve) where the maximum intensity is greater than
in the Talbot plane (solid curve), and spatial distribution on
the transverse coordinate becomes narrower, that is, spatial
compression occurs. This behavior takes place as for integer
and fractional TEs [Figs. 4(b) and 4(c)]. Thus, near the Talbot
planes there are planes that can be called the planes of
maximum intensity.

To understand this result, we introduce the notation Z =
ZT − a, where a is the distance from the ZT plane to the
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FIG. 5. Transmission function profiles for a 2D grating on
the output face of the medium |T (x, y, L)| for (a) G1 = 1, and
(b) G1 = 1.03.

maximum intensity plane, and rewrite formula (4) as

E2(X, a) ∼
∑

n

Cn exp(i2πnX/� + i2πn2a/ZT ), (5)

Formula (5) for E2(X, Z ) in the plane Z = ZT − a differs from
the field in the Talbot plane by the additional phase 2πn2a/ZT ,
which can renormalize the phases of the harmonics in such
a way that spatial compression of the diffraction patterns
occurs, as can be seen from Fig. 4.

B. 2D grating

Consider now the case of a 2D grating. In this case the
pump field is formed by two standing waves that are directed
along the x and y axes (perpendicular to each other). The
probe field propagates along the z direction perpendicular
to the x-y plane. In this case, the transmission function
T (x, y, L) will be periodic in x and y directions T (x, y, L) =
T (x + 2�x, y, L) = T (x, y + 2�y, L) with the period 2�x,y.
Figure 5 shows two typical profiles of the transmission func-
tion |T (x, y, L)| for a 2D grating on the output face of the
medium. The parameter G1 is chosen such that there is no
spatial splitting in |T (x, y, L)| in the former case [Fig. 5(a)],
whereas in the latter case [Fig. 5(b)], |T (x, y, L)| splits. In the
former case, the intensity distribution has one peak structure,
and in the latter case, it is glass shaped. It can be seen that for
the 2D grating, the period in the x and y directions has doubled
compared to the 1D grating.

For a 2D grating the probe field E2 at a distance Z from the
grating is

E2(X,Y, Z ) = i

λ2Z
e−ik2Z

∫∫ ∞

−∞
T (x, y, L)

× exp

{
− ik2

2Z
[(x − X )2 + (y − Y )2]

}
dxdy.

Expanding T (x, y, L) in a Fourier series, yields the diffracted
amplitude E2(X,Y, Z ) in the form

E2(X,Y, Z )= e−ik2Z
∑
n,m

Cn,m exp(i2πnX/�1x+i2πmY/�1y)

× exp
(−iπn2λ2Z/�2

1x − iπm2λ2Z/�2
1y

)
.

(6)

Here �1x,1y = 2�x,y is the spatial period of T (x, y, L) along
directions x and y, respectively.

FIG. 6. Normalized intensity distribution of the diffraction pat-
terns as a function of X and Y within a single-space period at the
distances Z = ZT and Z = ZT /2 [in (a),(b)], Z = ZT /4 [(c),(d)],
and Z = ZT /8 [(e),(f)] for G1 = 1 [(a),(c),(e)], and G1 = 1.03
[(b),(d),(f)].

Note that 2D diffraction grating cannot be considered as
the superposition of two 1D gratings in contrast to conven-
tional material gratings. This is because the transmission of
the RIG is a nonlinear function of the pump field, depend-
ing on the x and y coordinates, and therefore cannot be
represented as a product of functions that depend only on one
coordinate.

From Eq. (6), we can see that TE is observed for two
cases. The first case is �1x = �1y = �1 and the second one
is �1x/�1y = a/b, where a and b are mutually prime integers.
The distance at which self-imaging is observed is called
the Talbot length. In the former case the Talbot length is
ZT = 2�2

1/λ2. In the latter case, when �1x/�1y = a/b, the
Talbot length is ZT = 2b2�2

1x/λ2 = 2a2�2
1y/λ2. Under these

conditions all diffraction orders are in phase and the object
function is reproduced. From (6) it follows that

E2(X,Y, Z ) 

∑
n,m

Cn,m exp(i2πnX/�1x + i2πmY/�1y)

× exp[−2iπ (b2n2 + a2m2)Z/ZT ].

The analysis shows that the Fourier coefficients Cn,m are
nonzero only if n and m have the same parity. Then two
options are possible:

(1) a and b are odd (including the case a = b = 1), then
(b2n2 + a2m2) is always even. In this case, the field distri-
bution in the Z = ZT and Z = ZT /2 planes coincides with
that on the output plane of the RIG, as shown in Figs. 6(a)
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and 6(b) (for the case of a = 5, b = 7), and is shifted by
half the period in the plane Z = ZT /4, as shown in Figs. 6(c)
and 6(d). Figure 6(e) and 6(f) show Talbot images in the
Z = ZT /8 plane.

(2) a and b have different parity, then the factor (b2n2 +
a2m2) may have different parity, and the field distribution is
similar to the 1D case; that is, for Z = ZT , the field distribution
exactly coincides with the field distribution on the output
plane of the RIG, is shifted by half a period for Z = ZT /2,
and has a period of two times smaller for Z = ZT /4. Thus,
the behavior of diffraction patterns for fractional TE in 2D
gratings is fundamentally different from the 1D case.

IV. CONCLUSION

In conclusion, we have studied the features of integer
and fractional Talbot effects on 1D and 2D Raman-induced
gratings in different conditions and shown how to control the
diffraction pattern in the Talbot planes. In contrast to con-

ventional gratings, the intensity of diffraction patterns (Talbot
images) under certain conditions can be enhanced by Raman
amplification in the grating. It is shown that near the Talbot
planes there are planes in which the intensity is greater than in
the Talbot planes, and the degree of their spatial localization
is greater. We find that single-peak and glass-shaped Talbot
images can be obtained on a two-dimensional grating. The
predicted effects are the result of the combined action of the
amplitude and phase gratings. The dependence of the field
distribution in the Talbot fractional planes for the 2D grating
on the ratio of the periods along the x and y coordinates
is determined. The results obtained may be of interest for
microscopy using the Talbot effect, Talbot array illumination,
photolithography, etc.
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