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High-Q resonant modes in a finite array of dielectric particles
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We trace the Q factor of the resonant modes which are limited to bound states in the continuum (BICs) for
N = ∞ in the finite array of N dielectric spheres and disks. For the symmetry-protected BICs we observe the
quadratic dependence of the Q factor on N for high-refractive-index particles, while for low-refractive-index
particles there is an interplay between the quadratic and cubic dependencies. The Q factor of accidental BICs
grows cubically with N . We show that a plane wave can excite these quasi-BICs for tuning of the angle of
incidence.
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I. INTRODUCTION

Recently bound states in the radiation continuum (BICs)
with zero Bloch vector were reported in infinitely long peri-
odic arrays of dielectric cylinders in air [1–16] and on a sub-
strate [11,15,17–24] (see also for the arrays of metallic wires
on a substrate [25] and metal plates [26]). BICs propagating
along the array were also shown to exist [5,14,27–32] as well
as the BICs which can propagate along the cylinders [32,33],
forming a new family of guided modes with frequencies
above the light line. Among these periodic systems the one-
dimensional arrays of spheres and disks are unique because of
the axial symmetry that gives rise to the BICs with orbital
angular momentum (OAM) [34–36], which is reflected in
anomalous scattering of plane waves by the array, resulting in
scattered electromagnetic fields with OAM propagating along
the array [35,37,38]. Physically, the occurrence of BICs in
the infinite array of dielectric particles is the result of the
periodicity of the array that quantizes the radiation continua
in the form of diffraction continua [5,38].

Obviously, infinite arrays of dielectric particles is an un-
realistic limit. In practice, we deal with a finite number of N
particles which have material losses given by the imaginary
part of the refractive index, structural fluctuations of particles,
the effect of substrate, etc., transforming the true BIC into a
resonant mode with a small resonant width [22,36,38–41]. Al-
though the full range of study of these factors is still far from
completion, it was shown that the Q factor of the symmetry-
protected quasi-BICs grows quadratically with N [36,40]
and cubically for the accidental BICs [40]. First the cubic
dependence Q(N ) was shown for the guided bound modes
below the light line due to emission from the ends of the tight-
binding chain [42,43]. Although the dependence Q(N ) ∼ N2

was shown for the symmetry-protected (SP) BIC in the high-
contrast disks [36], the case of the low-contrast particles does
not obey this law, as we show here. The dependence Q(N )
for the non-symmetry-protected (accidental) BICs is cubic
irrespective of the refractive of index of particles.

In the present paper we study Q(N ) of the resonant modes
which are limited to the BICs for N → ∞, both symmetry

protected and accidental. Specifically, we consider finite ar-
rays of dielectric spheres and coaxial disks. We reveal that the
SP quasi-BICs radiate from the entire array while the acciden-
tal, quasi-BICs radiate only from the ends of the array. Also,
we simulate radiation of resonant modes with use of a toy
tight-binding chain, showing that coupling of the chain with
the continuum results in different degrees of Q(N ). Moreover,
the model reveals an important role of the value of coupling
between dielectric particles which is inversely proportional
to the refractive index of dielectric particles in the array.
Because the group velocity of radiation is proportional to the
bandwidth, i.e., the coupling between particles, we observe
a clear tendency to enhance the Q factor with increasing the
refractive index.

The phenomenon of enhancement of the Q factor was
demonstrated by Rybin et al. [44], even for a single disk
for variation of the aspect ratio, but the arrays of only a
few dielectric rods show an extremely large Q factor [41]. A
enhancement of the Q factor of dielectric nanoresonators is of
a paramount interest and opens up new horizons for active and
passive nanoscale all-dielectric devices.

II. RESONANT APPROXIMATION

The problem of scattering of electromagnetic waves by
arrays of dielectric spheres can be formulated in the form of
linear algebraic equations [34,35,37,38],

L̂
−→
� = −→

� inc , (1)

where the matrix L̂ is determined by a specific structure
of dielectric particles, and the solution of this equation is
given by the right-hand term, which is a source of elec-
tromagnetic waves. The specific form of the matrix L̂ and
incident wave

−→
� inc depends on a choice of the basis of

specific representation. Respectively, for the case of spheres it
is convenient to project the Maxwell equations onto the vector
spherical functions specified by orbital momentum numbers
l, m, where m = −l, . . . , l [34,35,38,45]. The incident wave
can be TE/TM polarized with the electric and/or magnetic

2469-9926/2019/99(3)/033851(9) 033851-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.033851&domain=pdf&date_stamp=2019-03-26
https://doi.org/10.1103/PhysRevA.99.033851


EVGENY N. BULGAKOV AND ALMAS F. SADREEV PHYSICAL REVIEW A 99, 033851 (2019)

FIG. 1. Linear array of N (a) dielectric spheres and (b) disks.

field normal to the z-axis plane. We refer to the Appendix,
where we present the matrix L̂ and incident wave

−→
� inc for the

case of a finite number of dielectric spheres.
On the other hand, there are solutions of the homogeneous

equation

L̂
−→
� = 0 (2)

which define the bound modes of the array. The solution of
this equation with real frequency can be found only for the
infinite periodical array comprising the bound states. For the
finite arrays Eq. (2) can be solved by analytical continuation
of the frequency whose imaginary part of the eigenfrequency
defines the resonant width. In order to imagine the matrix
elements of matrix L̂ we refer the reader to Refs. [34,45].

There might be two kinds of bound modes. The first type
of mode has a wave number β > k0 and describes guided
waves along the array with wave number β and frequency
k0 below the light line. These solutions exist when the pe-
riod of the array L is less than half of the wavelength λ =
2π/k0 [42,45–47]. The second type of bound mode, with β <

k0, resides above the light cone to realize BICs [5,14,27–33].
In what follows we use dimensionless units, frequency k0 =
ωh
c , and wave number along the array β = kzh, where h is the

distance between the dielectric particles in the array as shown
in Fig. 1.

For the present problem it is important to note that L̂ is
a square non-Hermitian matrix which can be defined in a
biorthogonal basis of left and right eigenvectors,

−→y iL̂ = λi
−→y i, L̂−→x i = λi

−→x i, (3)

where −→y i · −→x j = δi j . Then the condition of completeness
takes the following form:∑

i

−→x i · −→y i = 1, (4)

from where one can write the following equalities,

L̂ =
∑

i

λi
−→x i

−→y i, L̂−1 =
∑

i

−→x i
−→y i

λi
, (5)

as well as the solution of Eq. (1),

−→
� =

∑
i

−→x i
−→y i

λi

−→
� inc. (6)

In what follows we are interested in high-Q eigenmodes
which are limited to BICs for N → ∞. In the linear periodic
arrays with finite N these modes are distinguished by packing
of an integer number of half wavelengths with correspond-
ing frequencies proportional to πn/N, n = 1, 2, 3, . . . [36].
In what follows we focus on the lowest eigenmode whose
corresponding complex eigenvalue λc is limited to zero with
N → ∞ to identify this mode as the SP BIC at the � point.
We can consider this eigenmode to be the null eigenvector,
as it follows from Eq. (2) [48], and write in the vicinity of
resonant frequency

λc = iq[k0 − k0c + iγc], (7)

where a small γc is responsible for weak leakage of this eigen-
mode with frequency k0c. Expression (A11) is convenient for
numerical calculation of the poles. Therefore the quasi-BIC
mode dominates in the series (6)

−→
� ≈ −Wc

q

i

k0 − k0c + iγc

−→x c. (8)

We then define the complex value

Wc = −→y c
−→
� inc (9)

as the coupling constant of the incident wave with the resonant
mode [49].

III. Q(N) IN THE ARRAY OF SPHERES

We start consideration of the SP quasi-BICs in the finite
arrays of dielectric spheres with m = 0. In Fig. 2(a) the true
BIC solution with coefficients a0

l and bl independent of cite
index j in the series (A2) is shown [34], which transforms into
the resonant mode with finite linewidth when N is restricted.
The profile of one component of the EM field of this SP
quasi-BIC with TM polarization is shown in Fig. 2(b) with
coefficients |b0

l ( j)| in Fig. 2(c), which shows that mainly
the vector spherical functions with orbital quantum number
l = 2 contribute to the resonant mode −→y c. For the case of
TM polarization, the coefficients b0

l mostly contribute into
the solution. In contrast to the case of an infinite array of
spheres, there is also the contribution with l = 1. One can
see that the SP quasi-BIC radiates from the whole array to
give rise to the quadratic dependence of the Q factor on the
number of spheres, as shown in Fig. 3(a), similar to the finite
array of dielectric cylinders [40] and disks [36]. Therefore the
case of spheres does not bring something new.

The accidental BIC shown in Fig. 4(a) also transforms into
the quasi-BIC when the number of spheres is finite. However,
the radiation power of the accidental quasi-BIC is smaller
compared to the former SP quasi-BIC. Figure 4(b) reveals that
the reason is the accidental quasi-BIC radiates mostly from
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FIG. 2. Profile of the electromagnetic field for (a) of the SP BIC
of TM polarization at the � point in the infinite periodic array of
silica spheres with frequency k0c = 3.6026 and (b) of the SP quasi-
BIC of a finite array of 50 spheres with frequency k0c = 3.602 15.
For clear resolution of the EM field profiles, we show only half
of the array. (c) The coefficients of expansion in series (A2). The
parameters of the spheres are R = 0.4, ε = 15.

ends of the arrays, which enormously reduces the radiation
losses compared to the SP quasi-BIC, as seen from Fig. 2(b).
As a result, we obtain the cubic dependence of the Q factor
on N , as Fig. 3(b) shows. Below we reproduce this cubic
dependence by use of the tight-binding chain model coupled
to the continuum at the ends of the chain.

At the end of this section we consider how these quasi-
BICs are excited by incident plane waves. Figure 5 shows
that the coupling, Eq. (9), of the SP quasi-BIC with the
incident plane wave depends on the z component of wave
vector β. One can see that the coupling decreases with in-
creasing number of spheres, and the SP BIC is excited at
discrete values β = π (2n + 1)/N, n = 0, 1, 2, . . ., including
the normal incidence. The solid curve in Fig. 5 shows the
maximal amplitude of the excited component of the EM field
calculated numerically beyond the resonant approximation.

10 30 50
0

100

200

10 30 50
0

50

100(a) (b)

FIG. 3. Behavior of the Q factor as dependent on the number
of spheres for the case of (a) SP quasi-BIC shown in Fig. 2(b) and
(b) the accidental quasi-BIC shown in Fig. 4(b). ε = 15.

FIG. 4. Profile of the electromagnetic field Hz for (a) the ac-
cidental BIC with TE polarization and the frequency k0 = 2.9280
at the � point in the infinite periodic array and (b) the accidental
quasi-BIC with a k0 = 2.9283 finite array of 50 silica spheres.
(c) The coefficients of expansion in series (A2). The parameters of
the spheres are R = 0.481 75 and ε = 15. For clear resolution of the
EM field profiles, we show only half of the array.

The comparison shows that the resonant approximation well
describes excitation of the SP quasi-BIC, but only for a
small angle of incidence. As the angle increases, the resonant
approximation worsens due to lack of resonant modes [50].
Figure 6 demonstrates that the plane wave strongly excites
the SP quasi-BIC at β = 0.09 when the coupling of the plane

0 1 2 3
0

0.5

1

1.5

N=25
N=50

FIG. 5. Behavior of the coupling constant (9) as dependent on the
angle of incidence for the case of the symmetry-protected quasi-BIC
shown in Fig. 2: k0(N = 25) = 3.602, k0(N = 50) = 3.602 15. Solid
curve shows the maximal amplitude of excitation of the EM field by
the TM plane wave in arbitrary units calculated numerically.
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FIG. 6. Profile of Hz after excitation by TM plane wave with
frequency k0 = 3.602 15 illuminating the array of 50 spheres at
β = 0.09 and β = 0, which corresponds to maximal and minimal
values of the coupling constant (9), shown in Fig. 5.

wave with the resonant mode is maximal, while at normal
incidence of the plane wave we have weak excitation of all
nonresonant modes of the array.

Figure 7 shows the oscillatory behavior of the coupling
constant (9) of the accidental quasi-BIC with incident plane
wave on the wave vector along array β. One can see that the
coupling constant has almost constant peaks, which cardinally
differs from the case of the SP quasi-BIC shown in Fig. 5.
Profiles of component Hz excited by the plane wave are shown
in Fig. 8 at two wave vector values, β = 0 and for the first
minimum of the coupling constant (9) at β = 0.052, providing
a clear indication of the maximal and minimal values of the
coupling constant.

IV. Q(N) IN THE ARRAY OF DISKS

While dielectric spheres have only one scale to tune, the
radius of spheres compared to the period of the array, the disks
bring two scales, the radius and thickness of disks. The array

0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
N=50
N=25

FIG. 7. Behavior of the coupling constant (9) as dependent on
the wave vector β for the case of the accidental quasi-BIC shown
in Fig. 4 under illumination by a TE plane wave with frequency
k0 = 2.9283.

FIG. 8. Profile of Ez of the array of 50 spheres under illumination
by a TE plane wave of frequency k0 = 3.9283 at (a) β = 0 and
(b) β = 0.052, which corresponds to maximal and minimal values
of the coupling constant (9) shown in Fig. 7.

of disks supports the BICs for both low and high refractive
indices [35]. Note that the SP quasi-BICs were observed in the
finite array of high-contrast ceramic disks [36]. In particular,
it was established that the Q factor for the SP quasi-BIC grows
quadratically with the number of disks but then saturates
because of material losses in dielectric disks [36,39]. In this
section we present results for the Q(N ) of quasi-BICs in the
arrays of a finite number of dielectric disks by use of the
method in the paper by Bigourdan et al. [51]. The results are
collected in Table I, including the accidental quasi-BIC with
orbital angular momentum m = 1, which is a hybridization of
TE and TM polarizations.

We conclude from Table I the following. The resonant
widths of SP quasi-BICs are superposed of two asymptotes,
quadratic and cubic dependencies. This superposition is im-
portant for the low-contrast disks, in which for a number of
disks less than 100 the cubic contribution is relevant. For the
high-contrast disks the dependence is mostly quadratic, as was
established for ceramic disks [36].

The important effect of the refraction index of the disks is
related to a degree of localization of resonant modes inside of
the disks, as demonstrated in Fig. 9. Let us consider the true
SP BIC in the infinite array of dielectric disks at the � point.
This BIC belongs to the leakage zone with resonant width
Im(k0(β )) ∼ β2 [32,52]. For a finite array the limiting wave
number β = π/N defines the SP quasi-BIC shown in Fig. 2,
which results in a resonant width of Im[k0(β = π/N)] ∼
N−2 [36], as the last column of Table I evidences. Moreover,
this substitution well agrees with the numerics quantitatively,
as the second-to-last column of the table shows. As it will be
shown below in the framework of the tight-binding chain, the
dependence Q(N ) is directly related to coupling of the chain
as a whole with the continuum.

Next, in the infinite array of dielectric infinitely long
cylinders the unique case was shown when the accidental
BIC guided at β �= 0 collapses with the SP BIC for tuning
of the radius of cylinders [31,32] and spheres [52]. Then the
imaginary part of the radiating resonant mode in the leakage
zone becomes proportional β4 for the accidental BIC. In the
array of disks we find a similar case of such a collapse and,
respectively, the imaginary part of the radiating resonant mode
in the leakage zone behaves as β4, as presented in the third line
of Table I. As a result, radiation from the whole array becomes
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TABLE I. Parameters of quasi-BICs in an array of disks with thickness b = 0.5 and the period h = 1. Abbreviation SP means symmetry
protected.

Type of BIC k0 R ε m Re[k0(β )] –Im[k0(β )] –Im[k0(N )], numerics –Im[k0(β = π/N )]

SP TM 5.233 2.7 3 0 0.785β2 0.0247β2 0.2795
N2 + 35.66

N3
0.244

N2

SP TE 3.8565 0.8 15 0 −0.007β2 0.0056β2 0.0546
N2 + 0.3

N3
0.0553

N2

SP TM 5.4402 2.035 3 0 β2 0.02β4 51.1
N3

Accidental TM 4.8529 2.3633 3 0 −0.766β2 0.3β4 55.66
N3

Accidental hybrid 5.2987 2.0315 3 1 0.533β2 0.011β2 0.094
N2 + 19.2

N3
0.11
N2

proportional 1/N4 to be neglected compared to the radiation
from the ends of the array. Respectively, in the finite array of
disks the corresponding quasi-BIC radiates from the ends of
the array, as shown in Fig. 10(a), to give rise to 1/Q(N ) ≈
N−3, as shown in Table I. The fourth line in Table I shows
the accidental quasi-BIC whose Q(N ) has the same cubic
dependence as in the case of dielectric spheres. Figure 10(b)
demonstrates that this accidental quasi-BIC from the fourth
line of Table I radiates completely in the same manner as the
quasi-BIC from the third line in Table I—from the ends of the
array.

Finally, in the quasi-BIC with m = 1, which is a hybridiza-
tion of SP quasi-BIC with TE polarization and accidental
quasi-BIC with TM polarization [35], both quadratic and
cubic dependencies contribute into 1/Q(N ), as shown in the
fifth line of Table I.

V. TIGHT-BINDING CHAIN

It is clearly seen from Figs. 4 and 9 that the SP quasi-BICs
mostly radiate from all dielectric particles arranged linearly,
while the accidental quasi-BICs radiate from the ends of the
array. These numerical observations prompt us to use the
simple one-dimensional tight-binding chain shown in Fig. 11,
which has been successfully used for evaluation of the Q
factor of guided modes below the light line [43] and the
SP quasi-BICs at the � point above the light line [36]. The

FIG. 9. Profile of EM field of resonant modes corresponding SP
quasi-BICs in an array of 50 disks with (a) ε = 3 (the first line in
Table I) and (b) ε = 15 (the second line in Table I).

tight-binding Hamiltonian of the array of N particles has the
following form:

ĤB = −u
N−1∑
j=1

ψ jψ
∗
j+1 + H.c. (10)

The eigenmodes and the eigenlevels of the array are

ψn( j) =
√

2

N + 1
sin(kn j), (11)

En = 2u(1 − cos kn),

kn = πn

N + 12
, n = 1, 2, 3, . . . , N. (12)

A semi-infinite waveguide below the chain in Fig. 11(a) mod-
els the radiation continuum which supports the propagating
modes,

ψp( jx, jy) =
√

1

2π sin k

√
2

N + 1
sin

(
π p jy
N + 1

)
eikp jx , (13)

with the spectra

E = 4 − 2 cos kp − 2 cos[π p/(N + 1)], p = 1, 2, 3, . . . .,

(14)
with a propagation band from 0 to 4. Moreover, we suppose
each particle is coupled with the radiation continuum through
the coupling matrix element v. Next we assume that the
wave in the first channel p = 1 is propagating over the wide
waveguide (radiation continuum) and is scattering by the
chain. Then the scattering in the first channel p = 1 is given

FIG. 10. Profiles of EM field of (a) SP quasi-BIC (the third line
in Table I) and (b) accidental quasi-BIC (the fourth line in Table I) in
an array of 41 disks.

033851-5



EVGENY N. BULGAKOV AND ALMAS F. SADREEV PHYSICAL REVIEW A 99, 033851 (2019)

radiation continuum

(b)

radiation continuum

(a)

FIG. 11. Tight-binding simulation of N particles coupled to a
wide waveguide simulating the radiation continuum via the coupling
constant v.

by the Green’s function with the transmission amplitude

T = 2iv2 sin k1

∑
j j′

ψ1( j)G( j, j′)ψ1( j′), (15)

where the Green’s function is given by the inverse of the
effective non-Hermitian Hamiltonian [53,54]

Ĝ = 1

E + i0 − Ĥeff
(16)

and ψ1( j) =
√

2
N+1 sin( π j

N+1 ), j=1,2,...,N.
For the case of the SP quasi-BIC with the eigenmode

ψ1( j), all N sites are coupled with the radiation continuum via
the coupling constant v, as shown in Fig. 11(a), which defines
the effective Hamiltonian as follows:

Ĥeff = ĤB − v2
∑

p

exp(ikp), (17)

giving rise to the linewidth � ∼ v2 1
N

π2

N2 N ∼ 1
N2 and therefore

Q(N ) ∼ N2. The transmission spectra is shown in Fig. 12.
One can see that two edge resonances, the first and the N th
have extremely small widths which are proportional to the
coupling constant u between sites (disks) for small u but fast
saturates with growth of u as shown in Fig. 13.

The accidental quasi-BIC radiate only from the ends of the
arrays, which is modelled by all coupling matrix elements v

0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

FIG. 12. Transmission spectra of an array of 10 sites. Crosses
mark the eigenlevels of the model given by Eq. (12), with Eg =
1, u = 0.2, v = 0.4.
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γ N=25
N=50

(a)

0 0.1 0.2 0.3 0.4
0
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1.5
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−3
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γ

N=25
N=50

(b)

FIG. 13. The resonant width of the first resonant peak in the
transmission spectra shown in Fig. 12 vs u for coupling of the
tight-binding chain with the continuum by (a) all cites [Fig. 11(a)]
and (b) only edge cites of the chain [Fig. 11(b)].

being equal to zero, except for the first and N th sites, as shown
in Fig. 11(b). Then the effective non-Hermitian Hamiltonian
will take the following form:

Ĥeff = ĤB − v2
∑

p

exp(ikp), if j = 1, N, (18)

otherwise, Ĥeff = ĤB. Then the resonant width is defined as
� = −2Im(z1), where zλ, λ = 1, 2, 3, . . . , N are the complex
eigenvalues of Ĥeff [54,55]. This resonant width corresponds
to the half-width of the first resonant peak in the transmittance
in Fig. 12, marked by the larger red x. Therefore we can
evaluate the resonant width � ∼ v2 1

N
π2

N2 ∼ 1
N3 because of the

leakage of the radiation only from the ends of the chain, as
shown in Fig. 11(b). Thus we have the dependence Q(N ) ∼
N3 shown in Fig. 14, which is surprisingly independent of
the width of band 2u. The dependence N3 can be easily
understood from Eq. (11). A similar result was established
by Polishchuk et al. [43] for the bound modes below the
light line. Figure 14 also shows the important role of the
propagation band of the chain with regard to Q factor, as
Taghizadeh and Chung first reported [41]. One can conclude
that with a tendency to flat bands the quasi-BIC are limited to
the compact-BICs that were reported recently [56]. Physically
that tendency is related to the fact that the group velocity of
radiation of quasi-BICs in the chain is limited to zero when
u → 0 [57].

0 20 40 60 80
0

20

40

60

80

u=0.05
u=0.5

(a)

20 40 60 80 100
0

50

100

150

200

u=0.05
u=0.5

(b)

FIG. 14. Q factor of the tight-binding chain vs N for coupling of
the tight-binding chain with the continuum by (a) all cites [Fig. 11(a)]
and (b) only edge cites of the chain [Fig. 10(b)].
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VI. SUMMARY AND CONCLUSIONS

The BICs exist only in the infinite periodic array of dielec-
tric particles. In the array of a finite number of particles, the
BICs become resonant modes with small but finite resonant
width (quasi-BICs). There are two different cases, the case of
the SP quasi-BICs and accidental quasi-BICs. The last occur
for tuning of particle parameters, for example, of radius of
spheres [5] or disks [35].

The case of the SP quasi-BICs is sensitive to the choice
of particles and their refraction index. The greater refractive
index of disks the more localization of resonant modes inside
of the disks and the less the coupling between the neighbor
disks. Respectively, the less the group velocity of leakage
of the resonant mode, the higher the Q factor [41]. That
tendency of increasing the Q factor was verified by use of
tight-binding chain models. As seen from Table I, the depen-
dence Q(N ) in the SP quasi-BICs in the array of disks shows
an interplay between the quadratic and cubic dependencies.
The cubic contribution becomes important for particles with
low-refractive particles. In the high-refractive-index disks we
have mainly the quadratic dependence of Q(N ), as it was
established theoretically [38–40] and experimentally [36].
That law is the result of the SP quasi-BIC radiating from
the whole array of particles. However, for the case of low-

refractive-index particles, the cubic contribution in Q(N ) also
becomes important.

In the array of dielectric particles, the accidental quasi-BIC
leakages mostly occur from the edges of the finite chain of
particles, as Fig. 10 illustrates, to give rise to the Q factor
proportional to the cubic number of particles. That asymptote
does not depend on the type of particles and their refraction
index. However, for the accidental quasi-BICs with OAM
m �= 0 with hybridized polarizations, a small fracture of the
quadratic dependence on Q(N ) arises. The reason is because
the BICs with m �= 0 are a hybridization of SP BIC for TM
polarization and accidental BIC for TE polarization [35].
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APPENDIX

The incident plane wave can be written as well as the
solution of the scattering problem for the electromagnetic field
[Eq. (1)] of vector spherical functions [58] Mlm, Nlm:

−→
� =

(−→
E−→
H

)σ

=
∞∑

l=1

l∑
m=−l

[
pσ

lm

(
Nlm

−i
√

εMlm

)
+ qσ

lm

(
Mlm

−i
√

εNlm

)]
, (A1)

E(r) =
∑

j

∑
lm

[alm( j)Mlm(r − R j ) + blm( j)Nlm(r − R j )],

(A2)
H(r) = −i

∑
j

∑
lm

[alm( j)Nlm(r − R j ) + blm( j)Mlm(r − R j )],

where σ specifies polarization of the electromagnetic field, R j the response for positions of centers of spheres, l can be defined as
orbital momentum, and m as its projection onto the z axis. The dependence of coefficients alm( j), blm( j) on sites j corresponds
for a finite number of spheres. Due to the axial symmetry of the array of spheres, the solution of Eq. (2) for the resonant mode
can be fixed by orbital angular momentum number m. Then Eq. (2) can be written as follows [34,45]:

alm( j) = ZT E ,l

∑
l ′

∑
j �= j′

[
al ′m( j′)Amm

ll ′ ( j − j′) + bl ′mBmm
ll ′ ( j − j′)

]
,

blm = ZT M,l

∑
l ′

∑
j �= j′

[
al ′m( j′)Bmm

ll ′ ( j − j′) + bl ′mBmm
ll ′ ( j − j′)

]
. (A3)

The Lorenz-Mie coefficients ZT E ,l and ZT M,l are derived in a book by Stratton [58] as follows:

ZT E ,l = jl (kR)[r jl (k0r)]′r=R − jl (k0R)[r jl (kr)]′r=R

hl (k0R)[r jl (kr)]′r=R − jl (kR)[rhl (k0r)]′r=R

,

(A4)

ZT M,l = ε jl (kR)[r jl (k0r)]′r=R − jl (k0R)[r jl (kr)]′r=R

hl (k0R)[r jl (kr)]′r=R − ε jl (kR)[rhl (k0r)]′r=R

,

where k = √
εk0 and ε is the dielectric constant of the spheres. For the infinite array of spheres the matrix elements Amm

ll ′ ,Bmm
ll ′

were independent of the site index j. For the finite array [45],

Amm
ll ′ ( j) = 4π (−1)mil ′−l

√
l ′(l ′ + 1)

l (l + 1)

l+l ′∑
p=|l−l ′ |;l+l ′+p even

gll ′ pG(l, m; l ′,−m; p)hp(k| js|)λp0( − i sgn( j))p, (A5)
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Bmm
ll ′ = 2π (−1)mil ′−l

√
l (l + 1)l ′(l ′ + 1)

l+l ′−1∑
p=|l−l ′ |+1;l+l ′+p odd

√
2p + 1

2p − 1
H(l, m; l ′,−m; p)hp(k| js|)λp0( − i sgn( j))p, (A6)

where hp(x) are the spherical Hankel functions. The coefficients

gll ′ p = 1 + (l − l ′ + p + 1)(l + l ′ − p)

2l ′(2l ′ + 1)
− (l ′ − l + p + 1)(l + l ′ + p + 2)

2(l ′ + 1)(2l ′ + 1)
, (A7)

G(l, m; l ′, m′; p) = (−1)m+m′

√
4π

√
(2l + 1)(2l ′ + 1)(2p + 1)

(
l l ′ p
m m′ −m − m′

)(
l l ′ p
0 0 0

)
, (A8)

are expressed in terms of the Wigner 3- j symbols,

H(l, m; l ′,−m; p) =
1∑

s=−1

Gs(l, m; l ′,−m; p), (A9)

with

G0(l, m; l ′,−m; p) = −2m|p|G(l, m; l ′,−m; p − 1),

G±1(l, m; l ′,−m; p) = ∓√
(l ′ ± m)(l ′ ∓ m + 1)p(p − 1)G(l, m; l ′,−m ± 1; p − 1), (A10)

and

λlm =
√

(2l + 1)(l − m)!

4π (l + m)!
. (A11)
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