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Complex magnetic order in the Nd(Tb)Fe3(BO3)4 multiferroic
revealed by single-crystal neutron diffraction
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Magnetic structure of the substituted multiferroics-ferroborates Nd0.9Tb0.1Fe3(BO3)4 and
Nd0.8Tb0.2Fe3(BO3)4 were determined in the framework of a self-consistent refinement of the single
crystal neutron diffraction data. The small substitution of Nd for Tb leads to the reorientation of the main
antiferromagnetic vector L from the basal plane towards the hexagonal axis. The reorientation takes place via
an angular structure for which L does not coincide with the principal crystallographic directions and evolves
with temperature due to competing magnetic anisotropies of Fe, Nd, and Tb subsystems. Our refinement at
2 K reveals the existence of distortions in the collinear antiferromagnetic Fe spin arrangement suggested before
in other ferroborates. Therefore, besides the main antiferromagnetic vector L, the magnetic structure involves
additional fine symmetrized combinations of spin components allowed by symmetry. They coexist with certain
L components and could originate from the antisymmetric Dzyaloshinsky-Moriya Fe-Fe exchange interactions.
At higher temperatures, the magnetic structure is described by the simple collinear model, where the L vector is
deviated from the hexagonal plane.
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I. INTRODUCTION

Rare-earth ferroborates ReFe3(BO3)4, a new class of non-
centrosymmetric multiferroics with a rhombohedral structure
of the huntite mineral [1], have attracted considerable atten-
tion [2,3]. The interest in these multiferroics is caused by the
discovery of the strong dependence of the electric polariza-
tion on the magnetic field, which is important for practical
applications [4,5]. Ferroborates also demonstrate interesting
magnetic phenomena since they contain two strongly inter-
acting magnetic subsystems: rare earth and iron sublattices.
The latter leads to a complex magnetic behavior, which is
governed by the balance between the magnetic interactions.

A characteristic feature of these compounds is the com-
bination of the crystalline anisotropy of the iron sublattice,
caused by the chains of Fe3+ ions along the hexagonal axis
and the rare earth single-ion anisotropy. The rare-earth ions
are relatively far apart, their interaction is weak, and the
intrinsic magnetic order in rare earth sublattice does not
take place down to very low temperatures. Therefore, below
the Néel temperature ∼30–35 K the magnetic order in the
rare-earth sublattice is induced by the iron sublattice.

There are two types of the antiferromagnetic order in these
compounds: the “easy-plane” type (Re = Ce, Nd, Er) [6–9],
when the Fe spins lie in the basal plane, perpendicular to
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the trigonal axis and the “easy-axis” type, with spins aligned
along the trigonal axis (Re = Pr, Tb, Dy) [9–11] (Fig. 1).

The magnetoelectric properties of ferroborates depend on
the rare-earth ions, primarily, because of divers anisotropy of
the rare-earth ion and the strong Re-Fe exchange interaction.
It is important to note a fundamental circumstance: The spon-
taneous electric polarization appears only in the “easy-plane”
state, although the magnetic field can induce polarization in
the “easy-axis” state too.

In contrast to manganites with centrosymmetric crystal
structure, where the electric polarization is determined by
an incommensurate cycloidal magnetic order which breaks
the inversion symmetry [12,13], in ferroborates the crystal
structure is noncentrosymmetric and the electric polarization
is induced by an antiferromagnetic order or by the external
magnetic field.

In this work, we present a single crystal neutron diffrac-
tion study of the magnetic order in the substituted sys-
tem: Nd1−xTbxFe3(BO3)4 with x = 0.1 and x = 0.2. In the
outermost compound NdFe3(BO3)4 at low temperatures an
incommensurate magnetic structure was observed, which
transforms into collinear, “easy-plane” type magnetic order
slightly above 13 K [7,8,14]. In the other outermost compound
TbFe3(BO3)4, the magnetic order is of “easy-axis” type [10].

Nd3+ has a prolate 4f-charge distribution and positive
second-order Stevens coefficient, while Tb3+ has an oblate
charge distribution and negative Stevens coefficient. A strong
difference in the magnetic structures due to the competition
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FIG. 1. Magnetic structures for the utmost compounds
NdFe3(BO3)4 [7] (a) and TbFe3(BO3)4 [10] (b) are shown. Rare
earth moments are shown in green, iron spins in red.

of the different single-ion anisotropies suggests a complex
magnetic structure in the mixed compositions, which is a
subject of our research. Hence, intermediate compositions
such as Nd1−xTbxFe3(BO3)4 are interesting for elucidating
the role of the rare earth single-ion anisotropy in the setting
of a given magnetic structure.

Preliminary magnetic measurements demonstrated that the
magnetic structure becomes uniaxial, similar to TbFe3(BO3)4

already at 20% of Tb. Therefore, we explored the samples
with x = 0.1 and x = 0.2 compositions.

II. EXPERIMENT

The single crystal neutron diffraction experiments were
carried out at the diffractometer D15 in the Institute Laue-
Langevin (Grenoble, France) with a neutron wavelength of
1.172 Å.

We used mm-size single crystals with nominal composition
Nd0.9Tb0.1Fe3(BO3)4 and Nd0.8Tb0.2Fe3(BO3)4 prepared at
the Institute of Physics in Krasnoyarsk. The crystals were
enriched with the isotope 11B to decrease neutron absorption.
They were mounted inside the so-called “Displex” cryostat,
providing sample temperatures in the temperature range
1.5–300 K and allowing measuring of a large number of
reflections.

In order to check for phase separation, which is possible
for the doped compounds due to inhomogeneous distribution
of Tb and Nd ions, the profiles of (0 0 −3) and (0 −3 0)
nuclear reflections were measured with the same resolution
and compared with those for pure NdFe3(BO3)4. No phase
separation was detected within of our experimental resolution
(see Supplemental Material [15]).

The diffraction patterns were analyzed using the FULL-
PROF SUITE package [16]. Because the single crystals were
rather large and had an irregular shape, the refinement of
the magnetic structure parameters included the correction
for anisotropic extinction. Scale factor was refined from the
nuclear reflections and it was fixed in the magnetic refinement.

III. FEATURES OF THE MAGNETIC
AND CRYSTAL STRUCTURES

A. Crystal structure

The utmost compound NdFe3(BO3)4 has the noncen-
trosymmetric space group (SG) R32 below room temperature,

FIG. 2. Temperature dependence of dc-magnetic susceptibilities
along the c axis and in the ab plane in Nd0.9Tb0.1Fe3(BO3)4 and
Nd0.8Tb0.2Fe3(BO3)4.

while TbFe3(BO3)4 undertakes a structural phase transition at
about 240 K from the R32 to the less symmetric P3121 [17].
Single crystal neutron diffraction of the substituted ferrob-
orates Nd1−xTbxFe3(BO3)4 does not give an unambiguous
answer to which SG is realized: R32 or P3121. However, our
magnetoelectric measurements (not shown in this work) do
not suggest any structural phase transition in the temperature
range of 2–300 K, and therefore, the space group R32, as in
NdFe3(BO3)4 is assumed.

In this SG three Fe atoms occupy the 9d Wyckoff site
with coordinates: Fe1 (0, x, 0), Fe2 (−x, −x, 0), and Fe3
(x, 0, 0) (in the hexagonal setting), while the rare earth
atoms occupy the 3a site with coordinate (0, 0, 0). The
other atomic positions in a chemical cell multiply by the
trigonal translations: (0, 0, 0), (2/3, 1/3, 1/3), and (1/3,
2/3, 2/3). Refinement of the nuclear reflections at 2 K gives
x = 0.5504(2) and x = 0.5508(2) for Nd0.9Tb0.1Fe3(BO3)4

and Nd0.8Tb0.2Fe3(BO3)4, respectively.

B. Magnetic structure

Magnetic susceptibility measurements clearly demonstrate
that magnetic order appears below ∼30–31 K (Fig. 2). The
anisotropy in the magnetic susceptibility in the magnetic field
applied within the ab plane and along the c axis indicates
that the magnetic structure at low temperature should be close
to the “easy-axis” type, where the moments are near the c
axis, and therefore, the magnetic structure is closer to that of
TbFe3(BO3)4.

In addition to the maximum in the temperature dependence
of the magnetic susceptibility along the c axis, which is
associated with an antiferromagnetic ordering at the Néel
point, one could also note a change in the susceptibility slope
at about ∼15–18 K. This feature is also observed in the
temperature dependence of the (3 3 3/2) magnetic reflection
[see Fig. 3(a)].

The profiles of the magnetic reflection (3 3 3/2) and (0
0 3/2) measured at different temperatures [see Figs. 3(c)
and 3(d)] do not demonstrate the appearance of any marked
features, for example peak shape distortion, which could shed
light on the origin of this “kink.”

In magnetic diffraction, the only moment projection, which
is perpendicular to the diffraction vector, is measured. So,
the intensity of the reflection (0 0 3/2) is proportional to
the square of the resulting moment projection in the basal
plane. From Fig. 3(d) it is seen that this component exists
at all temperatures and increases with temperature increase.
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(a) (b)

(c) (d)

FIG. 3. Temperature dependencies of the intensity of the
magnetic reflection (3 3 3/2) for Nd0.9Tb0.1Fe3(BO3)4 (a) and
Nd0.8Tb0.2Fe3(BO3)4 (b). The solid lines are fits to a power law.
Profiles of the magnetic reflection (3 3 3/2) (c) and (0 0 −3/2) (d) for
Nd0.9Tb0.1Fe3(BO3)4 at 2 K (in red), 15 K (in blue), and 25 K (in
black).

It means that the “easy-axis,” magnetic structure sustains and
the observed “kink” probably originates from rearrangement
(reorientation) of the spins in the basal plane.

Unfortunately the multidomain structure in the plane
(which will be discussed below), does not allow us to resolve
this spin rearrangement in the neutron diffraction experiment.
The fitting of the temperature dependency of the integral peak
intensity of the reflection (3 3 3/2) (Fig. 3) near the magnetic
transition by a power law indicates the Néel temperature of
31.4(2) K for both compositions.

Below the magnetic transition, magnetic reflections with
l = (2n + 1)/2 indexes are observed. These reflections can be
indexed with propagation vector k = [0 0 3/2] in a hexagonal
unit cell (SG R32) as accepted for NdFe3(BO3)4 or with
k = [0 0 1/2] in a primitive rhombic unit cell (SG P3121)
as accepted in TbFe3(BO3)4 [10]. Since in our case the SG
R32 has been assumed, the propagation vector k = [0 0 3/2]
was used in the refinement. In contrast with NdFe3(BO3)4, no
incommensurate magnetic structure was detected within the
limits of the experimental resolution [Figs. 3(c) and 3(d)].

The magnetic cell of the substituted ferroborates
Nd(Tb)Fe3(BO3)4 is twice the chemical cell and comprises
24 magnetic atoms. There are four independent magnetic
sublattices in the chemical cell: three of Fe atoms and one of a
rare earth sublattice. The trigonal translations form the planes
with alternate magnetic moments, which are shifted along the
direction [−1 1 0] at the translation of 1/3 along the c axis.

(a)

(b)

FIG. 4. (a) Profile of the reflection (0 0 −3/2), measured at 2 K
for Nd0.8Tb0.2Fe3(BO3)4. (b) The Q dependence of the intensities of
the (0 0 l) reflections. The solid line is a calculated curve (see text).

As it was marked above, in magnetic diffraction, the only
moment projection, which is perpendicular to the diffraction
vector, is measuring. In our experiments, we observed the
magnetic reflections (0 0 −3/2), (0 0 −9/2), and (0 0 −15/2)
that confirms the existence of the in-plane components of the
magnetic moments (Fig. 4).

The observed (0 0 l) reflections are weak, less than 2%
of the strongest magnetic reflection. To be sure that they are
not due to multiple scattering, the Q dependence of their
intensities was calculated [Fig. 4(b)]. In this calculation, the
contribution of the additional, independent on Q, scattering to
the total intensity of the reflections was estimated to be less
than 9%, which confirms their magnetic nature. Most proba-
bly this contribution resulted from the multiple scattering.

It is known that the moments of Nd3+ and the moments
of Tb3+ are antiparallel [7,8,10]. It means that their average
contribution to the reflection intensity is small in comparison
with the Fe spin. Therefore, the form factor of the Fe3+ ion
[18] was used in the above calculations.

IV. SYMMETRY ANALYSIS OF THE MAGNETIC
STRUCTURES

The expected magnetic structures have been analyzed
within the symmetry approach [4,19,20]. The crystal structure
of the ReFe3(BO3)4 could be represented by a set of shifted
identical horizontal layers spaced one third of a period along
the c axis. Atoms in the different layers are connected by the
trigonal translations.

For a description of the magnetic structure, we consider six
Fe spins: M1–M6. The first three, M1, M2, and M3, belong to
one horizontal layer (parallel to the basal plane), and the other
three, M4, M5, and M6, lie in the adjacent parallel layer at
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TABLE I. Irreducible representations of the reduced G̃32 group and the transformational properties of the basis vectors of the Fe sublattice,
M, L, B1, B2, B̃1, B̃2, and R sublattice (m, l) (from Refs. [4,20]).

Irreps E T1 C3 2x M, m L, l B1, B2, B̃1, B̃2

�1 1 1 1 1 B̃1y-B̃2x

�1
′, (mT1) 1 −1 1 1 B1y-B2x

�2 1 1 1 −1 Mz, mz B̃1x+B̃2y

�2
′, (mT2) 1 −1 1 −1 Lz, lz B1x + B2y

�3 1 1 R∗)
(

1 0
0 −1

) (
Mx

My

)
,
(

mx

my

) (
B̃1y + B̃2x

B̃1x − B̃2y

)
,
(

B̃1z

B̃2z

)
�3

′, (mT3) 1 −1 R
(

1 0
0 −1

) (
Lx

Ly

)
,
(

lx
ly

) (
B1y + B2x

B1x − B2y

)
,
(

B1z

B2z

)
*R is the matrix of the rotation on 120◦.

a distance of c/3. Vectors m1 and m2 denote the rare earth
moments.

In the used approach the so-called reduced space group
G̃32 with a magnetic cell which is twice of a chemical cell
was used. In this group, in addition to the generators of
the initial group R32: E—the unit transformation, C3—the
third-order axis along the c axis, and 2x—the second-order
axis, lying in the basal plane along the a axis, an additional
symmetry element T1, the translation along the c axis, was
used [4]. According to the Landau theory, in describing the
magnetic phase transition it is more convenient instead of the
individual spins M1–M6 to use the symmetrized combinations
corresponding to the irreducible representations of the G̃32
group (see Table I).

M = 1

6
(M1 + M2 + M3 + M4 + M5 + M6),

L = 1

6
(M1 + M2 + M3 − M4 − M5 − M6),

B1 =
√

3

6
(M1 − M2 − M4 + M5),

B2 = 1

6
(M1 + M2 − 2M3 − M4 − M5 + 2M6)

B̃1 =
√

3

6
(M1 − M2 + M4 − M5),

B̃2 = 1

6
(M1 + M2 − 2M3 + M4 + M5 − 2M6),

m = 1

2
(m1 + m2),

l = 1

2
(m1 − m2). (1)

The distortion of the collinear structure, given by the vector
L, is defined by a pair of the vectors B1, B2 and results in a
complex antiferromagnetic structure, which is described by
the thermodynamic potential [4]:

� = 1
2�1L2 + 1

2�2
(
B2

1 + B2
2

) + α1[Lx(B1y + B2x )

+ Ly(B1x − B2y)] + α2Lz(B1x + B2y) + ..., (2)

where �1,2 and α1,2 are phenomenological constants de-
termined by isotropic and anisotropic Fe-Fe interactions,

respectively. The latter terms are responsible for the “fine”
magnetic structure. There are also other anisotropic contribu-
tions in Eq. (2) controlling the spin orientation with respect to
crystallographic axes, which are omitted here for the sake of
simplicity.

The “unprimed” irreducible representations in Table I
correspond to the so-called first kind “black-white” groups
[21,22]. For them the spin reversal operator is not associated
with translations. The magnetic unit cell is the same as the
crystallographic cell.

The “primed” groups correspond to the second kind
“black-white” groups. They have the translations associated
with spin reversal, so that the “magnetic primitive cell” is
bigger than the crystal primitive cell, and they are the object
of our attention.

Each irreducible representation corresponds to a particular
magnetic configuration and is described as a superposition
of the basis functions shown in Table I. For example, the
magnetic order of the “easy-axis” type with the spins oriented
along the c axis is described by one-dimensional representa-
tion �2

′. The magnetic order of the “easy-plane” type with
the spins within the ab plane is described by two-dimensional
representation �3

′. In this case, the spins could be aligned
along the axis of the second order or aligned perpendic-
ular to it. Furthermore, an intermediate (canted) phase is
possible.

The vector L describes a collinear antiferromagnetic or-
dering in two ferromagnetic Fe layers spaced by c/3, with
alternate moments in the adjacent layers. This is the main type
of the magnetic order in the ferroborates.

As already noticed, neutron diffraction unambiguously
shows the existence of the z component of the magnetic
moments, i.e., Lz �= 0 and lz �= 0. Therefore, we will consider
the following configurations only.

(1) “Easy-axis” magnetic configuration, which corre-
sponds to the one-dimensional irreducible representation �2’.

(2) “Easy-plane” magnetic configurations, which corre-
spond to the two-dimensional irreducible representation �3’.
In the frame of this representation several structures are
possible, namely:

(a) Configuration of the moments lying along the sec-
ond order axis.

(b) Configuration of the moments lying perpendicular
to the second order axis.
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FIG. 5. Models of magnetic structures (configurations) allowed by symmetry. Yellow, blue, and magenta arrows correspond to Fe, Nd, and
Tb ions. (a) “Easy-axis” structure, the Nd and Tb moments are aligned along the c axis and are indistinguishable. They are shown by one
arrow. (b) “Angular” structure with the vector L lying within the yz plane (in the orthogonal system). (c) Collinear structure. In all models Tb
moments are Ising type and they are aligned along the c axis. The projections of the magnetic moments on the basis plane are shown enlarged.
Only Fe atoms in the basal plane are shown. The x axis in the orthogonal system coincides with the a axis in the hexagonal system.

(c) Configuration of the moments lying within a basal
plane at an arbitrary angle to the second order axis.
(3) “Angular” configuration, driven by the representation

�23’, which includes the considered above representations �2’
and �3’.

The term “angular structure” means that the main order
parameter, antiferromagnetic vector L, does not align along
a certain crystallographic axis but has non-zero components,
which value are changing continuously with a temperature or
magnetic field [23].

The “easy-axis,” the “angular,” and the simple collinear
magnetic structures are shown in Fig. 5. The main differ-
ence between the considered models is the orientation of the
main antiferromagnetic vector L [Eq. (1)]. In the “easy-axis”
structure the vector L is directed exactly along the c axis,
while in the “angular” structure the vector L tilts from this
axis but is lying within the yz plane. The collinear structure
is the simplified option of the “easy-axis” and the “angular”
structures, when vectors B1 = B2 = 0. The components of
the magnetic moment, coupled by the symmetry constraints,
are shown in the Supplemental Material [15]. The results of
the above symmetry analysis are consistent with the analysis
reported for NdFe3(BO3)4 [7] and CeFe3(BO3)4 [6], which
used the standard approach realized by the codes BasIreps
(Fullprof Suite) [16] and SARAh software [24], respectively.

The considered above magnetic configurations are fully
consistent with the configurations, which one could derive
using the programs k-SUBGROUPSMAG and MAGMOD-
ELIZE from the Bilbao Crystallographic Server [25] for
the paramagnetic group R32 and the propagation vector
k = [0 0 3/2].

For example, one can show that the “easy-axis” magnetic
configuration corresponds to the nonpolar Shubnikov mag-
netic group RI 32 (number BNS [26] 155.48). The correspond-
ing designations of the “primed” irreducible representation

are shown in the brackets in Table I. It should note that our
approach focuses not on the arrangement of the individual
magnetic moments but on the symmetrized functions of the
moments [Eq. (1)], which are responsible for the correspond-
ing terms in the free energy deconvolution [Eq. (2)].

V. NEUTRON DIFFRACTION EXPERIMENT:
REFINEMENT OF THE MAGNETIC STRUCTURES

AND ITS FEATURES

A. Orientation of the magnetic moments within the basal plane

Symmetry analysis allows the existence of three equivalent
domains corresponding to three crystallographic axes in the
ab plane (Fig. 6). Indeed, the refinement of neutron diffraction
data for all configurations turns out to be possible only if one
assumes the existence of these domains.

Within the “angular” model the mutual orientation of the
Fe spins in the basal plane is determined by the symmetry (see
Supplemental Material). For example, if the vector L lies in
the yz plane, the spin configuration of the Fe ions is described
by the five variable parameters M1 = M2, M3, �1 = �2,�3,
and φ. The latter define the in-plane orientation of the vectors
M1 and M2, at that M1x = −M2x and M1y = M2y. Moment

FIG. 6. Projections of the magnetic configurations on the basal
plane in three domains, assuming a collinear structure as an example.
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M3 is aligned perpendicular to the x axis, so the corresponding
φ3 is either 270 or 90 degrees.

In the cases of the “easy-axis” and collinear models the χ2

residual does not show any appreciable minimum on varying
the orientation of the Fe spins within the ab plane. Therefore,
the corresponding angles were fixed at 270 or 90 degrees. The
indeterminacy of the direction of the Fe spin in the basal plane
in the collinear phase has been reported for NdFe3(BO3)4 [8]
and CeFe3(BO3)4 [6]. We suppose that such a situation is
caused by very small anisotropy within the basal plane. It re-
sults in multidomain structure when all orientations of the spin
in the basal plane are equally probable. The three domains
approach should be considered as an adequate model only.

B. Constraints implied in the refinement

As it has been noted above, the magnetic moments on
the Nd and Tb sites, induced by the exchange field from
the Fe sublattice, are directed in opposite, that is explained
by the different Landé factors of the rare-earth ions. Indeed,
since the exchange field on the rare earth sites is proportional
to (gNd (T b) − 1)/gNd (T b) and gNd − 1 = 8/11 − 1 < 0, while
gT b − 1 = 3/2 − 1 > 0, the magnetic moments of Nd3+ and
Tb3+ are antiparallel, which results in a small net moment on
the rare earth site.

The small contribution of the rare earth magnetic moment
to the intensity of the magnetic reflections, compared with the
contribution from the Fe spin, leads to the fact that the mag-
nitude and the orientation of the rare earth moments cannot
be refined reliably. Moreover, the large number of variables
and a “shallow” minimum in the χ2 residual leads to multiple
“false” solutions, which are practically impossible to resolve.
Therefore, to get the physically meaningful solution we used
simple constraints, implied by the fact that the magnetic order
in the rare earth sublattice is induced by the Fe sublattice.

Additional constraints connecting the variables can be
written based on a simple model, using the following pa-
rameters of the ground Kramers doublet of Nd3+ and quasi-
doublet of Tb3+, known from the literature for “easy-plane”
and “easy-axis” compounds NdFe3(BO3)4 and TbFe3(BO3)4,
respectively.

(i) The magnetic moments along and perpendicular to the
c axis for NdFe3(BO3)4 were estimated from the optical
spectroscopy and magnetic resonance measurements: μNd

c =
0.65 μB and μNd

ab = 1.2 μB, respectively [27,30].
(ii) The exchange splitting of the Nd3+ ground doublet at

low temperatures, when the Fe sublattice is “saturated,” in the
“easy axis” state 	Nd

c = 9.13 cm−1, and the “easy-plane”
state 	Nd

ab = 8.7 cm−1, taken from AFMR data [28–30].
(iii) Since the Tb3+ ion is an Ising moment, aligned along

the c axis, we’ll use the moment projections known for
TbFe3(BO3)4: μT b

c = 8.6 μB [10], μT b
ab = 0, and the exchange

splitting in the uniaxial state of the Fe subsystem 	T b
c =

30 cm−1(Ref. [31]).
Unlike the utmost “easy-plane” NdFe3(BO3)4 and “easy-

axis” TbFe3(BO3)4 compounds, in the substituted composi-
tions the Fe spin and, consequently, the exchange magnetic
field is tilted from the c axis. Therefore, the projections
of the rare earth magnetic moments are proportional to the
projections of the exchange field: L0 sin θFe and L0 cos θFe.

FIG. 7. Refined Fe3+ spin (triangles) at different temperatures
and its mean-field approximation (solid line).

Here, L0 is the normalized Fe3+ spin. Its temperature
dependence could be calculated according to the mean-field
approximation of the measured temperature dependence of
Fe3+ spin and is given as a solid line in Fig. 7. The angle
θFe determines the orientation of L0 relative to the c axis.

In first approximation, the intrinsic rare earth magnetic mo-
ments can be expressed through the moments μNd

ab , μNd
c , μT b

c
and the exchange splitting 	Nd

ab , 	Nd
c , and 	T b, known for the

utmost compounds NdFe3(BO3)4 and TbFe3(BO3)4. Then,
the magnetic moments of the Nd3+ and Tb3+ in substituted
compounds can be written as [20]:

�mNd =
(

mNd
ab

mNd
c

)

≡
(

L0 sin θFeμ
Nd
ab 	Nd

ab /	Nd

L0 cos θFeμNd
c 	Nd

c /	Nd

)
· tanh(	Nd/2kBT )

mT b = mT b
c ≡ μT b

c tanh(	T b/2kBT ). (3)

The resulting exchange splitting of Nd3+ and Tb3+ ground
states in the magnetic field of the Fe subsystem, for the
substituted compositions, can be written as:

	Nd = [(
	Nd

c L0 cos θFe
)2 + (

	Nd
ab L0 sin θFe

)2]1/2
,

	T b = 	T b
c L0 cos θFe. (4)

The magnitude of the Nd3+ magnetic moment and its orienta-
tion can be written as:

mNd =
√(

μNd
ab 	Nd

ab L0 sin θFe
)2 + (

μNd
c 	Nd

c L0 cos θFe
)2

	Nd

× tanh(	Nd/2kBT ) (5)

cos θNd = μNd
c 	Nd

c cos θFe√(
μNd

ab 	Nd
ab sin θFe

)2 + (
μNd

c 	Nd
c cos θFe

)2
. (6)

The values μNd
c , μNd

ab , 	Nd
c , and 	Nd

ab we consider as fixed
parameters. The magnitude of the Fe3+ spin, its deviation
from the c axis θFe, as well as the deviation of the Nd3+
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FIG. 8. Red line is the calculated dependence of the inclination
angle �Nd of the Nd3+ moment versus the angle �Fe of the Fe3+ spin.
Red triangles are the results of the refinement under the constraints
for temperature points 2 K, 15 K, and 25 K for Nd0.9Tb0.1Fe3(BO3)4.
Black triangle corresponds to Nd0.8Tb0.2Fe3(BO3)4 at 2 K. The
calculation for 2 K is performed in the frame of the “angular”
model; for 15 K and 25 K the calculation is performed for the
collinear model. Note that in NdFe3(BO3)4 �Nd = �Fe = 90◦, while
in TbFe3(BO3)4 �Nd = �Fe = 0◦.

moment from the c axis θNd are variables. They are con-
strained by Eqs. (5) and (6).

While the in-plane projection μNd
ab of the magnetic mo-

ment Nd3+ is known from neutron scattering experiments
for the “easy-plane” compound NdF3(BO3)4, the projection
μNd

c along the c axis is known only approximately from the
magnetic susceptibility calculation [27]. In order to describe
self-consistently the temperature dependence μNd and to also
satisfy the reasonable value of μT b, we used the fixed param-
eter μNd

c = 0.45 μB.
The straightforward calculation using the formula (6), and

also taking into account the above parameters, gives the rela-
tion between the deviation angles �Nd (�Fe) shown in Fig. 8.
This dependence is not influenced by the temperature in the

FIG. 9. The calculated temperature dependencies of Nd3+ mo-
ment (solid lines) for fixed angles �Fe: 10, 20, and 40 de-
grees. The red triangles show Nd3+ moments corresponding to
the angles �Fe: 11.9(2), 23.2(1), and 40.4(2) degrees, refined for
Nd0.9Tb0.1Fe3(BO3)4 at 2 K, 15 K, and 25 K. Red line is a guide
for the eye.

FIG. 10. Temperature dependence of the Tb3+ moment (brown
triangles) for Nd0.9Tb0.1Fe3(BO3)4. Brown line is a guide for the
eye. Red points correspond to the temperature dependence for
TbFe3(BO3)4 [10].

approximation used, in which the van Vleck’ contribution
to susceptibility is negligible. The “fine structure” of the Fe
subsystem associated with vectors B1 and B2 is also neglected.

C. Refinement, the models found in the experiment, magnitudes
and directions of the magnetic moments

Since the averaged rare earth moment is small in compar-
ison with the Fe spin, the contribution of the latter to the
intensity of the magnetic reflections dominates. As a result,
the self-consistent refinement is only weakly dependent on the
magnitude and orientation of the rare earth moment.

This gives grounds to use the same �Nd (�Fe) depen-
dence and the task parameters for all possible models. Using
this constraint, we performed the refinement of the neutron
diffraction data for the general model with independently
refined magnitudes and directions of all Fe spins. As well we
explored the “easy-axis” and the collinear models with equal
magnitudes of the Fe spins in three equivalent crystallographic
positions.

FIG. 11. The results of refinement of the “angular” magnetic
configuration, with the vector L within the yz plane found at 2 K
for Nd0.9Tb0.1Fe3(BO3)4. RF2 = 5.75, RF2w = 8.40, RF = 4.80, and
there are 717 reflections in the refinement. Errors do not exceed the
symbol size.
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TABLE II. Goodness-of-fit parameters for different models at 2 K.

χ 2 RF2 RF2w RF

Nd0.9Tb0.1Fe3(BO3)4

“angular” 58.8 5.75 8.40 4.80
collinear 80.0 6.59 9.86 5.64
“easy-axis” 110.0 7.76 11.5 7.12

Nd0.8Tb0.2Fe3(BO3)4

“angular” 76.7 6.37 8.37 5.59
collinear 90.6 6.99 9.11 6.38
“easy-axis” 110.0 7.39 10.0 7.30

In Fig. 8 the refined deviations �Fe and �Nd for Fe3+

and Nd3+ moments, respectively, using the rigid coupling
�Nd (�Fe), are shown for 2 K, 15 K, and 25 K. For any
angle �Fe the corresponding dependence of the Nd3+ moment
on temperature mNd (T ) can be calculated using Eq. (5). In
Fig. 9 the temperature dependencies of mNd (T ) calculated
for the fixed angles �Fe: 10, 20, and 40 degrees are shown
as examples. Thus, using the refined �Fe one can define
the corresponding Nd3+ moments at every temperature point.
Note that the magnetic moment of Nd3+ in the substituted
compound Nd0.9Tb0.1Fe3(BO3)4 is smaller than 1.2 μB in
pure NdFe3(BO3)4, evaluated from the neutron diffraction [8],
that is explained by the inclination from a plane the exchange
magnetic field induced by Fe3+.

Because of the strong correlation between Tb3+ and Nd3+

moments, which occupy the same crystallographic positions,
their simultaneous refinement is impossible. Therefore to
separate magnetic contributions of different rare earth ions we
used the circumstance that the Tb moment is an Ising moment
and is aligned along the c axis. So its direction could be fixed
and the only moment value is varying.

Fixing the obtained value of the Nd3+ moment (shown by
the red triangles in Fig. 9), the refined Tb3+ moment is shown
in Fig. 10. For comparison, the temperature dependence for

TbFe3(BO3)4 from the powder neutron diffraction [10] is
shown as well.

It should be noted that the temperature dependence of the
Tb3+ moment in the substituted compound markedly differs
from the temperature dependence for TbFe3(BO3)4 [10]. This
feature is caused by the variation of the Fe3+ spin direction
with temperature in the substituted compounds.

For Nd0.8Tb0.2Fe3(BO3)4, with the larger concentration of
Tb, the measurements were carried out only at 2 K. The simi-
lar self-consistent refinement, performed under the same con-
ditions, with the same dependence �Nd (�Fe), gives smaller
angles �Fe and �Nd marked by the black triangle in Fig. 8.
It is an expected result, because the Nd0.8Tb0.2Fe3(BO3)4 is
close to the “easy-axis” compound TbFe3(BO3)4.

The independent refinement gives the Tb3+ moment a little
bit more than the free ion moment. It turns out that a value
close to the expected moment of 8.6 μB can be obtained
assuming that the real Tb concentration is 21.8% instead of
the nominal 20%.

For both compositions Nd0.9Tb0.1Fe3(BO3)4 and
Nd0.8Tb0.2Fe3(BO3)4, at 2 K, the refinement evidences
in favor of the “angular” configuration with the vector
L, lying within the yz plane (see Table II). The expected
“easy-axis” model shows worse goodness-of-fit parameters,
bringing us to the preservation of the “angular” configuration.
As an example, the results of the refinement of the “angular”
magnetic configuration in Nd0.9Tb0.1Fe3(BO3)4 at 2 K is
shown in Fig. 11.

At 15 K the refinement in the frame of the general
model, with the independent magnitudes and the directions
of Fe spins, reveals the “angular” configuration, which
is very close to the collinear model. The Fe spins are
aligned along the mean direction φFe of 81(7) degrees
and �Fe of 23(1) degrees. The “goodness-of-fit” parameters
of these two models are very close, so these models are
unresolved.

At 25 K, the refinement definitely evidences in favor of
the collinear model. Results of the refinement for the possible
magnetic structures are shown in Table III.

TABLE III. Results of the refinement for Nd0.9Tb0.1Fe3(BO3)4 and Nd0.8Tb0.2Fe3(BO3)4. R factors (goodness-of-fit parameters), values of
the magnetic moments, and their directions.

T, K RF2 , RF 2w, RF MFe, μB*
mNd , μB,

f ixed
θNd ,

degrees
θFe,

degrees*
φFe,

degrees*

Nd0.9Tb0.1Fe3(BO3)4

“angular,” yz
model

2 5.75, 8.40, 4.80 3.47(1),
3.98(2)

0.48 31.9(5) 13.7(2),
12.7(3)

238(1),
302(1), 270

“angular,”
general
model

15 6.21, 8.68, 5.10 3.10(4),
3.38(8),
3.58(8)

0.22 56(2) 30(2),
21(2),
20.3(6)

−111(9),
−90(9),
−101(9)

collinear 15 6.57, 9.90, 5.80 3.38(1) 0.22 47.2(3) 23.3(6) undefined
collinear 25 7.42, 10.3 6.48 2.54(1) 0.13 65.3(2) 40.3(3) undefined

Nd0.8Tb0.2Fe3(BO3)4

“angular,” yz
model

2 6.75, 8.66, 5.74 4.04(3),
3.74(7)

0.48 18.4(5) 8.08(2),
7.2(3)

−172(2),
−8(2), 270

*In the “angular” models Fe spins MFe and their deviations �Fe in three crystallographic positions of Fe1 (0, x, 0), Fe2 (−x, −x, 0), and Fe3
(x, 0, 0) are nonequivalent. Therefore, all corresponding values are shown.
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TABLE IV. Results of refinement expressed in the terms of vectors L, B1, and B2.

L θL φL B1x , B1y, B1z B2x , B2y, B2z

Nd0.9Tb0.1Fe3(BO3)4 2 K (“angular”) 3.62(2) 12.2(1) 90(1) −0.513(6); 0.00(2); 0.000(1) 0.00(1); 0.127(2); −0.34(1)
Nd0.9Tb0.1Fe3(BO3)4 15 K (“angular”) 3.34(1) 24.3(6) 81(7) −0.309(3), −0.0(1), 0.23(6) −0.2(2), −0.08(5), −0.30(3)
Nd0.9Tb0.1Fe3(BO3)4 15 K (collinear) 3.38(1) 23.3(1) 90 0 0
Nd0.9Tb0.1Fe3(BO3)4 25 K (collinear) 2.55(1) 40.3(1) 90 0 0
Nd0.8Tb0.2Fe3(BO3)4 2 K (“angular”) 3.91(4) 3.1(1) 90(1) −0.65(1); 0.0(2); 0.000(1) 0.000(1); 0.26(1); 0.19(2)

VI. DISCUSSION

A weak deviation of the magnetic moments from the c axis
was previously detected in TbFe3(BO3)4 [10] by powder neu-
tron diffraction. Our single crystal neutron diffraction on the
substituted compositions also clearly indicates the deviation
of the magnetic moments from the hexagonal axis. The mea-
sured inclination at 2 K corresponds to the averaged in-plane
projection of the magnetic moment 0.5(1) μB and 0.18(0.5)
μB for Nd0.9Tb0.1Fe3(BO3)4 and Nd0.8Tb0.2Fe3(BO3)4, re-
spectively. Note that the upper limit of 0.5 μB for the in-plane
projections was reported for TbFe3(BO3)4 estimated from
neutron powder diffraction [10].

The small substitution of Nd for Tb leads to the reori-
entation of the main antiferromagnetic vector L from the
basal plane towards the hexagonal axis evolving with tem-
perature due to competing magnetic anisotropies of Fe, Nd,
and Tb subsystems. The refined “angular” magnetic struc-
ture at the lowest temperature 2 K reveals noncollinear Fe
spin arrangement in the ab plane described by the vectors
B1 and B2 [see Eq. (1)] allowed by symmetry. The “fine
structure” determined by the latter could be considered as
a weak distortion of the collinear magnetic structure due
to the antisymmetric Dzyaloshinsky-Moriya Fe-Fe exchange
interaction, which was not observed in the ferroborates until
now.

With temperature increase, the “fine structure” fades away
and the magnetic structure is described by the usual collinear
model. However the deviation θL of the antiferromagnetic
vector L from the c axis still persists and increases with
temperature (see Table IV).

It should be noted that average Fe spin values in substituted
compounds Nd1−xTbxFe3(BO3)4 are less than 5 μB for the
free ion of Fe3+, namely, 3.62(2) μB and 3.91(4) μB at 2 K,
for x = 0.1 and x = 0.2 correspondingly. Similar spin values
were reported for NdFe3(BO3)4 and TbFe3(BO3)4, namely,

4.13(3) μB and 4.39(4) μB, respectively [8,10]. The exact
origin of this discrepancy is not clear yet. Probably it is a result
of covalency effect due to the spin density on the ligands [32].

VII. CONCLUSION

The magnetic structures and their temperature evolution
were determined in the substituted multiferroics-ferroborates
Nd0.9Tb0.1Fe3(BO3)4 and Nd0.8Tb0.2Fe3(BO3)4 in the frame-
work of a self-consistent refinement of the neutron diffrac-
tion data. The rigid constraints were used in the refinement,
implied by the fact that the magnetic order in the rare earth
sublattice is induced by the Fe sublattice.

We found in the ground state a complicated noncollinear
magnetic order. This structure is characterized by two fea-
tures: a deviation of the main antiferromagnetic vector L from
the c axis, allowing us to refer the found structure as an “an-
gular” one, and the existence of the additional symmetrized
combinations of spin components allowed by a symmetry,
namely, vectors B1 and B2. The latter are determined, in
particular, by the antisymmetric Dzyaloshinsky-Moriya Fe-Fe
exchange interactions. At higher temperatures for x = 0.1
composition we observed a significant increase of the L vector
deviation from the c axis due to a strong competition of the
magnetic anisotropy of the Nd, Tb, and Fe subsystems sug-
gesting the existence of the “angular” magnetic structure just
below the Néel temperature. However, the low temperature
“fine” magnetic structure was not resolved at high temperature
and the overall magnetic structure can be described by a
simple collinear model.
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