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The problems of occurrence and experimental identification of topologically nontrivial phases in condensed
matter have been reviewed. The results of the study of the effect of strong intra- and interatomic Coulomb
interaction on a quantum phase transition with change in the topological index in an ensemble of Hubbard
fermions on a triangular lattice have been reported. Nontrivial topology of the phase of coexistence of d + id
chiral superconductivity and 120° spin ordering in a system with the triangular lattice has been discussed and
the formation of Majorana modes in such a phase has been demonstrated. A cascade of quantum transitions
that occurs at the variation of the magnetic field or the electrochemical potential has been analyzed for an
open nanowire with the Rashba spin–orbit coupling and the induced superconducting pairing potential. It
has been shown that anomalies of magneto- and electrocaloric effects are manifested near such quantum
transitions and can be used to experimentally test materials on the existence of topologically nontrivial phases
in them. The switching of the spin-polarized current in the topological superconducting phase has been pre-
dicted for a semimetal/superconducting wire/semimetal structure in the weak nonequilibrium regime.
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1. INTRODUCTION
After the first theoretical studies of topological

insulators [1–3] and topological superconductors [4–
7], whose existence was predicted for relatively simple
systems described by quadratic forms of the secondary
quantization operators, new directions of study of
topologically nontrivial phases in condensed matter
appeared. There were several reasons for the expan-
sion of the field of studies.

First, it was necessary to consider models where
real features of materials are taken into account more
completely. In particular, the study of topological
phases with the inclusion of the Coulomb interaction
between fermions seemed relevant. It often appeared
that materials considered as candidates for the occur-
rence of topological phases because of a significant
intra-atomic repulsion between electrons were materi-
als with strong electron correlations [8–14].

The second reason was the desirability of materials
where topological phases would occur under more
experimentally achievable conditions. To this end,
new mechanisms inducing nontrivial topology in
superconductors were sought. The simultaneous effect
of an external magnetic field, spin–orbit coupling,

and proximity-induced superconducting pairing
potential played a significant role in the first studies of
topological superconductors with the s-wave symme-
try of the order parameter in nanowires [6, 7]. Alterna-
tively, solid-state systems where superconducting pair-
ing is due to internal interactions in a material were
recently studied [15–24].

A significant amount of attention was paid to mate-
rials where the superconducting phase coexists with
noncollinear spin ordering [17, 18]. In this case, the
formation of the superconducting phase with a non-
trivial topology does not require the presence of the
spin–orbit coupling and external magnetic field. This
was possible because the strong spin–fermion correla-
tion ensured the mixing of states with different spin
projections.

The investigation of the conditions for occurrence
of topologically nontrivial phases in materials with
strong electron correlations required not only expand-
ing mathematical methods but also generalizing the
definition of topological indices because approaches
previously developed for Hamiltonians representable
as quadratic forms of secondary quantization opera-
tors became inapplicable [25, 26].
140
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The study of topological systems is directly associ-
ated with search for experimental proof of the occur-
rence of a nontrivial phase. In particular, the practical
detection of attributes indicating the existence of the
Majorana mode in the system prepared from a topo-
logical superconductor in the open boundary geome-
try is of current interest. In this respect, the tunneling
spectroscopy method is promising. The features of the
current–voltage characteristic revealed by this
method [27] were treated as manifestations of the
Majorana mode. The topological system was a semi-
conductor wire with the strong spin–orbit coupling in
an external magnetic field and with the proximity-
induced superconducting pairing potential [7, 28].
The results obtained in [27] stimulated active studies
of the identification of the Majorana mode because
the interpretation of the tunnel spectroscopy data
seemed ambiguous [29]. For this reason, search for
alternative methods for identification of topological
phases seems relevant.

In this work, we review recent studies of the afore-
mentioned problems of occurrence of topologically
nontrivial phases in condensed matter. The effect of
the strong intra- and interatomic Coulomb interac-
tions on the topological characteristics of supercon-
ductors with the chiral symmetry of the order param-
eter and on topological transitions between different
phases is considered in Section 2. The studies of the
possibility of occurrence of nontrivial topology and
the Majorana mode in the phase of coexistence of chi-
ral superconductivity and noncollinear spin ordering
in layered materials with the triangular lattice are
reviewed in Section 3. The studies of the structure of
the ground state of the quantum wire with the spin–
orbit coupling in the topological phase are discussed in
Section 4, where the features of the magnetocaloric
effect in this nanowire are also described. The features
of the spin-polarized transport that are caused by the
existence of the Majorana mode in the nanowire are
presented in Section 5.

2. QUANTUM TOPOLOGICAL TRANSITION 
IN THE SUPERCONDUCTING 

CHIRAL d + id PHASE

Water-intercalated sodium cobaltite NaxCoO2 �
yH2O is one of the materials where the Coulomb inter-
action between electrons qualitatively affects the topo-
logical transition in the superconducting phase [30,
31]. In the absence of doping, the 3d5 electron config-
uration of Co4+ ions in the octahedral environment
with trigonal distortion corresponds to the filling of
the lower orbital doublet with four electrons and the
filling of the split orbital singlet with one electron.
This level is degenerate in spin projection, and Hub-
bard splitting into two subbands occurs in the crystal
with the strong intra-atomic Coulomb repulsion. The
lower subband is filled. Therefore, the ground state of
JETP LETTERS  Vol. 110  No. 2  2019
the CoO2 layer corresponds to an antiferromagnetic
Mott insulator.

Doping is accompanied by the filling of the upper
Hubbard subband. The long-range magnetic order in
a two-dimensional system is destroyed at finite tem-
peratures and it can be disregarded in the supercon-
ducting phase.
The considered electron doping regime with the filling
of the upper Hubbard subband is often described by
the t–J model. In reality, when deriving the effective
model, three-center terms appear and are significant
for the description of the superconducting phase [32].
For this reason, we use below the t–J*–V model
involving not only three-center terms  but also the
intersite Coulomb repulsion. In the representation of
the Hubbard operators [33, 34], the Hamiltonian has
the form

(1)

where

(2)

(3)

(4)

Here,  is the energy operator of electrons at the sites
of the triangular lattice;  and  are the kinetic and
exchange terms, respectively;  describes correlated
hoppings;  describes the Coulomb repulsion
between electrons in neighboring sites; the usual nota-
tion is used for the Hubbard operators for the upper
Hubbard subband;  is the energy of the single-elec-
tron state; μ is the chemical potential of the ensemble;
U and V are the parameters of the intra- and inter-
atomic Coulomb interactions between electrons,
respectively; and  is the elec-
tron number operator at the fth site.

When the exchange coupling within two coordina-
tion spheres is taken into account, the solution of the
equation for the superconducting order parameter
with the  symmetry is written in the form

(5)
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Fig. 1. (Color online) Configurations of nodal points

 at different ratios of  and  having the (a)
same and (b) opposite signs.

( )Δd q Δ0
1d Δ0

2d
where the basis functions

(6)

correspond to the first and second coordination
spheres [35]. Since these functions are complex, they
vanish not on lines but only at certain points of the
Brillouin zone. In this case, the position of nodal
point  depends on the ratio of the amplitudes

 and  (see Fig. 1). When only the basis function
of the first coordination sphere  contributes to

, nodal points are located in the center and
edges of the Brillouin zone and are not crossed by the
Fermi contour at any finite concentrations. If 
and , nodal points exist inside the Brillouin
zone. In the general case, the ratio  depends on
the charge carrier density and the model parameters.
Under the variation of the density, the mutual dynam-
ics of the Fermi contour and nodal points appears; as
a result, a quantum topological transition occurs in
the system when the Fermi contour crosses nodal
points.

An important role of the intersite Coulomb repul-
sion between fermions in the occurrence of the quan-
tum topological transition is manifested through the
mechanism of the formation of nodal points .
The main effect of this interaction tends to eliminate
the superconducting phase (here we do not discuss
higher orders of perturbation theory that are responsi-
ble for the Kohn–Luttinger mechanism [36–38]).
The interaction between electrons located on the
nearest sites more strongly affects the superconduct-
ing pairing amplitude , whereas the Coulomb
repulsion for the second coordination sphere is more
strongly manifested in a decrease in . As a result,
the ratio  changes and nodal points  are
shifted. This is the mechanism of the influence of the
intersite Coulomb interaction on the topological tran-
sition point under the variation of the carrier density in
the system.

According to the spectrum of excitations in the

superconducting phase  (ξq = εq –
μ, εq is the energy of the electron in the normal phase),
the spectrum of the superconducting phase becomes
gapless when the Fermi contour of the normal phase
crosses nodal points of Δ(q).

The complex character of  initiates topologi-
cal peculiarities of the superconducting phase. The
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Fig. 2. (Color online) topological indices Q for two config-
urations of nodal points  and Fermi contour. The
parameters are J1 = 0.3|t1|, J2 = 0.2|t1|, and t2 = t3 = 0.

( )Δd q
makes it possible to construct a mapping between the
points of the Brillouin zone and the points of a two-
dimensional sphere with the unit radius. Thus, motion
on the Brillouin zone is mapped to motion on this
sphere. Different homotopic classes of such trajecto-
ries are classified in terms of the degree of mapping
called the topological index [35]

(8)

where summation is performed over all triangular
plaquettes and the vectors m1, m2, and m3 are calcu-
lated at the vortices of plaquettes. The index Q reflects
the topological structure of the superconducting phase
and is related to the mutual arrangement of nodal
points Δd(q) and the Fermi contour. If the variation of
the density results in the crossing of nodal points by
the Fermi contour of the normal phase (Fig. 2), a
quantum topological transition occurs [40, 41].

As known [42], the nonzero values of the topolog-
ical invariant Q in the chiral superconducting phase of
the system with periodic boundary conditions indicate
the presence of edge states in a similar system with
open boundaries. In the next section, we describe the
mechanism of the formation of edge states and Majo-
rana modes in the spin-singlet superconducting phase
with the d + id symmetry.

3. MAJORANA MODES IN THE PHASE
OF COEXISTENCE OF CHIRAL 

SUPERCONDUCTIVITY AND SPIN 
ORDERING ON THE TRIANGULAR LATTICE

Soon after the formation of Majorana modes in
superconducting systems with the spin–orbit coupling
in a uniform magnetic field was predicted [6, 7], it was
demonstrated that a nonuniform external field can
play a role similar to the spin–orbit coupling [43].
Correspondingly, alternative systems for the occur-
rence of Majorana modes were proposed: (i) a chain of
magnetic nanoparticles with arbitrary directions of the

[ ]
Δ

= ⋅ ×
πm m m1 2 3
1 ,

8
Q
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magnetization on a superconducting substrate [44],
(ii) nanowires with the induced superconductivity in
the spatially nonuniform magnetic field [45], and
(iii) quasi-one-dimensional systems with the Ruder-
man–Kittel–Kasuya–Yosida exchange interaction
and helical magnetic order in contact with a supercon-
ductor [46, 47].

Materials with the phase of coexistence of super-
conductivity and noncollinear spin ordering such as
HoMo6S8 and ErRh4B4 constitute another class of sys-
tems, where Majorana modes are induced through a
similar scenario [17].

It was shown in [18] that, if the stripe magnetic
order appears in the NaxCoO2 � yH2O compound with
the triangular lattice in the presence of the d + id chiral
superconductivity, Majorana modes are also formed.
However, further analysis [48] showed that chiral
superconductivity cannot coexist with stripe spin
ordering but coexists with the magnetic order corre-
sponding to the 120° structure. Furthermore, the cal-
culations within the Hubbard and t–J models demon-
strate the occurrence of 120° spin ordering for the tri-
angular lattice at low doping levels [49, 50]. The
formation of the phase of coexistence of chiral super-
conductivity and 120° structure in this doping range
was demonstrated in [51, 52].

The advantage of this mechanism in search for
Majorana fermions is the unnecessity of the creation
of complex structures with the proximity effect
because superconductivity and magnetic ordering
homogeneously coexist throughout the entire volume
of the sample owing to internal interactions.

For clear illustration, we demonstrate the appear-
ance of a nontrivial topology and Majorana modes in
the phase of coexistence of d + id chiral superconduc-
tivity and 120° magnetic ordering on the triangular lat-
tice within the simple model [53]

(9)

where alσ is the annihilation operator for an electron
on the lth site (Wannier representation) and the spin
projection σ, μ is the chemical potential, tfm and Δfm
are the amplitudes of electron hoppings and supercon-
ducting pairings, h(Q) is the exchange field parameter,
and Q is the magnetic structure vector.

Hamiltonian (9) has the electron–hole symmetry
and corresponds to the D class [54]:
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Fig. 3. (Color online) Diagram of states of the triangular
lattice in the coexistence phase with different Majorana
numbers. The thick lines are the boundaries of topologi-
cally nontrivial phases. Thin lines correspond to the
parameters of the system for which excitations with zero
energy occur in the cylindrical topology.
where H(k) is the Bogoliubov–de Gennes Hamilto-
nian matrix in the quasimomentum representation,
and O and I are the zero and identity matrices, respec-
tively.

A direct consequence of symmetry (10) is that the
value –εn(–k + Q) is associated with each excitation
energy εn(k). We refer to points of the Brillouin zone
that satisfy the relation k = –k + Q + G, where G is the
reciprocal lattice vector, as particle–hole invariant
momentum (PHIM) points and denote them as K =
(K1, K2). In the toroidal topology with periodic bound-
ary conditions along both directions of the lattice,
there are four PHIM points KI = (–2π/3, –2π/3),
KII = (–2π/3, π/3), KIII = (π/3, –2π/3), and KIV =
(π/3, π/3).

The formation of a topologically nontrivial phase
for which the formation of Majorana modes is
expected can be indicated by a negative fermion parity
of the ground state (this was proposed for the first time
in [4]). Since states with the quasimomenta k and
‒k + Q are filled together and do not change the par-
ity of the ground state, it is sufficient to analyze the
filling of states at PHIM points. The superconducting
order parameter vanishes at the PHIM point KI and
one state with the energy εn(KI) < 0 is filled under the
condition h > |μ + 3t1 – 6t2 + 3t3|. States at the other
PHIM points are not filled under this condition. At
three points KII–IV, the Hamiltonian is reduced to the
Hamiltonian of the superconductor in the uniform
magnetic field and states are filled together under the

condition . The pre-
sented conditions specify regions where the ground
state is represented as the superposition of states with
an odd number of fermions and a topologically non-
trivial phase occurs.

As known [5], the topological invariant  (the
Majorana number ) is defined in terms of the fer-
mion parity P(K) of the ground state of the lattice in
the toroidal topology:

(11)

where P(K) is calculated as the sign of the Pfaffian of
the Bogoliubov–de Gennes matrix in the representa-
tion of Majorana operators. The value  = –1 corre-
sponds to the topologically nontrivial phase. At  = 1,
the state of the system is topologically trivial and
Majorana modes do not occur. The direct calculation
of  is in agreement with the above conditions for the
occurrence of the topologically nontrivial phase
obtained from the comparatively simple analysis of the
parity of the ground state.

In the quasi-one-dimensional system with periodic
boundary conditions along one of the directions of the
lattice (cylindrical topology), Majorana modes occur
only at K2 = –2π/3 and in the same parametric regions
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as above. The topological invariant in this case has the
form

(12)

Thick lines in Fig. 3 are the boundaries of phases
with different Majorana numbers on the “magnetic
field–chemical potential” plane. The calculations
were performed with the following amplitudes of
superconducting pairings: , 
at t2 = t3 = 0. Thin lines in Fig. 3 correspond to the
parametric conditions of occurrence of zeroth modes
for the lattice in cylindrical topology at K2 = –2π/3
with the number of sites N1 = 48 along the direction a1.
It is seen that most of zeroth modes lie in the region of
the parameters that corresponds to the topologically
nontrivial phase of the system in closed geometry.
With increasing N1, all zeroth modes are distributed
over regions with  = –1. Such zeroth modes also
occur in other models of quasi-one-dimensional sys-
tems with D symmetry. In the next sections, we will
show how these modes can be detected by measuring
caloric effects and transport properties.

Topologically protected edge states can also occur
at  = 1. Their formation is indicated by nonzero val-
ues of the  invariant for two-dimensional systems (in
particular, including the interaction), which can be
expressed in terms of the Green’s functions [25, 55]:
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Fig. 4. (Color online) Diagrams of topological phases with
the corresponding values of the  invariant (see Eq. (13)).�3N
where μ, ν, λ = 1, 2, 3;  is the antisymmetric Levi-
Civita tensor; ; ; ; and
summation over repeated subscripts is implied. In the
considered system of noninteracting electrons,

.
It is noteworthy that Eq. (13) for the Green’s func-

tions of a chiral superconductor without long-range
magnetic order is reduced to the well-known defini-
tion for the winding number of the vector m, which is
introduced in Eq. (7) and is related to the Berry phase
and Chern number:

(14)

This expression is equivalent to the topological index
introduced in Eq. (8).

A relation between the  invariant (11) and topo-
logical index in the two-dimensional case (13) was
established in [56] for noncentrosymmetric supercon-
ductors with d symmetry. This relation for the consid-
ered system with the magnetic order has a similar form

(15)
Consequently, Majorana modes are formed in topo-
logically nontrivial phases with odd . If  is even,
topologically protected edge states occur, but they do
not belong to the Majorana type. This is in agreement
with the calculation of conditions for the formation of
zeroth modes in the cylindrical topology.

The (chemical potential–exchange field) phase
diagram with different topologically nontrivial phases
is shown in Fig. 4. Each region located between two
boundary lines is characterized by an individual value
of the topological index  indicated in the diagram.
Solid lines are obtained from the condition of pres-
ence of gapless excitations in the toroidal topology.
The parameters are the same as for Fig. 3. It is seen
that an increase in the chemical potential results in a
number of quantum topological transitions.

Analysis of zeros of the excitation spectrum in the
phase of coexistence of superconductivity and noncol-
linear magnetic order significantly differs from analysis
of the spectrum obtained in the Bardeen–Cooper–
Schrieffer (BCS) theory. As mentioned in Section 2,
the BCS spectrum has zero energy at edges and in the
center of the hexagonal Brillouin zone only when the
chemical potential crosses the bottom or top of the bare
electron band. The spectrum in the phase of coexis-
tence can have zeros at these points in view of the
exchange field when the chemical potential lies inside
the Brillouin zone. Such a situation is seen in Fig. 4 at
the transition from the region with  to the
region with  and at the  tran-
sition when the gap is closed at the point KI. This point
corresponds to one of the nonequivalent points lying
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on the intersection of the edges of the hexagonal Bril-
louin zone. In this case, Δd(k) = Δd(–k + Q) = 0. The
second such transition occurs between the regions
with N3 = 3 (this very narrow region is marked by the
thick line between the regions with  and

) and  when the gap in the spectrum is
closed at the (0, 0) point (center of the Brillouin zone)
and (2π/3, 2π/3) (the second nonequivalent point at
the edge of the Brillouin zone). The crossing of nodal
points of the superconducting order parameter by the
Fermi contour for the superconductor without mag-
netic order results in the formation of gapless exci-
tations. When noncollinear magnetism is taken into
account, this condition is not satisfied because the
spectrum depends also on Δd(–k + Q). However, there
are conditions when the energy spectrum vanishes at
points where the parameters Δd(k) and Δd(–k + Q) are
nonzero. Such a situation corresponds to the other
transitions in Fig. 4.

Strong electron correlations should be taken into
account in real materials with the phase of coexistence
of d + id chiral superconductivity and spin ordering. In
[52], we not only demonstrated the stability of Majo-
rana modes with respect to electron interactions but
also determined their structure in the ensemble of
Hubbard fermions of strongly correlated systems. In
that work, the conditions of occurrence of topologi-
cally nontrivial phases were found from the solution of
self-consistency equations for the order parameters.

4. CALORIC ANOMALIES AND THE FERMION 
PARITY OF THE NANOWIRE

IN THE SUPERCONDUCTING PHASE
WITH NONTRIVIAL TOPOLOGY

In the preceding section, considering one of the
systems with D symmetry, it was shown that change in
external conditions for the region of parameters where

= −�

3 3N
=�

3 1N =�

3 1N
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Fig. 5. (Color online) Diagrams of topological phases of
the superconducting nanowire. Regions II and III corre-
spond to topologically nontrivial phases (  = –1),
whereas regions I and IV correspond to a trivial topological
phase (  = 1).

}

}

the topologically nontrivial phase occurs induces
oscillations of the energy of the Fermi excitation. This
leads to a nonmonotonic dependence of the thermo-
dynamic characteristics, which can be used to identify
the topologically nontrivial phase.

Candidates for the experimental detection of the
topologically nontrivial phase are quasi-one-dimen-
sional superconductors [5–7, 29]. Actively studied
superconducting nanowires with induced s-wave
superconductivity in the external magnetic field are
among such systems. They are popular because of the
developed molecular beam epitaxy technology. InAs
or InSb wires with strong spin–orbit coupling and
large g-factors (gInAs ~ 10–25 [57] and gInSb ~ 20–70
[58]), as well as standard BCS superconductors such
as Al whose thin (5–10 nm) layers are deposited on the
surface of a nanowire [59], are usually studied.

The progress in the fabrication of such hybrid
structures allowed ballistic transport experiments [29].
A peak of the differential conductivity at zero voltage
in a wide range of magnetic fields was detected with
the height equal to two conductivity quanta, i.e., 2G0.
This was treated as the formation of topologically non-
trivial phases with Majorana modes [29]. However,
such a resonance can appear because of the inhomo-
geneities of the electrostatic potential and Andreev
reflection on them [60]. Since the interpretation of
such experiments is ambiguous, the development of
alternative methods of experimental identification of
topologically nontrivial phases in superconducting
nanowires is relevant.

A promising approach to the experimental detec-
tion of topologically nontrivial phases can be based on
the study of magnetocaloric anomalies [61, 62]. The
physical foundation of the method is change in the fer-
mion parity of the ground state of the system under the
variation of the external parameter.

We consider the superconducting nanowire
described by the Hamiltonian [63]

(16)

Here, hx = gμBHx, where g is the Landé g-factor, μB is
the Bohr magneton, and Hx is the x component of the
external magnetic field (in this section, hx = 0); the
terms in the first line describe the one-dimensional
system of fermions with the hopping integral t/2 and
the Rashba spin–orbit coupling parameter α/2; the
terms in the second line describe the proximity-
induced superconducting pairing potential with the
amplitude Δ = |Δ|exp(iθ) (in this section, θ = 0 is
taken) and the energy of the fermion on one site ξσ =

 – μ + ησhz measured from the chemical potential μ,
where η↑ = 1, η↓ = –1, and hz = gμBHz.
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The simple analysis shows that four types of the
function of the ground state ( ) are pos-
sible for an even number of sites depending on the
parameters of the superconducting nanowire:

(17)

Here, the quadratic forms

(18)

generate the superposition of states with an even num-
ber of fermions. Therefore, the negative fermion parity
of the ground state is determined only by the character
of the filling of states with k = 0 and π.

The functions  and  are represented in the
form of superpositions of states with even numbers of
fermions. Correspondingly, the Majorana number is

 = 1. The functions  and  are superposi-
tions of states with odd numbers of fermions and the
Majorana number is  = –1.

The requirement that the energy of the states 
and  be lower than the energy of the states 
and  gives the inequalities

(19)

which were previously obtained from the analysis of
the Majorana number. Under these conditions, the
parameters of the superconducting nanowire are such
that the topologically nontrivial phase occurs (regi-
ons II and III in Fig. 5).
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Fig. 6. (Color online) Phase diagram of the open super-
conducting nanowire. Regions with the negative fermion
parity are shaded. The dashed lines are the boundaries of
topologically nontrivial phases of the closed supercon-
ducting nanowire (see Fig. 5).
Topologically protected Majorana modes with the
exponentially low excitation energy ε0 ~ exp(–N)
occur in long open chains for the region of parameters
corresponding to the topologically nontrivial phase in
the closed geometry. The properties of these modes
can be revealed by considering the expansion coeffi-
cients wlσ, 0 and zlσ,0 of the self-adjoint operators b' =

 and b'' =  in the single-site

Majorana operators γAlσ and :

(20)

where ulσ, 0 and  are the Bogoliubov transformation
coefficients. The overlapping of the distributions wlσ, 0
and zlσ, 0 is exponentially small. Correspondingly,
Majorana modes are electrical- and spin-neutral
because the electron and spin density distributions

(21)

(22)

do not change at the transition of the superconducting
nanowire from the ground state  to the state with the
Majorana mode .

The overlapping of the distributions wlσ, 0 and 
becomes significant as the length of the chain
decreases. The energy of modes is generally nonzero,
but excitations with zero energy are possible at certain
parameters. As for the system specified by Eq. (9),
these excitations occur on the lines bounding the
shaded regions in Fig. 6. It is remarkable that the inter-
section of such lines is accompanied by change in the
fermion parity of the ground state and a quantum
transition occurs in the system. For this reason, the
zeroth mode lines are lines of quantum critical points.
The fermion parity P is determined by the sign of the
Pfaffian of the Bogoliubov–de Genes matrix  of the
Hamiltonian (16) written in the representation of
Majorana operators:

(23)
The calculation of the fermion parity for the open

nanowire provides the phase diagram shown in Fig. 6.
The regions with P = –1 are shaded. Excitations with
zero energy exist at the boundaries of these regions. All
regions with P = –1 are located inside the region of the
topologically nontrivial phase of the chain in the
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closed geometry. Consequently, the identification of
lines of change in the fermion parity using the observ-
able characteristics in the short open nanowire can
indicate the region of the parameters where Majorana
modes occur in the infinitely long open superconduct-
ing nanowire.

It is known that quantum transitions can be
detected using the magnetocaloric effect [64, 65],
which is manifested as change in the temperature of
the system at the adiabatic variation of the magnetic
field:

(24)

where  is the specific magnetization and C(T) is the
specific heat. It is remarkable that the derivative (24) at
low temperatures has different signs to the left and
right of the quantum critical point and diverges at this
point. Similar statements are valid for the electro-
caloric effect, which is change in the temperature
under the adiabatic variation of the electrochemical
potential.

Correspondingly, caloric effects at low tempera-
tures will demonstrate the described anomalous
behavior when the external variable parameter is
within the topologically nontrivial phase of the closed
superconducting nanowire. This behavior is illustrated
in Fig. 7, where the dashed lines are the dependences
of caloric effects for the closed superconducting
nanowire, where quantum transitions are accompa-
nied by change in the topological index  and the
solid lines are similar dependences for the open
nanowire. These features can indicate the occurrence
of the topologically nontrivial phase in the long super-
conducting nanowire and provide an additional crite-
rion to the previously proposed tests (see, e.g., [29,

( )
,μ μ,

 ∂  ∂∂ = − , ∂  

/
( )S h

M TT T
h C T

 M
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Fig. 7. (Color online) Field dependence of the magnetoca-
loric effect at the parameters T = 10–3|t|, μ = 0.5|t|, and
other parameters same as in Fig. 6. Comparison with
Fig. 6 indicates that the behavior of the caloric effect is
anomalous in the region corresponding to the topologi-
cally nontrivial phase.
66]). The presented effects can occur not only in
superconducting nanowires but also in other quasi-
one-dimensional systems with D symmetry.

5. FEATURES OF SPIN-POLARIZED 
TRANSPORT INVOLVING MAJORANA STATES

As mentioned above, the Majorana mode in long
wires is characterized by zero average spin. At the same
time, it was shown in some works that the transition to
the topologically nontrivial phase can be identified
either by observing separately the electron component
of the spin polarization of the Majorana mode [67–
69] or by studying the total spin polarization of all
excitations except for the Majorana mode [70].

The nonzero electron (hole) spin polarization of
the Majorana mode in transport processes is responsi-
ble for the equal-spin Andreev reflection [71– 73] and
noncollinear Andreev reflection [74]. Thus, the exis-
tence of the Majorana mode can be tested by spin-
polarized spectroscopy/microscopy.

In this context, we consider quantum transport in a
ferromagnet/superconducting nanowire/ferromagnet
system [75] described by the Hamiltonian

(25)

Here, the first and second terms describe the left and
right single-band ferromagnetic metal contacts in the
Stoner model and have the form

where  is the electron creation operator in the
ith contact with the quasimomentum k, the spin
projection on the quantization axis σ, and the energy

= + + +L R W T.* * * * *

+
σ σ σ

σ

 = ξ − − η =
   , L,R,

2
i

i k i ik ik
k

eV M c c i*

+
σikc
ξk = – μ (μ is the chemical potential of the system),
and Mi is the energy of the molecular field of the ith
contact.

The term  describes the superconducting
nanowire with the Rashba spin–orbit coupling in a
canted magnetic field (hx, hz ≠ 0) and was introduced
in Eq. (16). The term  in Eq. (25) is the tunnel
Hamiltonian describing the interaction between the
superconducting wire and contacts and has the form

(26)

where tL(R) is the tunnel coupling parameter between
the left (right) contact and wire.

To analyze the transport properties, we use the
nonequilibrium Green’s function method [76–78].
For convenient description of the electron, hole, and
spin degrees of freedom, we introduce four-compo-

nent Nambu operators, ,
where  [74, 79]. Then, nonequilibrium
Green’s functions are represented in the form

(27)

where TC is the ordering operator on the Keldysh time
contour. Using Eq. (27), the electron current in the ith
contact is specified in the form

(28)

where  allows including contribu-
tions to the current from both the electron and hole
channels;  is the Fourier transform of
the retarded self-energy function matrix (lesser func-
tions), which describes the effect of the ith contact on
the superconducting nanowire; and  is the Fourier
transform of the retarded single-particle Green’s
function matrix (lesser functions) of the ith contact.
Time-dependent tunnel coupling matrices have the
form . Fur-

ther,  is the (i,i)th block of the Fou-
rier transform of the advanced Green’s function
matrix of the superconducting nanowire (lesser func-
tions), which corresponds to its first (in the case of IL)
or last (in the case of IR) site. These blocks are
obtained using projection operators PL = (IO) and

, where I is the 4 × 4 identity matrix and O
is the 4 × 4N – 4 zero block [80, 81].
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The nonequilibrium Green’s functions of the
superconducting nanowire are determined by solving
the Dyson and Keldysh equations

(29)

(30)
In Eq. (29), HW describes the superconducting
nanowire in the space of Nambu operators. The total
self-energy function of the system is written in the
form  ( ). Below, we
consider semimetallic contacts (e.g., NiMnSb or CrO2
[82]), which are characterized by the presence of
charge carriers with only one spin projection (majority
carriers). Then, the components referring to the
ith contact in the wide-band approximation have the

form , , where

 is the parameter characterizing the broad-
ening of the levels of the superconducting nanowire
caused by coupling with the subband of majority car-
riers in the ith contact,  is the density of states of the
subband of majority carriers in the ith contact, and

, where  are
the Fermi–Dirac functions.

In [75], we analyzed f luctuations of the current, in
particular, shot noise at zero frequency [79, 83]:

(31)

We consider features of the conducting properties
of the system under study. We assume that VL = VR =
V. Then, certain transformations reduce Eq. (28) in
the case of, e.g., the left contact to the form

(32)

where  and  are the matrix ele-
ments of Gr.

The derived expression for the current includes two
components: (i) the local current  associ-
ated with the processes of local Andreev reflection
(LAR) and (ii) the nonlocal current 
associated with the processes of crossed Andreev
reflection (CAR) [71, 74]. The matrix elements of the
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Fourier transform of the retarded Green’s function,
which are responsible for mentioned processes, have
the form  and . We
emphasize that Andreev processes in the semime-
tal/superconductor system are absent except for the
spin-flip processes because this type of ferromagnets
has only one subband of charge carriers. However,
e.g., if scattering on the interface allows spin-flip pro-
cesses, Andreev reflection without change in the spin
projection of carriers occurs [84, 85].

In the case of the superconducting nanowire under
consideration, a nonzero contribution to the spin-
polarized current from Andreev channels arises
because of the spin–orbit coupling. We demonstrate
this by considering the simplest situation where the
superconducting nanowire consists of two sites (N = 2)
and hx = 0. Then, the numerators of the corresponding
Green’s functions have the form

(33)

where , ,
, and . The lengthy denomina-

tor common for all Green’s functions is not presented
here. According to Eqs. (33), the local and crossed
Andreev reflections from the semimetal/supercon-
ducting nanowire interface occur only if the supercon-
ducting nanowire demonstrates both superconducting
pairing and spin–orbit coupling simultaneously.

In the single-contact geometry (ΓR = 0), the cur-
rent is determined only by local processes. For further
consideration, it is important that the differential con-
ductance GL = dIL/dV in the linear response regime
tends to zero. Such a behavior is in agreement with that
described for the case where a superconductor (with-
out the spin–orbit coupling) is in contact with a semi-
metal, where the magnetization gradient is perpendic-
ular to the interface [84, 85]. At the same time, the
contribution to the current from both channels in the
nonlocal regime is nonzero at any ω values.

We further consider only the weakly nonequilib-
rium regime, 0 < eV/2 < min(δε0), where δε0 stands for
the maxima of the characteristic oscillatory depen-
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Fig. 8. (Color online) (a) Conductance of the left contact, (b) the Fano factor of the right contact, and (c, d) the z component of

the electron spin polarization of the Majorana mode on the (c) left, , and (d) right, , ends of the superconducting nanowire.
Color scales are given under the respective panels. The parameters are t = 1, μ = 0, Δ = 0.4, α = 2, and N0 = 30.

L R L R

0 1 2

L
zS R

zS
dence of the excitation energy of Majorana modes on
the external magnetic field. This dependence is due to
the hybridization of distributions wlσ, 0 and  intro-
duced in Eqs. (20) and is manifested in magnetoca-
loric anomalies described above.

Figure 8a shows the dependence (conductance
map) of the conductance of the left contact on the x
and z components of the magnetic field perpendicular
to the Rashba field vector. At a fixed orientation of the
magnetic field H, an increase in the field strength is
accompanied by an increase in . In this case, the
2G0 maxima of the conductivity caused by local reso-
nant Andreev reflection on Majorana modes
( , ) [86] alternate with minima.
The calculations for different directions of H show
concentric resonance rings on the conductance map.
The width of these rings depends on the direction of
the field and all maxima of the conductance are sup-
pressed for a certain orientation.

The calculations indicate that the transport of spin-
polarized electrons (holes) with the energy near the
Fermi level is determined by the behavior of the elec-
tron (hole) component of the spin polarization of
Majorana modes at the ends of the superconducting

nanowire,  =  (for a

fairly short wire with N = 30, ).
Figures 8c and 8d shows the magnetic field depen-
dences of  and , respectively. In the lower half-
plane,  because the field is antiparallel to the
z axis. As a result, conductance rings in this region are
wider.

The comparison of Figs. 8a and 8c shows that res-
onances of GL(hx, hz) are suppressed at orientations of

the magnetic fields for which  has a minimum (see
the dark blue region in Fig. 8с). It is important that

σ,0lz

δε0

=LAR
L 02G G =CAR

L 0G

δ ≡1( ) L(R)( )z z
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N e N hs s

L
zS R

zS
>L,R 0zS

L
zS
 in this case. As a result, the spin-
polarized transport is suppressed and IL ≈ 0. At the
same time, the polarization on the right end at the
same field orientations tends to zero and

. The last property means that reso-
nances in the conductance of the right contact GR that
are caused by local Andreev reflection on Majorana
modes hold, i.e., IR ≠ 0 (not shown in Fig. 8) [75].

Thus, for the indicated direction of the magnetic
field, the transport regime is strongly asymmetric,
close to single-contact, which is also confirmed by the
behavior of the Fano factor of the right contact FR =
SR(0)/(2eIR) shown in Fig. 8b. It is seen that, when

, magnetic fields at which GR ≈ 2G0 correspond
to FR = 0. In the intervals between these minima,
FR → 2. This indicates that local Andreev reflection
dominates in regions with the low conductance [79,
86]. On the contrary, in all other regions, where the
two-contact regime holds and GL, GR ≪ 1, the pro-
cesses of crossed Andreev reflection dominate and, as
a result, FR → 1 [87].

We note that the breaking of the symmetry of cur-
rents observed at (also detected at the spin-indepen-
dent transport via Мajorana modes [88]) is character-
istic just of the weakly nonequilibrium transport
regime. Indeed, according to Eqs. (33), the linear
response approximation in the single-contact regime
gives GL = GR = 0 and IL = –IR.

A similar analysis can also be performed for the
field orientation characterized by the relation 
[75]. In this case, , IR ≈ 0. In other cases,

. Thus, the performed analysis shows that the
magnetic field allows controlling the direction of the
spin-polarized current in a weakly nonequilibrium

↑ ↑,= ≈2
L 1 0 0zS u

↑ ↓≈ − ≠R R 0z zS S

≈x zh h

≈ −x zh h
≠L 0I

= −L RI I
JETP LETTERS  Vol. 110  No. 2  2019



OCCURRENCE OF TOPOLOGICALLY NONTRIVIAL PHASES 151
semiconductor/superconducting nanowire/supercon-
ductor system if the device is in a topologically non-
trivial phase.

6. CONCLUSIONS
The reported studies of the formation of topologi-

cal phases in condensed matter have shown that the
inclusion of the Coulomb interaction between elec-
trons and noncollinear spin ordering gives new mech-
anisms of induction of states with nontrivial topology.

Conditions for the quantum topological transitions
in d + id chiral superconductors without magnetic
order and in the phase of coexistence of d + id super-
conductivity and noncollinear spin ordering have been
analyzed. In the former case, topologically nontrivial
phases have an even topological index. At parameters
for which the state of the system is topologically non-
trivial, edge states are formed in the case of open
boundaries.

When the 120° magnetic order occurs, the regions
of formation of topologically nontrivial phases change
because phases with odd topological invariants
appear. Edge states formed in open systems in such
phases are Majorana states. The existence of a set of
zeroth modes is important for experimental search for
topologically nontrivial phases.

The study of the superconducting nanowire with
the strong Rashba spin–orbit coupling and induced
superconductivity has shown that the variation of the
external magnetic field initiates an anomalous behav-
ior of caloric effects in such a system only if the param-
eters of the nanowire correspond to a topologically
nontrivial phase. The mentioned features are due to a
cascade of quantum transitions with change in the fer-
mion parity of the ground state of the system. This
effect can be used as a new method of experimental
identification of a topologically nontrivial phase in a
nanowire.

Features of the transport characteristics of hybrid
structures containing a superconducting nanowire in
the topological phase have been analyzed. In particu-
lar, the semimetal/superconducting nanowire/semi-
metal structure exhibits the breaking of symmetry of
currents caused by the formation of a topologically
nontrivial phase. This phenomenon can be used to
detect Majorana modes and to create a new generation
of electronic devices.
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