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Abstract—Different mechanisms of superconductivity result in specific symmetries and structures of the gap
in multiband systems. Here we review the spin f luctuation mechanism of Cooper pairing and discuss the spin
resonance feature in the superconducting state of iron-based materials.
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INTRODUCTION

Weakly doped pnictides are antiferromagnetic
metals and the most promising candidate for the the-
ory of superconductivity is the spin f luctuation mech-
anism of Cooper pairing [1–4]. The leading supercon-
ducting instability in a wide range of dopings is char-
acterized by the extended s-wave gap having the
opposite signs on hole and electron Fermi surface
pockets – the so-called s± state [4–7]. On the other
hand, orbital f luctuations results in the s++ state with
the gap having the same sign on all Fermi surface
sheets [8]. By determining the gap structure, one can
deduce the microscopic mechanism of superconduc-
tivity. In this respect, inelastic neutron scattering plays
a special role since the imaginary part of the dynami-
cal spin susceptibility  measured there carries
information about the gap structure in the supercon-
ducting state. That is, the sign-changing s± gap leads to
the formation of the spin resonance peak at or near the
commensurate antiferromagnetic wave vector q = Q
connecting Fermi surface sheets with different signs of
gaps on them [9, 10].

Here we review the spin f luctuation mechanism of
superconductivity and discuss the spin resonance in
the superconducting state of iron-based materials.
Based on the gap function calculated within the spin
fluctuation theory of pairing, we show that the reso-
nance peak shifts to lower frequencies and loses some
intensity with increasing the gap anisotropy [11–14].

MODEL
As the kinetic energy H0, we use the five-orbital

tight-binding model from [15] that is based on the
DFT band structure calculations within LDA for the
prototypical iron pnictide, LaFeAsO. H0 is described
by a tight-binding model spanned by five Fe d-orbit-
als. Total number of electrons is given by n = n0 ± x,
where electron filling n0 = 6 corresponds to the fully
occupied d6-orbital and x is the doping concentration.
For the electron-doped and undoped systems, the
Fermi surface consists of two small hole pockets, α1
and α2, around the Γ = (0, 0) point, and two small
electron pockets, β1 and β2, around the X = (π, 0) and
Y = (0, π) points in the one-electron Brillouin zone,
respectively. Upon hole doping a new hole Fermi sur-
face pocket, γ, emerges around the (π, π) point.

Explicit form of H0 is

(1)

where dklσ is the annihilation operator of the electron
with momentum k, spin σ, and orbital index l, tll'(k) is
the hopping matrix element,  is the one-electron
energy, and μ0 is the chemical potential. Later we use
numerical values of hopping matrix elements tll'(k) and
one-electron energies  from [15]. Similar model for
iron pnictides was proposed in [16].

There is an important consequence of the multior-
bital nature of the system. The single-particle nonin-
teracting Green’s function is diagonal in the band
space but not in the orbital space. It makes sense to
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transform to the band basis that is constructed using
operators of electron’s creation and annihilation, 
and , with the band index μ. Green’s function for
H0 is then diagonal in the band basis,

(2)

where  is the Matsubara frequency and  is the
energy. The transition from the orbital to the band
basis is implemented with the aid of the orbital matrix
elements , . In this case,

.

As the interaction part of the model, we take the
on-site Coulomb (Hubbard) electron-electron repul-
sion written for the multiorbital systems [15–19],

(3)

where ,  is the electron annihilation

operator,  is the number of particles
operator, f is the site index, l and l' are orbital indices,
U and U' are intra- and interorbital Hubbard repul-
sions, J is the Hund’s exchange, and J' is the pair-hop-
ping. Usually, parameters obey the spin-rotational
invariance (SRI) that leads to relations 
and  thus reducing the number of free parame-
ters in the theory.

The interactions in the Hamiltonian have a com-
plicated orbital structure. To compactify the expres-
sions we define the local matrix interaction in orbital
space, , which accounts for all
the quartic terms. It will be used later for calculations
of susceptibility.

SPIN FLUCTUATION THEORY 
OF PAIRING

The original proposal of superconducting pairing
arising from magnetic interactions was put forward by
Emery [20] and by Berk and Schrieffer [21], who were
interested primarily in transition metal elements and
nearly ferromagnetic metals. Such systems are consid-
ered to be close to a ferromagnetic ordering transition
in the Stoner sense, so that their susceptibility may be
approximated by , where  is the
“bare” susceptibility at zero momentum and U is a
Hubbard matrix element assumed to be large since

. Physically this means that a spin-up electron
traveling through the medium polarizes the spins
around it ferromagnetically lowering the system’s
energy. The spin-triplet pairing interaction for such a
correlated electron gas is therefore attractive, while the
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singlet interaction turns out to be repulsive [21]. The
“exchanged” excitations in such a picture are not well-
defined collective modes such as phonons or mag-
nons, but rather “paramagnons” defined by the exis-
tence of a peak-like structure in the imaginary part of
the small-q susceptibility [22].

While there are many types of spin f luctuation the-
ories, they share more commonalities than differ-
ences. Indeed, in the singlet channel exchange of spin
fluctuations always leads to a repulsive interaction,
and therefore can only result in superconducting states
with the sign-changing gap. If this interaction is suffi-
ciently strong at some particular momentum, it will
necessarily lead to the superconductivity. The super-
conducting interaction in the singlet channel is deter-
mined by the Cooper vertex , which is given by the
RPA series. The expression for the  component of
the bare spin susceptibility takes the form [5]

The Cooper vertex has the form

where  is the spin (s) and charge

(c) RPA susceptibilities,  are the interaction matri-
ces in the spin and charge channels [15], and l1 to l4 are
the orbital indices.

Hubbard interaction is local in the orbital basis that
makes it easier to calculate susceptibility and Cooper
vertex in this basis. However, gap equations are easier
to solve in the band basis (especially near the Fermi
surface), therefore, we transform the Cooper vertex
into a band basis via matrix elements ,

Calculations show that  rapidly decreases with
increasing  in the range of frequencies that are much
lower than the bandwidth. Although the equation for
the superconducting gap depends on , the
momenta k and k' making the main contribution to the
pairing should correspond to the small frequencies at
which these momenta appears to be close to the Fermi
surface. Similarly to the case where the coupling con-
stant for the electron-phonon interaction is deter-
mined by the frequency integral of the Eliashberg
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Fig. 1. Angular dependencies of gaps in hole (α1,2) and
electron (β1,2) Fermi surface pockets calculated within the
spin fluctuation pairing theory (shown by symbols) and
obtained by fitting the parameters entering Eq. (6) (shown
by curves).
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function , using the Kramers–Kronig relation-
ship, we obtain

(4)

Thus, the problem of the effective pairing interac-
tion calculation reduces to finding the real part of 
at the zero frequency, which substantially simplifies
further calculations.

If we represent the order parameter  as a product
of the amplitude  and the angular part , we can
determine the dimensionless coupling  as a result of
the eigenvalue problem solution with the eigenvalues 
and eigenvectors  [5, 15]:

(5)

where  is the Fermi velocity, the contour integral is
taken over the parallel to the th Fermi surface com-

ponent of momenta , and the band  is unambigu-
ously determined by which of the Fermi surfaces the
momentum k belongs to. Positive λ's correspond to
attraction and the maximal one of them represents the
state with the highest Tc, i.e., the most favorable pair-
ing symmetry with the corresponding gap function
determined by . By arranging λ's in the descending
order, we can determine which symmetries and gap
structures are most favorable and which will be com-
peting with each other.

SPIN RESONANCE PEAK

Since different mechanisms of Cooper pairs for-
mation result in different superconducting gap sym-
metries and structures in FeBS [4], one way to eluci-
date the mechanism of pairing is to determine the
details of the order parameter. For example, as dis-
cussed above, spin f luctuation approach gives the s±
state as the main instability for the wide range of dop-
ing concentrations [5–7, 15, 16, 23–25], while orbital
f luctuations promote the s++ state [8].

Inelastic neutron scattering (INS) is a useful tool
here since the measured dynamical spin susceptibility

 in the superconducting state carries informa-
tion about the gap structure. There are many reports of
a well-defined spin resonance peak in neutron spectra
in 1111, 122, and 11 systems appearing only for T < Tc
at or around q = Q [26–35]. Such a peak is attributed
to be a spin resonance that was predicted theoretically
[9, 10] as originating from the s± superconducting
state.
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Here, we solve the linearized gap equation within
the spin f luctuation theory of pairing and obtain the
gap function  and the corresponding eigenvalue .
For U = 1.4 eV and J = 0.1 eV we obtain λ = 0.24, 0.19,
and 0.08, which correspond to the A1g gap,  gap,
and  gap, respectively. Increase of J doesn’t change
this hierarchy. In general, the observed situation is
typical of iron-based superconductors and was exten-
sively discussed within the leading angular harmonics
approximation (LAHA) [24, 25]. For U = 1.4 eV, J =
0.1, 0.15, and 0.2 eV, the leading instability is the A1g
gap that can be parameterized as

(6)

The resulting gap angular dependence for U =
1.4 eV and J = 0.15 eV is shown in Fig. 1. The following
fitting parameters were obtained (only nonzero values
in units of  are presented): ,  = 26,

,  = 6,  = 6.99, ,

.
To calculate the spin response, the RPA is used

with the local Coulomb interaction Hint. The sum of
the corresponding ladder diagrams that includes elec-
tron-hole bubble in the matrix form, ,
results in the following expression for the matrix of the
RPA spin susceptibility [5],

where  and  are the unit and interaction matrices,
respectively, in the orbital basis. Explicit form of the
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Fig. 2. Frequency dependence of imaginary part of the spin susceptibility at the wave vector Q in the normal state (non-SC), for
the simple s± state, and for the A1g gap. Magnitudes of the latter on the Fermi surface and the wave vector Q are shown in the
inset. The A1g gap was normalized by Δ0 = 50 meV.
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latter is given in [15]. Below we present results for the

physical susceptibility  = 

that was analytically continued to the real frequency
axis ω ( , ).

For the s± state, a certain set of interaction param-
eters entering the matrix  results in the divergence of

. The corresponding peak at a frequency
 is the true spin resonance. Frequency  =

 depends on gaps in bands separated
by the wave vector q. Therefore, we can call  as the
“indirect” or “effective” gap. That is the reason why in
the case of unequal gaps in different bands,  and ,
connected by the wave vector Q, we have

 [11].
Spin response for the A1g gap function with the

aforementioned parameters is shown in Fig. 2. 
in the simple s± state is also shown there for compari-
son. The spin resonance peak appears in both cases,
but at lower frequencies for the A1g gap because of the
smaller effective gap at the same wave vector Q.

CONCLUSIONS
We have briefly reviewed the spin f luctuation

mechanism of pairing for iron-based superconduc-
tors. Within the five-orbital model, the dynamical spin
susceptibility with the anisotropic gaps has been stud-
ied. Using the gap function calculated via the spin
fluctuation theory of pairing, we have shown that the
spin resonance frequency decreases with the increase
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of the gap anisotropy. Such a behavior is connected
with the decrease of the effective gap at the scattering
wave vector Q.

As for the experimental verification of the spin res-
onance appearance, the condition for the spin reso-
nance frequency  in the case of the anisotropic gaps

 becomes . If all values
entering here fulfill this condition, then the observed
peak is the true spin resonance. Otherwise, a calcula-
tion involving the details of the band structure and
superconducting gap is required to make a definite
conclusion.
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